Способ термостабилизации грунта вокруг свай
Владельцы патента RU 2786189:
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" (RU)
Изобретение относится к области термостабилизации грунта вокруг свай методом принудительной регулируемой подачи в термоэлементы теплоносителя заданной температуры от холодильной машины. Способ термостабилизации грунта вокруг свай включает промораживание массива многолетнемёрзлого грунта со сваями, термоэлементами методом принудительной регулируемой подачи в них теплоносителя заданной температуры от внешнего источника охлаждения. Охлаждённый теплоноситель с выхода холодильной машины подают по трубке на вход коллектора охлаждённого теплоносителя, где он распределяется по магистралям, затем поступает последовательно в шланг, транспортные участки, трубку ввода и термоэлемент, который установлен внутри сваи на глубине, которая зависит от зоны растепления грунта, а внутреннее пространство сваи заполнено незамерзающей жидкостью, при этом происходит улучшение теплообмена между корпусом сваи и термоэлементом. Проходя по термоэлементу, теплоноситель нагревается, а температура корпуса сваи и прилегающего к свае грунта снижается, после этого нагретый теплоноситель последовательно поступает на транспортные участки с нагретым теплоносителем, шланг, магистраль и коллектор, на вход холодильной машины. Технический результат состоит в повышении эффективности процесса термостабилизации грунта. 1 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к области термостабилизации многолетнемёрзлых грунтов для обеспечения устойчивости свайных фундаментов.
Известен способ термостабилизации грунта (Горелик Я.Б., Хабитов А.Х. Об эффективности применения термостабилизаторов при строительстве на многолетнемерзлых грунтах // Вестник Тюменского государственного университета. Физико-математическое моделирование. Нефть, газ, энергетика, т. 5, №3, 2019, с. 25-46), включающий размещение внутри корпуса полой сваи испарителя термостабилизатора и вынесение оребрённого конденсатора за пределы корпуса сваи в надземной части.
Недостатком способа является недостаточная интенсивность замораживания грунта, а также полная остановка процесса замораживания в тёплое время года.
Известен способ промерзания грунта под действием термоопоры (Окороков Н.С., Коркишко А.Н., Коржикова А.П. Экспериментальное исследование принудительно вентилируемой сваи / Вестник МГСУ, т. 15, №5, 2020, с. 665-677), при котором термостабилизацию грунта обеспечивают путём принудительной вентиляции холодного воздуха холодильной машины по телу сваи, погружённой в грунт.
Недостатком устройства является использование в качестве хладагента воздуха, обладающего худшими показателями теплоёмкости по сравнению с незамерзающими жидкостями.
Известен способ охлаждения грунта и тепловая свая для его охлаждения (патент РФ 2256746, опубл. 20.07.2005), включающий конденсацию пара рабочей жидкости в конденсаторной полости путем охлаждения ее окружающей средой над поверхностью грунта, транспортировку сконденсированной жидкости под действием силы тяжести по транспортировочной магистрали в испарительную полость с последующим ее испарением в ней и обратной транспортировкой пара в конденсаторную полость. Конденсацию пара рабочей жидкости осуществляют в объеме, большем объема, в котором осуществляют испарение рабочей жидкости.
Недостатком способа является недостаточная интенсивность замораживания грунта, а также полная остановка процесса замораживания в тёплое время года.
Известен способ принудительного понижения температуры вечномерзлого грунта в основаниях свайных фундаментов опор эксплуатируемого моста (патент РФ 2731343, опубл. 01.09.2020), в соответствии с которым при необходимости принудительной проморозки холодным воздухом от воздушной турбохолодильной машины продувают стволы сезоннодействующих охлаждающих устройств (СОУ) после полной откачки из них жидкого хладоносителя, который снова заливают в стволы СОУ после достижения грунтами оснований расчетных отрицательных значений температуры.
Недостатком способа является трудоёмкость процессов откачки и закачки жидкого хладоносителя, а также риск утечек хладагента.
Известен способ устройства плитного фундамента на сваях для резервуара с низкотемпературным продуктом (патент РФ 2552253, опубл. 10.06.2015), принятый за прототип, включающий дополнительное промораживание массива вечномерзлого грунта со сваями с помощью глубинных термоэлементов методом принудительной регулируемой подачи в них хладагента заданной температуры от внешнего источника его охлаждения по закольцованным распределительным магистралям. Для замораживания грунтового основания под плитой в процессе хранения продукта используют его собственную отрицательную температуру, при этом через определенное время, когда ореол промерзания грунтового основания от воздействия низкотемпературного продукта в резервуаре достигнет расчетных температур, дополнительное принудительное промораживание глубинными термоэлементами частично или полностью прекращают. При необходимости усиления отдельных участков свайного основания, в отдельные магистрали отдельных секторов подается хладагент с более низкой температурой, чем в остальных секторах.
Недостатком способа является необходимость бурения скважин для глубинных термоэлементов. Другим недостатком является то, что для замораживания отдельных участков свайного основания с отличающейся интенсивностью необходимо получать хладагент разных температур.
Техническим результатом способа является повышение эффективности процесса термостабилизации грунта.
Технический результат достигается тем, что охлаждённый теплоноситель с выхода холодильной машины подается по трубке на вход коллектора охлаждённого теплоносителя, где он распределяется по магистралям, затем поступает последовательно в шланг, транспортные участки, трубку ввода и термоэлемент, который установлен внутри сваи на глубине, которая зависит от зоны растепления грунта, а внутреннее пространство сваи заполнено незамерзающей жидкостью, при этом происходит улучшение теплообмена между корпусом сваи и термоэлементом, проходя по термоэлементу, теплоноситель нагревается, а температура корпуса сваи и прилегающего к свае грунта снижается, после этого нагретый теплоноситель последовательно поступает на транспортные участки с нагретым теплоносителем, шланг, магистраль и коллектор, на вход холодильной машины. При увеличении глубины опускания термоэлементов последовательно устанавливают дополнительные транспортные участки.
Способ термостабилизации грунта вокруг сваи поясняется следующей фигурой:
фиг. 1 – схема размещения оборудования для заморозки грунта на плите и в сваях;
фиг. 2 – результаты моделирования, где:
1 – свая;
2 – плита;
3 – термоэлемент;
4 – транспортный участок с охлаждённым теплоносителем;
5 – транспортный участок с нагретым теплоносителем;
6 – шланг с охлаждённым теплоносителем;
7 – шланг с нагретым теплоносителем;
8 – холодильная машина;
9 – коллектор охлаждённого теплоносителя;
10 – коллектор нагретого теплоносителя;
11 – трубка с охлаждённым теплоносителем;
12 – трубка с нагретым теплоносителем;
13 – магистраль с охлаждённым теплоносителем;
14 – магистраль с нагретым теплоносителем;
15 – трубка ввода;
16 – устройство подвеса.
Способ реализуется следующим образом. На сваях 1, заглубленных в грунт и образующих свайное поле, закреплена плита 2, на которой установлен внешний источник охлаждения, в качестве которого используют холодильную машину 8. В качестве холодильной машины 8 может быть использована абсорбционная холодильная машина, работающая за счёт избытков тепловой энергии от оборудования, размещённого на плите 2, или компрессорная холодильная машина. Охлаждённый теплоноситель с выхода холодильной машины 8 поступает по трубке с охлаждённым теплоносителем 11 на вход коллектора охлаждённого теплоносителя 9, в котором распределяется по магистралям с охлаждённым теплоносителем 13. После этого охлаждённый теплоноситель поступает последовательно в шланг с охлаждённым теплоносителем 6, транспортные участки с охлаждённым теплоносителем 4 и трубку ввода 15. Затем охлаждённый теплоноситель поступает на вход термоэлемента 3, который установлен внутри сваи 1 на глубине, зависящей от зоны растепления грунта. При необходимости внутри каждой сваи 1 может использоваться несколько термоэлементов 3, установленных последовательно, при этом последовательно устанавливают несколько трубок ввода 15. Для улучшения теплообмена между корпусом сваи 1 и термоэлементом 3 внутреннее пространство сваи 1 заполняется незамерзающей жидкостью, например – керосином. Проходя по термоэлементу 3, теплоноситель нагревается, а температура корпуса сваи 1 в зоне расположения термоэлемента 3 и температура прилегающего к свае 1 грунта снижается. Нагретый теплоноситель с выхода термоэлемента 3 поступает последовательно на транспортные участки с нагретым теплоносителем 5, шланг с нагретым теплоносителем 7 и магистраль с нагретым теплоносителем 14. Затем нагретый теплоноситель поступает в коллектор нагретого теплоносителя 10, с выхода которого через трубку с нагретым теплоносителем 12 теплоноситель подаётся на вход холодильной машины 8. В холодильной машине 8 теплоноситель охлаждается и подаётся на трубку с охлаждённым теплоносителем 11. Затем цикл циркуляции теплоносителя по замкнутому контуру повторяется.
При увеличении глубины опускания термоэлементов 3 последовательно устанавливают дополнительные транспортные участки с охлаждённым теплоносителем 4, аналогично последовательно устанавливают дополнительные транспортные участки с нагретым теплоносителем 5. Для закрепления термоэлемента 3 на плите 2 установлено устройство подвеса 16, которое фиксирует транспортный участок с охлаждённым теплоносителем 4 и транспортный участок с нагретым теплоносителем 5. Фиксация в устройстве подвеса 16 может осуществляться путём зажима винтами.
Способ поясняется следующим примером. В программном комплексе COMSOL Multiphysics построена модель свайного основания. Свайное основание включает стальную плиту длиной 8 м, шириной 5 м и высотой 0,2 м. Плита закреплена на расположенных в одной плоскости трёх стальных полых сваях диаметром 0,4 м, длиной 10 м, с толщиной стенки 10 мм, и расположена на высоте 2 м над поверхностью земли. На плите установлен объект с мощностью теплового излучения 10 кВт. Внутри свай установлены термоэлементы, изготовленные из медной тонкостенной трубки с наружным диаметром 15 мм, причём расстояние между термоэлементами и внутренней стенкой сваи составляет 20 мм. Термоэлементы представляют собой спирали с 20 витками, межвитковым расстоянием 0,1 м. Внутреннее пространство свай заполнено керосином до уровня поверхности земли, верхнюю часть внутреннего пространства свай занимает воздух. Транспортные участки изготовлены из меди. В транспортные участки подаётся хладон R20, охлаждённый до температуры -3 °С. Транспортные участки с охлаждённым теплоносителем теплоизолированы с помощью полиуретановой трубы с толщиной стенки 50 мм, плотно прилегающей к транспортному участку с охлаждённым теплоносителем.
В модели задана скорость теплопереноса в воздушной части расчётной области, составляющая 0,2 м/с. Температура воздуха на границах расчётной области, кроме границы, в сторону которой направлен теплоперенос за счёт ветра, задана равной +8 °С. Начальные условия выше поверхности земли +8 °С. Начальные условия ниже поверхности земли -2 °С, кроме транспортных участков с полиуретановой теплоизоляцией и термоэлементов, для которых начальная температура задана равной -3 °С.
Проведено моделирование стационарного процесса термостабилизации грунта вокруг свай. В ходе моделирования изменялась глубина опускания термоэлементов внутри сваи, при этом длина транспортных участков с полиуретановой изоляцией увеличивалась на необходимую величину. Результаты моделирования температурного поля прилегающего к сваям грунта при некоторых вариантах размещения термоэлементов внутри свай показаны в таблице 1.
Таблица 1. Варианты размещения змеевиков внутри свай и результаты моделирования температурного поля прилегающего к сваям грунта
№ | Глубина опускания верхней части термоэлемента относительно уровня земли, м | Средняя температура поверхности сваи ниже уровня земли, °С | Средняя температура грунта в расчётной области, °С | |||||
Свая 1 | Свая 2 | Свая 3 | Свая 1 | Свая 2 | Свая 3 | в сечении | в объёме | |
1 | Термоэлементы отсутствуют | 1,01 | 0,79 | 0,54 | -0,46 | -0,81 | ||
2 | 1 | -0,87 | -1,05 | -1,12 | -0,58 | -0,84 | ||
3 | 1,5 | -0,90 | -1,06 | -1,13 | -0,64 | -0,82 | ||
4 | 2 | -0,81 | -1,00 | -1,08 | -0,62 | -0,88 | ||
5 | 3 | -0,84 | -0,97 | -1,02 | -0,61 | -0,85 | ||
6 | 1,5 | 1 | 1 | -0,88 | -1,10 | -1,19 | -0,68 | -0,90 |
7 | 2 | 1 | 1 | -0,85 | -1,13 | -1,22 | -0,68 | -0,92 |
8 | 3 | 1 | 1 | -1,02 | -1,24 | -1,31 | -0,72 | -0,91 |
9 | 4 | 1 | 1 | -0,68 | -1,09 | -1,14 | -0,62 | -0,86 |
Анализ результатов моделирования показал, что при заданных условиях различная глубина погружения термоэлементов внутри трёх свай приводит к более низким температурам грунта, чем при одинаковой глубине погружения термоэлементов. На фиг. 2 показаны результаты моделирования, изотермы приведены для варианта № 8 таблицы 1. Управляемость процесса заморозки грунта обеспечивается как регулированием подачи теплоносителя холодильной машиной 8, так и регулированием глубины опускания термоэлемента 3 внутри сваи 1.
Повышение эффективности процесса термостабилизации грунта достигается за счет расположения термоэлементов для замораживания грунта внутри свай, а также за счёт возможности регулирования глубины опускания термоэлементов. При увеличении глубины опускания термоэлементов последовательно устанавливают дополнительные транспортные участки с охлаждённым теплоносителем, а также последовательно устанавливают дополнительные транспортные участки с охлаждённым теплоносителем. Для улучшения теплообмена между корпусом сваи и термоэлементом внутреннее пространство свай заполняют незамерзающей жидкостью.
1. Способ термостабилизации грунта вокруг свай, включающий промораживание массива многолетнемёрзлого грунта со сваями, термоэлементами методом принудительной регулируемой подачи в них теплоносителя заданной температуры от внешнего источника охлаждения, отличающийся тем, что охлаждённый теплоноситель с выхода холодильной машины подают по трубке на вход коллектора охлаждённого теплоносителя, где он распределяется по магистралям, затем поступает последовательно в шланг, транспортные участки, трубку ввода и термоэлемент, который установлен внутри сваи на глубине, которая зависит от зоны растепления грунта, а внутреннее пространство сваи заполнено незамерзающей жидкостью, при этом происходит улучшение теплообмена между корпусом сваи и термоэлементом, проходя по термоэлементу, теплоноситель нагревается, а температура корпуса сваи и прилегающего к свае грунта снижается, после этого нагретый теплоноситель последовательно поступает на транспортные участки с нагретым теплоносителем, шланг, магистраль и коллектор, на вход холодильной машины.
2. Способ по п. 1, отличающийся тем, что при увеличении глубины опускания термоэлементов последовательно устанавливают дополнительные транспортные участки.