Двухконтурная энергетическая установка

Заявленное решение относится к энергетике, в частности к устройствам, преобразующим энергию рабочего тела в механическую или электрическую энергию, и может использоваться в электроэнергетике, теплоэнергетике, в станкостроении, в автомобилестроении и других отраслях. Двухконтурная энергетическая установка, которая содержит размещенные последовательно на одном валу генератор, стартер, турбину и два компрессора основного и вспомогательного контура, а также два замкнутых контура: вспомогательный и основной с рабочим телом в каждом, при этом контуры выполнены с возможностью взаимодействия между собой. Замкнутый основной контур имеет последовательно соединенные в рамках своего контура компрессор основного контура, промежуточный теплообменник, встречный теплообменник-конденсатор вспомогательного контура, воздушный теплообменник, подогреваемый внешним источником тепла, турбину, промежуточный теплообменник, встречный теплообменник-испаритель вспомогательного контура. Замкнутый вспомогательный контур имеет последовательно соединенные компрессор вспомогательного контура, встречный конденсатор, воздушный теплообменник-конденсатор, устройство, понижающее давление, встречный испаритель, воздушный теплообменник-испаритель. Достигается простота и эффективность конструкции, в которой не требуется перегрев рабочего тела, не требуется постоянного пополнения рабочего тела во вспомогательном контуре, что исключает отходы в виде выбросов отработанного рабочего тела. 1 ил.

 

Заявленное решение относится к энергетике, в частности к устройствам, преобразующих энергию рабочего тела в механическую или электрическую энергию и может использоваться в электроэнергетике, теплоэнергетике, в станкостроении, в автомобилестроении и других отраслях.

Известна энергетическая установка Кандидата технических наук П. Шелеста, включающая два контура вспомогательный и основной, работающая за счет обмена тепловой энергией между рабочим телом вспомогательного контура и рабочим телом основного контура и преобразования тепловой энергии основного контура в механическую, при этом первый вспомогательный контур является разомкнутым, а его рабочим телом является воздух из окружающей среды.

Недостатком данного решения является то, что работа устройства основана на постоянном пополнении рабочего тела вспомогательного контура, забора воздуха из окружающей среды и выброс отработанного рабочего тела обратно в окружающую среду, (см. Шелест П. Полувековой юбилей одной идеи. Наука и жизнь. - 1993, №2, с. 152, 153).

Известна двухконтурная энергетическая установка, являющаяся ближайшим аналогом к предложенному решению RU 2013135699 «ЭНЕРГОУСТАНОВКА С ЗАКРЫТЫМИ КОНТУРАМИ» подключенная к источнику возобновляемой энергии, содержащая основной теплообменник, паровую турбину на низкокипящем рабочем теле, теплообменный конденсатор и циркуляционный насос, при этом содержит первый закрытый контур, дополненный пароперегревателем перед паровой турбиной, и второй закрытый контур, состоящий из испарителя - по первому контуру конденсатор, нагнетателя (компрессора) и конденсатора - по первому контуру пароперегреватель, при этом первый и второй закрытые контуры имеют общую точку смешения рабочих тел.

Недостатком данного решения является то, что вспомогательный контур работает на рабочем теле с повышенным давлением, для парообразования требуется перегревание. Для движения рабочего тела в основном контуре требуется насос.

Задачами заявленного решения является разработка простой и эффективной конструкции двухконтурной энергетической установки в которой не требуется перегрев рабочего тела, не требуется постоянного пополнения рабочего тела во вспомогательном контуре, что исключает отходы в виде выбросов отработанного рабочего тела.

Поставленные задачи и результат достигаются за счет разработанной конструкции двухконтурной энергетической установки.

Двухконтурная энергетическая установка содержит размещенные последовательно на одном валу генератор, стартер, турбину и два компрессора основного и вспомогательного контура, а также два замкнутых контура: вспомогательный и основной с рабочим телом в каждом, при этом контуры выполнены с возможностью взаимодействия между собой;

замкнутый основной контур имеет последовательно соединенные, в рамках своего контура, компрессор основного контура, промежуточный теплообменник, встречный теплообменник - конденсатор вспомогательного контура, воздушный теплообменник, подогреваемый внешним источником тепла, турбину, промежуточный теплообменник, встречный теплообменник -испаритель вспомогательного контура;

замкнутый вспомогательный контур имеет последовательно соединенные компрессор вспомогательного контура, встречный теплообменник-конденсатор, воздушный теплообменник-конденсатор, устройство понижающее давление, встречный теплообменник-испаритель, воздушный теплообменник-испаритель.

Далее, предложенное изобретение будет рассмотрено с учетом чертежей, где:

фиг. 1 - схематичное изображение двухконтурной энергетической установки.

Краткое описание конструктивных элементов:

1 - вспомогательный контур;

1.1- компрессор вспомогательного контура;

1.2 - встречный теплообменник-конденсатор;

1.3 - устройство понижения давления;

1.4 - встречный теплообменник-испаритель;

1.5 - воздушный теплообменник-конденсатор;

1.6 - воздушный теплообменник-испаритель;

1.7 - воздушный теплообменник;

2 - основной контур;

2.1 - компрессор основного контура;

2.2 - промежуточный теплообменник после компрессора основного контура;

2.3 - турбина;

2.4 - промежуточный теплообменник после турбины;

3 - стартер;

4 - вал.

5 - генератор;

В рамках данной заявки следует принимать во внимание температурные показатели:

«окружающей среды» - это показания температуры среды, которая окружает работающую теплосиловую установку;

«холодный» - это показания температуры ниже температурного показателя «окружающей среды»;

«охлажденный» - это показания температуры несущественно ниже температурного показателя «окружающей среды»;

«теплый» - это показания температуры незначительно выше температурного показателя «окружающей среды»;

«горячий» - это показания температуры значительно выше температурного показателя «окружающей среды».

Оба рабочих контура (1) и (2) являются замкнутыми, при этом в качестве рабочего тела каждого из контуров используют низкокипящие жидкости, например, фреон. При использовании такого вида рабочего тела заправка требуется только при возникновении утечки. Взаимодействие обоих контуров в заявленной двухконтурной энергетической установке осуществляется при помощи встречного теплообменника-конденсатора (1.2) и встречного теплообменника-испарителя (1.4).

В заявленной теплосиловой установке, стартер (3), генератор (5), турбина (2.3), компрессор основного контура (2.1) и компрессор вспомогательного контура (1.1) расположены на одном валу (4), при этом турбина (2.3) и компрессор (2.1) основного контура расположены между компрессором (1.1) вспомогательного контура и стартером (3). Такое расположение позволяет устройству при первоначальном пуске сразу начать работу в обоих контурах.

Следует заметить, что стартер (3) и генератор (5) энергетической установки может быть использован любого типа, например, стартер-генератор, не ограничиваясь каким-либо выполнением.

В рамках данного решения рабочий температурный режим следует считать в диапазоне от -50°С до +200°С.

Включенный во вспомогательный контур теплообменник-конденсатор (1.5), позволяет дополнительно сконденсировать рабочее тело вспомогательного контура, которое не полностью сконденсировалось в теплообменнике-конденсаторе (1.2), и снизить его температуру до температуры «окружающей среды», т.е. довести рабочее тело до необходимого состояния и температурного режима для прохождения устройства понижающего давления (1.3).

Между теплообменником-конденсатором (1.5) и теплообменником-испарителем (1.6) во вспомогательном контуре предусмотрено устройство понижения давления (1.3).

Устройство понижения давления (1.3) направлено на понижение давления и на понижение температуры кипения и парообразование рабочего тела вспомогательного контура (1) перед поступлением его в теплообменник-испаритель (1.6). Устройство, понижающее давление (1.3), понижает давление у поступающего в него рабочего тела вспомогательного контура (1) с температурой «окружающей среды».

После устройства понижения давления (1.3) вспомогательного контура (1), рабочее тело этого контура (1) входит в теплообменник-испаритель (1.4) с температурой кипения и перехода в газообразное состояние для осуществления испарения с учетом уменьшенного давления.

В теплообменнике-испарителе (1.4) осуществляется теплообмен между рабочими телами вспомогательного контура (1) и основного (2). Рабочее тело вспомогательного контура (1) забирает тепло у рабочего тела основного контура (2), и отбираемое тепло расходуется на кипение и переход в газообразное состояние рабочего тела вспомогательного контура (1). Рабочее тело вспомогательного контура направляется в воздушный теплообменник-испаритель (1.6).

Рабочее тело вспомогательного контура (1) поступает из встречного теплообменника-испарителя (1.4) в воздушный теплообменник-испаритель (1.6) с температурой кипения и перехода в газообразное состояние рабочего тела вспомогательного контура (1).

Включенный во вспомогательный контур (1) воздушный теплообменник-испаритель (1.6), в случае если рабочее тело не полностью испарилось в теплообменнике-испарителе (1.4), испаряет его, при этом рабочее тело нагревается до температуры «окружающей среды».

Рабочее тело выходит из теплообменника-испарителя (1-6) с температурой «окружающей среды», при которой оно находится в парообразном состоянии и направляется в компрессор (1.1) вспомогательного контура (1). Компрессор (1.1) предназначен на повышение давления рабочего тела во вспомогательном контуре (1).

Промежуточный теплообменник (2.2), включенный в основной контур (2) после компрессора (2.1) основного контура (2), дополнительно нагревает рабочее тело основного контура (2) с температуры «охлажденный» до «окружающей среды», тем самым подготавливает его к прохождению через встречный теплообменник-конденсатор (1.2) вспомогательного контура (1). Во встречном теплообменнике-конденсаторе (1.2) рабочее тело основного контура (1) нагревается до температуры «горячий».

Включенный в основной контур (2) воздушный теплообменник (1.7), подогревает рабочее тело основного контура (2) до «рабочей температуры», внешним источником тепла, например электрокотлом, разогретыми отработанными газами или иным источником нагрева, при этом разогретое рабочее тело проходит через турбину (2.3), в которой происходит преобразование тепловой энергии рабочего тела основного контура (2) в механическую энергию с потерей его температуры до значения «теплый».

Далее, включенный в основной контур (2) промежуточный теплообменник (2.4) после турбины (2.3) дополнительно остужает рабочее тело основного контура (2) с температуры «теплый» до температуры «окружающей среды», тем самым подготавливая рабочее тело основного контура (2) к прохождению встречного теплообменника-испарителя (1.4) вспомогательного контура (1). Во встречном теплообменнике-испарителе (1.4) рабочее тело основного контура (2) охлаждается до температуры «холодный».

В качестве промежуточных теплообменников (2.2) и (2.4) в рамках заявленной установки используют воздушные теплообменники и/или встречные теплообменники, взаимодействующие с дополнительными контурами с температурой «окружающей среды».

Принцип работы установки.

Заявленная двухконтурная энергетическая теплосиловая установка работает следующим образом.

Теплосиловая установка включает два контура вспомогательный (1) и основной (2), внутри которых по кругу параллельно, в разных направлениях циркулирует рабочее тело, при этом происходит передача энергии рабочего тела вспомогательного контура (1) рабочему телу основного контура (2), и преобразования энергии рабочего тела основного контура (2) в механическую.

При помощи стартера (3) прокручивают вал (4), на котором последовательно от стартера (3) в одну сторону расположены турбина (2.3), компрессор основного контура (2.1), компрессор вспомогательного контура (1.1), а в другую генератор (5).

Вал (4) запускает компрессор (1.1) вспомогательного контура (1), который сжимает пары рабочего тела вспомогательного контура (1), повышая его давление и температуру до показателя «горячий», и проталкивает рабочее тело вспомогательного контура (1) во встречный теплообменник-конденсатор (1.2), в котором протекает процесс фазового перехода рабочего тела вспомогательного контура (1) из парообразного состояния в жидкое за счет отвода тепла более холодным теплоносителем, в качестве которого выступает рабочее тело основного контура (2), при этом меняя температуру рабочего тела вспомогательного контура (1) до «окружающей среды», а температуру рабочего тела основного контура (2) до температуры «горячий».

Далее, рабочее тело вспомогательного контура (1) с температурой «окружающей среды» или «теплый» попадает в воздушный теплообменник-конденсатор (1.5), в котором дополнительно осуществляют процесс конденсации рабочего тела вспомогательного контура (1), которое не полностью сконденсировалось в теплообменнике-конденсаторе (1.2), и снижение его температуры до температуры «окружающей среды».

Далее, рабочее тело вспомогательного контура (1) с температурой «окружающей среды» попадает в устройство понижающее давление (1.3), после которого во встречный теплообменник-испаритель (1.4), где происходит испарение рабочего тела вспомогательного контура (1), при этом рабочее тело отнимает тепло у рабочего тела основного контура (2) и отбираемая теплота расходуется на кипение и переход в парообразное состояние рабочего тела вспомогательного контура (1).

Далее, рабочее тело вспомогательного контура (1) поступает в воздушный теплообменник-испаритель (1.6), в котором рабочее тело испаряется, если полностью не испарилось в теплообменнике-испарителе (1.4). При этом рабочее тело вспомогательного контура (1) нагревается до температуры «окружающей среды».

Далее, рабочее тело направляется в компрессор (1.1) вспомогательного контура (1) и циклический процесс данного контура повторяется.

Параллельно с работой вспомогательного контура (1) посредством вращения вала (4) осуществляется работа основного контура (2).

Стартер (3), вращая вал (4), запускает компрессор (2.1) основного контура (2), который засасывает рабочее тело основного контура (2), охлажденное в теплообменнике-испарителе (1.4) до температуры «холодный», сжимает его, повышая давление и температуру до температуры «охлажденный» после чего поток рабочего тела основного контура (2) попадает в промежуточный теплообменник (2,2), в котором нагревается с температуры «охлажденный», до «окружающей среды», при этом осуществляется отвод холода.

Далее, поток попадает во встречный теплообменник-конденсатор (1.2) вспомогательного контура (1), где разогревается до температуры «горячий» за счет конденсации рабочего тела вспомогательного контура (1).

Далее, поток рабочего тела основного контура (2) попадает в воздушный теплообменник (1.7), где осуществляется его подогрев до «рабочей температуры» внешним источником тепла.

Далее, разогретое рабочее тело основного контура (2) проходит через турбину (2.3), в которой происходит преобразование тепловой энергии рабочего тела основного контура (2) в механическую с потерей его температуры до значения «теплый».

После турбины (2.3) поток проходит через промежуточный теплообменник (2.4), в котором рабочее тело остывает с температуры «теплый» до «окружающей среды», при этом осуществляется снятие тепла.

Далее, рабочее тело основного контура (2) охлаждают в теплообменнике-испарителе (1.4) до температуры «холодный» и направляется в компрессор (2.1) основного контура (2) и процесс повторяется.

Генератор (5) в заявленном решении направлен и на отбор полученной энергии, а также как источник дополнительной энергии для работы контуров устройства.

Заявленная установка позволяет преобразовать тепловую энергию рабочего тела в механическую, при этом не требуется постоянного пополнения рабочего тела вспомогательного и основного контура. В процессе работы установка не имеет отходов в виде выбросов отработанного рабочего тела, стабильна за счет элементов выравнивающих температуру и состояние рабочего тела до необходимых показателей в процессе работы, при высокой эффективности и простоте конструкции.

Двухконтурная энергетическая установка, характеризующаяся тем, что содержит размещенные последовательно на одном валу (4) генератор (5), стартер (3), турбину (2.3) и два компрессора основного и вспомогательного контура, а также два замкнутых контура: вспомогательный (1) и основной (2) с рабочим телом в каждом, при этом контуры выполнены с возможностью взаимодействия между собой;

замкнутый основной контур (2) имеет последовательно соединенные в рамках своего контура компрессор основного контура (2.1), промежуточный теплообменник (2.2), встречный теплообменник-конденсатор (1.2) вспомогательного контура, воздушный теплообменник (1.7), подогреваемый внешним источником тепла, турбину (2.3), промежуточный теплообменник (2.4), встречный теплообменник-испаритель (1.4) вспомогательного контура;

замкнутый вспомогательный контур (1) имеет последовательно соединенные компрессор вспомогательного контура (1.1), встречный теплообменник-конденсатор (1.2), воздушный теплообменник-конденсатор (1.5), устройство, понижающее давление (1.3), встречный теплообменник-испаритель (1.4), воздушный теплообменник-испаритель (1.6).



 

Похожие патенты:

Изобретение относится к области энергетики, в частности к области накопления и хранения энергии. Способ накопления и генерации энергии включает зарядку системы, состоящую в получении жидкого атмосферного воздуха, хранение жидкого воздуха в криогенном танке и генерацию энергии.

Изобретение относится к накоплению и хранению энергии и может быть использовано для регулирования мощности крупных генерирующих станций, управления спросом и иных применений для генерации, сетей, потребителей. Способ включает следующие этапы: очистка атмосферного воздуха, сжатие его с понижением температуры воздуха на выходе каждой ступени сжатия до температуры, близкой к температуре окружающей среды, охлаждение до температуры 100 К, разделение сжатого воздуха на газовую и жидкую фазы; хранение жидкой фракции в криогенном танке; высвобождение энергии при генерации.

Способ преобразования энергии, включающий в себя этапы, на которых: используют рабочее вещество первого теплового насоса (I) для поглощения теплоты из отводимого газообразного напорного рабочего вещества пневматического мотора (J), что приводит к конденсации отводимого газообразного напорного рабочего вещества пневматического мотора (J) с образованием напорного жидкого рабочего вещества, и подают напорное жидкое рабочее вещество в качестве подводимого напорного рабочего вещества пневматического мотора (J); посредством первого теплового насоса (I) сжимают рабочее вещество после поглощения теплоты для повышения температуры рабочего вещества для отдачи теплоты подводимому напорному рабочему веществу пневматического мотора (J) для обеспечения возможности его нагрева и превращения в пар с образованием напорного газообразного рабочего вещества, при этом напорное газообразное рабочее вещество используют для приведения в действие пневматического мотора (J) с последующим выходом из пневматического мотора (J) в качестве отводимого напорного газообразного рабочего вещества пневматического мотора (J); и осуществляют подачу рабочего вещества первого теплового насоса (1), температура которого упала из-за отдачи им теплоты подводимому напорному рабочему веществу, для повторного поглощения теплоты из отводимого напорного газообразного рабочего вещества пневматического мотора (J), в результате чего рабочее вещество первого теплового насоса (1) циклически проходит процессы поглощения теплоты, повышения температуры и снижения температуры.

Изобретение относится к устройствам для нагревания газов или газожидкостных смесей с попутным производством электрической энергии и может быть использовано в нефтехимической, газоперерабатывающей, энергетической и других отраслях промышленности. Генерация электроэнергии в предложенном устройстве выполняется при использовании органического цикла Ренкина, термоэлектрического эффекта Зеебека.

Изобретение относится к энергетике, а именно к способам повышения эффективности установок, использующих органический цикл Ренкина. Способ повышения эффективности энергетической установки органического цикла Ренкина с помощью использования климатического ресурса холода заключается в том, что выходящий из основной турбины пар при достаточном понижении температуры окружающей среды относительно расчетной направляют в как минимум одну установленную последовательно по движению пара к основной дополнительную турбину, которая включается в работу через разъединительную муфту и совершает дополнительную работу, а отработанный пар, в зависимости от температуры окружающей среды, направляют либо на следующую дополнительную турбину, либо в конденсатор.

Изобретение относится к энергетике. Утилизационная углекислотная энергоустановка содержит утилизационный теплообменный аппарат 1, состоящий из двух участков теплообмена - основного и байпасного подогревателей (ОП 2 и БП 3) углекислого газа высокого давления (СО2 в.д.), расположенных в утилизационном теплообменном аппарате 1 в указанной последовательности по ходу греющего теплоносителя, высокотемпературный рекуператор (ВТР) 4, низкотемпературный рекуператор (НТР) 5, высокотемпературную турбину 6, низкотемпературную турбину 7, охладитель СО2 н.д.

Изобретение относится к энергетике. Утилизационная углекислотная энергоустановка содержит утилизационный теплообменный аппарат 1, состоящий из двух участков теплообмена - основного и байпасного подогревателей (ОП 2 и БП 3) углекислого газа высокого давления (СО2 в.д.), расположенных в утилизационном теплообменном аппарате 1 в указанной последовательности по ходу греющего теплоносителя, высокотемпературный рекуператор (ВТР) 4, низкотемпературный рекуператор (НТР) 5, высокотемпературную турбину 6, низкотемпературную турбину 7, охладитель СО2 н.д.

Описана термодинамическая система, содержащая рабочую текучую среду. Термодинамическая система содержит по меньшей мере сосуд (11) для сбора рабочей текучей среды, выполненный с возможностью вмещения жидкой фазы и газообразной фазы рабочей текучей среды в термодинамическом равновесии.

Изобретение относится к области энергетики. Утилизационная углекислотная энергоустановка для установки комбинированного цикла содержит котел-утилизатор, состоящий из основного и байпасного подогревателей углекислого газа высокого давления (СО2 в.д.), расположенных в котле-утилизаторе в указанной последовательности по ходу дымовых газов, высокотемпературный рекуператор, сообщенный на выходе по нагреваемому СО2 в.д.

Изобретение относится к области энергетики. Утилизационная углекислотная энергоустановка для установки комбинированного цикла содержит котел-утилизатор, состоящий из основного и байпасного подогревателей углекислого газа высокого давления (СО2 в.д.), расположенных в котле-утилизаторе в указанной последовательности по ходу дымовых газов, высокотемпературный рекуператор, сообщенный на выходе по нагреваемому СО2 в.д.

Изобретение относится к области энергетики и предназначено для производства электроэнергии. Высокотемпературная паросиловая установка содержит топочный котел с пароперегревателем, паровую турбину, конденсатор, питательный насос, циркуляционный контур жидкого теплоносителя с низким давлением насыщенных паров, включающий высокотемпературный теплообменник топочного котла, насос, высокотемпературный пароперегреватель, содержащий вход и выход пара, вход и выход жидкого теплоносителя, гидротурбину, соединенную с насосом через гидравлическую муфту с регулируемым передающим моментом вращения.
Наверх