Способ получения биметаллического слитка

Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионно-стойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя. В процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а в процессе переплава электрода из коррозионностойкой стали, содержащей 0,1-0,5% титана, производят равномерное добавление в металлическую ванну алюминия с расходом 1-4 г на 1 кг наплавляемого металла и титана с расходом 1-3 г на 1 кг наплавляемого металла, а переплав проводят под шлаком, содержание SiO2 в котором составляет не более 1%. Изобретение обеспечивает минимизацию угара титана и повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов при сохранении высокой прочности и сплошности соединения слоев и технологичности. 1 пр., 3 табл.

 

Изобретение относится к области специальной электрометаллургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, состоящих из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного слоя из коррозионностойкой стали, предназначенных для последующей прокатки на биметаллические полосы или листы. Важными требованиями к таким слиткам являются высокая прочность и гарантированная сплошность соединения слоев, высокая коррозионная стойкость плакирующего слоя, при удовлетворительном качестве поверхности и низкой стоимости листов. Коррозионная стойкость наплавленного слоя в слитках и в полученных из них листах определяется химическим составом стали, в частности содержанием хрома, никеля и титана в соответствии с ГОСТ-5632, его чистотой по примесям - сере и кислороду, а также его толщиной. При этом в качестве элемента, стабилизирующего содержание углерода в стали плакирующего слоя, для обеспечения ее стойкости против межкристаллитной коррозии (МКК), предпочтительнее использование титана, а не ниобия, что приводит к снижению стоимости листов и к повышению коррозионной стойкости плакирующего слоя в некоторых средах.

Известен способ получения двух- и трехслойных заготовок электрошлаковой наплавкой коррозионностойкой стали на заготовку основного слоя под флюсом, содержащим CaO, CaF2, SiO2, Al2O3 и MgO, в котором для снижения содержания кислорода в наплавленном слое рекомендуется поддерживать значение коэффициента относительной химической активности не более 0,07, а при наплавке использовать форсированные режимы с повышенными скоростями формирования наплавленного слоя (Родионова И.Г., Шарапов А.А., Липухин Ю.В. и др. Влияние свойств шлака на качество наплавленного слоя из коррозионностойкой стали. Сталь. - 1990. - №12. - С. 28-30). Этот способ обеспечивает высокую прочность сцепления слоев и удовлетворительное качество поверхности. Однако форсированные режимы наплавки приводят к увеличению как абсолютных значений глубины проплавления основного слоя, так и к ее повышенной неравномерности. Глубокое проплавление основы приводит также к существенному разбавлению коррозионностойкой стали сталью основы и к соответствующему снижению коррозионной стойкости. Кроме того, низкая химическая активность флюса приводит, главным образом, к снижению содержания кислорода и в меньшей степени серы, в то время как для повышения коррозионной стойкости во многих средах более важно рафинирование наплавленного слоя по сере, чем по кислороду. Следует также отметить, что описанная в способе сталь плакирующего слоя не содержит элементов, позволяющих обеспечить стабилизацию углерода, а именно титана и ниобия, что не обеспечивает ее стойкости против МКК.

Для повышения коррозионной стойкости сталей аустенитного класса в виде монометалла, получаемого путем электрошлакового переплава (ЭШП), или в виде плакирующего слоя двухслойной стали, получаемой методом электрошлаковой наплавкой (ЭШН), при снижении затрат на производство, возможно использование технологических приемов, направленных на обеспечение требуемого содержания титана в стали наплавленного слоя. Проведенный анализ показал, что для получения в процессе ЭШП коррозионностойкой стали аустенитного класса, легированной титаном, и/или при получении методом ЭШН биметалла с плакирующим слоем из такой стали можно использовать несколько подходов.

Первый подход заключается в выборе оптимального химического состава стали для расходуемых электродов, наличие в составе стали элементов, обладающих более высоким сродством к кислороду, чем титан. К таким химическим элементам относятся кальций, магний, алюминий и цирконий, что может быть учтено в качестве одного из возможных приемов при разработке технологии ЭШН сталей с титаном. Так, в работе (Патент RU2578879, МПК H05B 7/07, C22B 9/18, C22C 38/50, Опубл. 27.03.2016) предложено обеспечивать соотношение содержания титана к алюминию в электроде в пределах 6,0-9,0, при этом содержание титана в электроде должно быть выше требуемого содержания титана в готовой стали на величину его угара при переплаве, который определяют по зависимости: ΔTi=37Ti+35Ti×D / (63+35D), где ΔTi - средний угар титана, полученный при проведении плавок в кристаллизаторы различного профилеразмера с одинаковым коэффициентом заполнения, %; Ti - содержание титана в готовом металле, %; D - диаметр кристаллизатора. Это позволяет получить качественный металл с гарантированным содержанием титана и с равномерным его распределением по объему выплавляемого слитка. Однако повышенное содержание указанных выше элементов, а также самого титана в стали расходуемых электродов неизбежно приводит к повышению стоимости двухслойных листов.

Второй подход заключается в подборе оптимального режима наплавки. Необходимо регулировать значения напряжения и тока, так как слишком высокие значения мощности способствуют увеличению угара титана, повышению глубины проплавления стали основного слоя, способствующему снижению содержания основных легирующих элементов - хрома и никеля в стали наплавленного слоя. При недостатке подводимой мощности возможно появление расслоений на границе раздела слоев. К таким же последствиям может приводить и избыток подводимой мощности, так как при этом повышается неравномерность распределения тепла по площади наплавляемой заготовки, что также приводит к появлению несплошностей.

И третий подход к обеспечению заданного содержания титана в стали после ЭШП и ЭШН заключается в разработке оптимальной системы раскисления и регулирования состава шлака по ходу процесса путем введения в него различных присадок, в частности, содержащих алюминий, титан, а возможно и некоторые другие элементы, позволяющие стабилизировать его функциональные характеристики. Этот подход представляется наиболее приемлемым при получении биметалла с плакирующим слоем из стали, легированной титаном, при использовании электрошлаковой технологии, однако требует определения оптимального расхода указанных элементов и способов их введения, особенно при получении двухслойных листов больших размеров и массы.

Наиболее близким аналогом заявленного изобретения является способ получения биметаллического слитка, включающий размещение металлической заготовки, являющейся основным слоем биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм, при регламентированных значениях скорости формирования и электросопротивления шлаковой ванны, при этом толщина наплавленного слоя составляет 5-30% от общей толщины слитка (Патент RU2193071, МПК C22B 9/20. Опубл. 20.11.2002 - данная работа является прототипом).

Способ обеспечивает высокую прочность сцепления и гарантированную сплошность соединения слоев, равномерность толщины наплавленного слоя при удовлетворительном качестве поверхности при наплавке заготовок больших размеров и массы. В то же время этот способ позволяет получить двухслойную сталь с плакирующим слоем из аустенитной хромо-никелевой стали, легированной ниобием, но не позволяет получить биметалл с плакирующим слоем из аустенитной хромо-никелевой стали, легированной титаном, что неизбежно приводит к повышению затрат на производство. Кроме того, это сужает области применения производимого биметалла из-за более низкой коррозионной стойкости в некоторых средах стали, легированной ниобием, по сравнению со сталью, легированной титаном.

Задача, решаемая с помощью данного изобретения, заключается в обеспечении высокого качества биметаллических слитков определенного размерного сортамента, в том числе предназначенных для последующей прокатки на листы: высокой прочности и гарантированной сплошности соединения слоев, равномерной толщины, высокой коррозионной стойкости и удовлетворительного качества поверхности наплавленного слоя, при сравнительно низкой себестоимости биметаллических заготовок и листов.

Техническим результатом данного изобретения является повышение коррозионной стойкости наплавленного слоя биметаллических слитков и листов, а также снижение их себестоимости, при сохранении высокой прочности и сплошности соединения слоев и технологичности.

Технический результат достигается тем, что в известном способе получения биметаллического слитка, включающем размещение металлической заготовки, являющейся основным слоем биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали,, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, толщина которого составляет 5-30% от общей толщины слитка, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм, согласно изобретению, в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а в процессе переплава электрода из коррозионностойкой стали, содержащей 0,1-0,5% титана производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 1 г каждого на 1 кг наплавляемого металла, а переплав проводят под шлаком, содержание SiO2 в котором составляет не более 1%.

Поддержание значения мощности в интервале 420-500 кВт, путем изменения значений напряжения в интервале 37-45 В и тока в интервале 9-13 кА, является необходимым условием обеспечения требуемого содержания титана в стали наплавленного слоя. При более высоких значениях мощности, содержание титана в стали наплавленного слоя будет ниже предъявляемых требований. При более низких значениях мощности в ряде участков глубина проплавления основного слоя будет недостаточной для формирования качественного соединения слоев, что приведет к появлению дефектов в виде расслоений.

Еще одним условием обеспечения требуемого содержания титана в стали наплавленного слоя является содержание титана в коррозионностойкой стали расходуемого электрода в диапазоне 0,1-0,5%, при содержании SiO2 в шлаке не более 1%. При более низком содержании титана в стали расходуемого электрода содержание титана в стали наплавленного слоя будет менее требуемого. При более высоком содержании титана в исходной стали увеличатся затраты на производство. Еще одним обязательным условием обеспечения требуемого содержания титана является добавление в металлическую ванну алюминия и титана с расходом не менее 1 г каждого на 1 кг наплавляемого металла. Меньшие массы присадок указанных элементов не обеспечат требуемое содержание титана в стали наплавленного слоя.

При более высоком содержании в шлаке SiO2, из-за повышенного угара содержание титана в стали наплавленного слоя будет ниже, чем требуемое по ГОСТ-5632.

Пример конкретного выполнения способа

Наплавку заготовок основного слоя из стали 09Г2С с химическим составом, представленным в таблице 1, толщиной 250 мм, шириной 1470 мм при заданной толщине наплавленного слоя 40 мм (16% от общей толщины слитка) вели на специально созданных для электрошлаковой наплавки установках наклонного типа. В зазор между поверхностью заготовки основного слоя и кристаллизатором вводили расходуемые электроды из сталей типа 08Х18Н10Т (варианты 1-6), типа 08Х18Н10Т, с повышенным содержанием титана, (вариант 7) и типа 08Х18Н10Б (вариант 8) с химическим составом, также представленным в таблице 1, в виде отдельных пластин толщиной 35 мм, перекрывающих не менее 80% ширины заготовки. В полость между заготовкой и кристаллизатором заливали жидкий шлак марки AKF235 или АНФ-29, состав которых приведен в таблице 2, и в полученной шлаковой ванне вели электрошлаковый переплав расходуемых электродов с формированием наплавленного слоя.

Полученные биметаллические слитки прокатывали на листы толщиной 20 мм.

Таблица 1
Химический состав сталей основного слоя марки 09Г2С и расходуемых электродов из сталей типа 08Х18Н10Т и 08Х18Н10Б, мас.%
Марка стали C Si Mn P S Cr Mo Ni Cu Al Ti Nb V
09Г2С 0,10 0,72 1,41 0,013 0,013 0,04 0,003 0,02 0,030 0,03 0,005 0,001 0,003
08Х18Н10Т 0,05 0,73 1,50 0,027 0,010 22,5 0,002 12,0 0,024 0,04 0,370 0,002 0,002
08Х18Н10Т 0,05 0,73 1,50 0,027 0,010 22,5 0,002 12,0 0,024 0,04 0,580 0,002 0,002
08Х18Н10Б 0,05 0,69 1,35 0,019 0,009 22,6 0,002 12,5 0,029 0,04 0,002 0,780 0,002

Таблица 2
Химический состав опробованных флюсов, мас.%
Флюс Содержание компонентов по расчету
Al2O3 CaO MgO CaF2 SiO2 S/Р
АНФ-29 13 - 17 24 - 30 2 - 6 37 - 45 11 - 15 ≤0,06/≤0,03
AKF235 17 - 22 24 - 29 2 - 4 45 - 52 ≤ 1,0 ≤0,05/0,05

В таблице 3 приведены опробованные варианты параметров ЭШН, в том числе значения тока, напряжения и мощности, а также характеристики металлического слитка, в том числе содержание титана.

Как видно из таблицы 3, содержание Ti в первом случае уменьшается, относительно расходуемого электрода, происходит угар титана. Более того, содержание Ti в наплавленном слое не соответствует требованию ГОСТ 5632, это связано с тем, что расход алюминия и титана не соответствует формуле изобретения. Для второго варианта значения мощности не соответствуют формуле изобретения, они слишком завышены, что привело к дефектам в виде расслоений на границе раздела слоев, выявляемых УЗК. Для третьего и четвертого вариантов значения тока, напряжения, мощности, расход алюминия и титана и содержание SiO2 в исходном флюсе соответствовали формуле изобретения, поэтому можно заметить, что угара титана не происходит.

Таблица 3
Свойства биметаллических слитков и листов
I, кА U, В P, кВт Расход Al, г на кг Расход Ti, г на кг Содержание SiO2 в исходном флюсе, % Содержание Ti в расходуемом электроде, (для варианта 8 Nb) % Содержание Ti в наплавленном слое, (для варианта 8 Nb) % Наличие дефектов в виде расслоений на границе раздела слоев, выявляемых УЗК на слитках
1 11 45 495 0,7 0,5 0,91 0,37 0,16 -
2 11 50 550 1 2 0,83 0,37 0,39 +
3 11 42 462 2 2 0,78 0,37 0,47 -
4 12 41 492 2 1 0,88 0,37 0,45 -
5 9 35 315 1 1 0,71 0,37 0,27 +
6 13 37 481 2 1 12,84 0,37 0,21 -
7 10 43 430 4 3 0,93 0,58 0,69 -
8 прототип 13,47 0,84 0,37 -
Требования ГОСТ 5632 5C (0,7

Содержание титана в стали наплавленного слоя оказалось существенно выше, чем в стали расходуемых электродов. Основной причиной снижения угара титана является измененный режим ЭШН - снижение подводимой мощности за счет уменьшения значений напряжения и тока. Для варианта 5 значение мощности не соответствовало формуле изобретения, поэтому местами не было проплавления основного слоя, в результате образовались дефекты в виде расслоений на границе раздела слоев, выявленные УЗК. Для шестого варианта содержание SiO2 в исходном флюсе оказалось больше, чем в формуле изобретения, поэтому если сравнить четвертый и шестой варианты, можно заметить, что при идентичном режиме раскисления и одинаковом содержании Ti в исходном электроде, Ti лучше усваивается при низком содержании оксида кремния в исходном флюсе. Можно заметить, что в 6 варианте содержание титана в наплавленном слое не соответствует ГОСТ 5632. Для варианта 7 использовали электрод с высоким содержанием Ti с добавлением повышенного количества алюминия и титана, расход алюминия и титана составил 4 и 3 грамма на 1 кг переплавляемого металла соответственно. Данный подход подавил угар титана, но привел к более высокой себестоимости, так как расход легирующих элементов был выше, чем в остальных вариантах. Для получения наплавленного слоя варианта 8 использовали сталь, легированную ниобием, что привело к более высокой себестоимости, по сравнению с остальными вариантами.

Таким образом, только для вариантов, соответствующих формуле изобретения, по сравнению с прототипом, получено повышение коррозионной стойкости, при снижении себестоимости, при сохранении высокой прочности и сплошности соединения слоев и технологичности.

Способ получения биметаллического слитка, включающий размещение металлической заготовки, являющейся основным слоем биметаллического слитка, с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионно-стойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм формируют наплавленный слой, толщина которого составляет 5-30% от общей толщины слитка, отличающийся тем, что в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а в процессе переплава электрода из коррозионно-стойкой стали, содержащей 0,1-0,5% титана, производят равномерное добавление в металлическую ванну алюминия с расходом 1-4 г на 1 кг наплавляемого металла и титана с расходом 1-3 г на 1 кг наплавляемого металла, а переплав проводят под шлаком, содержание SiO2 в котором составляет не более 1%.



 

Похожие патенты:
Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм формируют наплавленный слой, толщина которого составляет 5-30% от общей толщины слитка, согласно изобретению в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а переплав электрода из коррозионностойкой стали, содержащей 0,3-0,6% титана, проводят под шлаком, содержащим 1-5% TiO2.
Изобретение относится к специальной электрометаллургии, конкретнее к электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. В процессе переплава расходуемого электрода производят равномерное добавление в металлическую ванну алюминия и титана с расходом не менее 6 и 3 г на 1 кг наплавляемого металла соответственно, а переплав проводят при значении электросопротивления шлаковой ванны в интервале 3,3-3,9 мОм.
Изобретение относится к специальной электрометаллургии, конкретнее к производству, с использованием электрошлаковой технологии, биметаллических слитков, состоящих из основного слоя из углеродистой, низколегированной или легированной стали и наплавленного слоя из коррозионностойкой стали, предназначенных для последующей прокатки на биметаллические полосы и листы.

Изобретение относится к области цветной металлургии, а именно к способам получения низколегированных сплавов на медной основе, предназначенных для изготовления различных деталей, подвергаемых при эксплуатации значительным механическим и электротермическим нагрузкам. Способ включает изготовление расходуемого электрода из шихтовых материалов, формирование слитка путем электрошлакового переплава одинарного электрода в кристаллизатор на поддон, и его деформацию с получением заготовки, при этом расходуемый электрод изготавливают путем расплавления шихтовых материалов в открытой индукционной печи в графитовом тигле с использованием солевого флюса и последующей разливкой расплава в защитной атмосфере инертного газа, электрошлаковый переплав расходуемого электрода ведут в кристаллизатор диаметром 300-500 мм, управляя массовой скоростью наплавления слитка в защитной атмосфере инертного газа, при этом на поддон по центру устанавливают одну затравку, далее проводят деформацию слитка до конечного размера заготовки.

Изобретение относится к области электрометаллургии, в частности к получению расходуемых электродов для электрошлакового переплава. Осуществляют подачу металлизованных окатышей в форму и заполнение последней жидким металлом.
Изобретение относится к области специальной металлургии, а именно к электрошлаковому или вакуумно-дуговому переплаву металлов и сплавов, и может быть использовано при выплавке слитков из никелевых и титановых сплавов. В процессе переплава электрода в кристаллизатор на нижний торец выплавляемого слитка вдоль его оси подают ультразвуковой сигнал, с помощью которого определяют реальную глубину жидкой металлической ванны, значение которой вводят в регулятор АСУ электропечи в качестве сигнала регулирования, и осуществляют контроль глубины и формы жидкой металлической ванны путем сравнения реальных данных, полученных от датчиков, установленных в зоне поддона кристаллизатора, и заданных параметров, вводимых в регулятор АСУ, при этом в случае отклонения формы жидкой металлической ванны от симметричной относительно продольной оси выплавляемого слитка электрод смещают в противоположную сторону до устранения данного отклонения.

Изобретение относится к области металлургии и может быть использовано для производства слитка инструментальной стали в процессе электрошлакового переплава в инертном газе или под давлением. Кристаллизатор содержит внутреннюю медную гильзу эллиптической геометрической формы шириной w 1000-2500 мм и толщиной t 700-1250 мм, причем короткие стороны в направлении толщины медной гильзы по меньшей мере частично имеют участки с искривленными поверхностями, а длинные стороны в направлении ширины медной гильзы по меньшей мере частично имеют участки с искривленными поверхностями.

Изобретение относится к области металлургии и может быть использовано при плавке и рафинировании сплавов. В способе осуществляют вакуумную индукционную плавку исходных материалов для получения прошедшего вакуумную индукционную плавку (ВИП) сплава.

Изобретение относится к электрометаллургии, а именно к электрошлаковому переплаву (ЭШП) в водоохлаждаемом кристаллизаторе металлосодержащих отходов, включая автомобильные катализаторы, обломки тиглей и другие отходы, содержащие драгоценные металлы. В способе осуществляют подвод электроэнергии к графитовому электроду и подачу в кристаллизатор шлакообразующих и углеродсодержащих материалов, наведение шлаковой ванны, подачу измельченных металлосодержащих отходов до образования жидкой ванны, выдержку расплава и скачивание шлака.

Изобретение относится к электрометаллургии, а именно к электрошлаковому переплаву (ЭШП) в водоохлаждаемом кристаллизаторе металлосодержащих отходов, включая автомобильные катализаторы, обломки тиглей и другие отходы, содержащие драгоценные металлы. В способе осуществляют подвод электроэнергии к графитовому электроду и подачу в кристаллизатор шлакообразующих и углеродсодержащих материалов, наведение шлаковой ванны, подачу измельченных металлосодержащих отходов до образования жидкой ванны, выдержку расплава и скачивание шлака.
Изобретение относится к металлургии, конкретнее к производству с использованием электрошлаковой технологии биметаллических слитков, предназначенных для последующей прокатки на биметаллические полосы и листы. Осуществляют размещение металлической заготовки с зазором от стенки кристаллизатора, установку в этом зазоре расходуемого электрода из коррозионностойкой стали, наведение шлаковой ванны и переплав в ней расходуемого электрода с формированием наплавленного слоя, на заготовке основного слоя толщиной 150-300 мм при ширине 1000-1600 мм формируют наплавленный слой, толщина которого составляет 5-30% от общей толщины слитка, согласно изобретению в процессе переплава производят регулировку значений тока в интервале 9-13 кА и напряжения в интервале 37-45 В, при этом значения подводимой мощности находятся в интервале 420-500 кВт, а переплав электрода из коррозионностойкой стали, содержащей 0,3-0,6% титана, проводят под шлаком, содержащим 1-5% TiO2.
Наверх