Камера жидкостного ракетного двигателя (жрд), работающая при высоких давлениях

Изобретение относится к камерам жидкостных ракетных двигателей (ЖРД). Камера ЖРД, работающая при высоких давлениях, содержащая сверхзвуковую часть сопла с каналами охлаждения, подводные и отводные магистрали, при этом каналы охлаждения с ребрами выполнены с изменяющимся углом поворота от продольной оси камеры до места перехода на увеличенное количество каналов и ребер, которое определяется толщиной ребер и величиной каналов по зависимости

где δребра - толщина ребра; δканала - толщина канала; n - число ребер; α - угол наклона ребер части 2; D - переменный диаметр профиля сопловой части, а для обеспечения выравнивания расхода охладителя в ребрах выполнены выборки, соединенные между собой каналами в кольцевом ребре. Изобретение обеспечивает улучшение энергомассовых характеристик. 2 ил.

 

В настоящее время к разрабатываемым жидкостным ракетным двигателям предъявляются предельно высокие требования по экономичности и массовым характеристикам.

Обеспечение высокой экономичности требует выполнения сверхзвуковой части сопла с высокой степенью расширения (отношения площади выходного сечения сопла к площади критического сечения) порядка ~150 и выше.

В разрабатываемых в России двигателях сверхзвуковые части сопла состоят из нескольких секций, соединенных между собой с помощью сварки.

Известна конструкция охлаждаемого сопла «Маршевый двигатель ракеты-носителя «Энергия» кислородно-водородный ЖРД РД0120» УДК 629.7036.54-6 стр. 130 - принятая за прототип.

Большегабаритное сопло этого двигателя длиной ~3 м и срезом сопла 2,28 м выполнено из трех паяных секций, соединенных между собой с помощью сварки. Паяные секции имеют постоянную толщину ребер и переменную величину канала охлаждения. Максимальное давление охладителя в сопле возможно не более 400÷450 кгс/см2.

Недостатком такой конструкции является большая масса сопла из-за стыков блоков и невозможность обеспечения высоких значений давления ~800÷850 кгс/см2.

В последнее время развитие высоких технологий (получение конструкций сопловой части с помощью лазерного спекания) дало возможность обеспечить в трактах охлаждения давление ~850 кгс/см2, что обеспечивает существенное повышение энергетических характеристик двигателей, работающих, например, по схеме «газ-газ».

Поставленная задача улучшения энергомассовых характеристик достигается тем, что камера ЖРД, работающая при высоких давлениях, содержащая сверхзвуковую часть сопла с каналами охлаждения, согласно изложению, каналы охлаждения с ребрами с изменяющимся углом поворота вдоль продольной оси камеры до места перехода на увеличенное количество каналов и ребер, которое определяется толщиной ребер и величиной каналов по зависимости а для обеспечения выравнивания расхода охладителя в ребрах выполнены выборки, соединенные между собой каналами в кольцевом ребре.

δребра - толщина ребра;

δканала - толщина канала;

n - число ребер;

α - угол наклона ребер сопловой части 2;

D - переменный диаметр профиля сопловой части 2;

Сущность предлагаемого изобретения поясняется схемами, показанными на фиг. 1 и 2.

На фиг. 1 показана камера 1 со сверхзвуковой частью сопла 2, подводной магистралью 3 и отводной магистралью 4, где:

5 - переменные каналы охлаждения в количестве n1 на выходе имеющие угол α1;

6 - ребра переменной толщины в количестве n1 на выходе имеющие угол α1;

7 - кольцевая стенка;

8 - переменные каналы охлаждения в количестве n2, на выходе имеющие угол α2;

9 - ребра переменной толщины в количестве n2, на выходе имеющие угол α2.

На фиг. 2 показан переток охлаждающего компонента через отверстия 10 в кольцевой стенке 11 в выборках 12 в ребрах 6 и 9.

Камера работает следующим образом. По соответствующей команде охлаждающий компонент поступает в подводную магистраль 3, расположенную на сверхзвуковой части 2 камеры 1. Из подводной магистрали 3 охлаждающий компонент поступает в n1 каналов охлаждения 5. Поступая по каналам охлаждения с изменяющимся углом поворота по длине сопла, охлаждающий компонент охлаждает ребра 6 переменного сечения (из-за увеличения проточной газовой полости сопла) до диаметра D1 равного

где tpe6pa и tканала - допустимая величина толщины ребра и допустимая величина канала охлаждения, определяются расчетом охлаждения.

tканала - величина продольного сечения канала;

tребра - толщина ребра;

n1 - число каналов в сверхзвуковой части 2;

α1 - угол наклона каналов в сверхзвуковой части 2;

n2 - число каналов в другой сверхзвуковой части сопла;

α2 - _угол наклона каналов 8 в другой части сопла.

На диаметре D1 охлаждающий компонент проходит через отверстия 10 в кольцевой стенке 11 и выравнивается в проточках 12 ребер 6 и 9 и поступает в охлаждающие каналы 8 в количестве n2; значительно больше количества n1. Протекая по каналам переменной величины 8 с изменяющимся углом поворота по длине, компонент охлаждает ребра 9 переменного сечения до диаметра Dcp, равного

У среза сопла охладитель разворачивается и поступает в выходную магистраль 4.

Использование предложенного технического решения позволяет существенно повысить давление в тракте охлаждения до 850 кгс/см2 и улучшить массовые характеристики за счет устранения стыков и значительно повысить энергетические характеристики камеры двигателя, работающего, например, по схеме «газ-газ».

Камера жидкостного ракетного двигателя (ЖРД), работающая при высоких давлениях, содержащая сверхзвуковую часть сопла с каналами охлаждения, подводные и отводные магистрали, отличающаяся тем, что каналы охлаждения с ребрами с изменяющимся углом поворота вдоль продольной оси камеры до места перехода на увеличенное количество каналов и ребер определяется толщиной ребер и величиной каналов по зависимости где

δребра - толщина ребра;

δканала - толщина канала;

n - число ребер;

α - угол наклона ребер в сопловой части;

D - переменный диаметр профиля сопловой части,

а для обеспечения выравнивания расхода охладителя в ребрах выполнены выборки, соединенные между собой каналами в кольцевом ребре.



 

Похожие патенты:

Изобретение относится к области жидкостных ракетных двигателей (ЖРД), а именно к газогенераторам, генерирующим газ для привода турбонасосного агрегата. Газогенератор содержит камеру сгорания, смесительную головку, в которой установлена штыревая форсунка, балластировочную решетку, состоящую из втулок, установленных с кольцевыми зазорами и соединенных между собой перепускными каналами, при этом в выходной части каждой втулки выполнены наклонные отверстия, балластировочную камеру и коллектор, соединенный с камерой сгорания и балластировочной решеткой.

Изобретение относится к ракетной технике. Камера жидкостного ракетного двигателя, содержащая камеру сгорания, снабженную трактом охлаждения с продольными каналами с поперечными перемычками, входным для подвода недостающего в газогенераторе компонента коллектором за минимальным сечением по направлению к срезу сопла, и выходным коллектором, размещенным у смесительной головки и соединенным трубопроводом с входным коллектором тракта охлаждения с продольными каналами и поперечными перемычками сопла, выходным коллектором тракта охлаждения последнего соединенным трубопроводом со смесительной головкой, при этом участки поперечных перемычек в зоне сопряжения входных коллекторов сопла и камеры сгорания выполнены прерывистыми и размещены поочередно между продольными каналами в окружном направлении, входной коллектор сопла размещен между минимальным сечением сопла и входным коллектором тракта охлаждения камеры сгорания, а продольные каналы трактов охлаждения камеры сгорания и сопла в зоне сопряжения с входными коллекторами соединены у поперечных перемычек поочередно радиальными каналами с одноименными входными коллекторами.

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например жидкостных ракетных двигателей (ЖРД). Предлагается устройство для измерения температуры сопла ракетного двигателя, которое содержит выполненное из электропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода, при этом эмиссионный слой на поверхности сопла образуют катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, эмиссионный слой выполнен в форме кольца толщиной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс, при этом добавлено устройство хранения и подачи веществ с низким потенциалом ионизации в форме форсунки подачи веществ с низким потенциалом ионизации, расположенной в камере сгорания перед критическим сечением сопла и гидравлически через трубопровод и регулируемый клапан, соединенной с баком для хранения веществ с низким потенциалом ионизации (ВНПИ), причем регулируемый клапан электрически соединен с сигнальным выходом измерительного комплекса, выходное отверстие форсунки подачи веществ с низким потенциалом ионизации расположено заподлицо с поверхностью стенки ЖРД.

Изобретение относится к ракетной технике и может быть использовано в конструкциях многокамерных ракетных двигателей с охлаждением камер жидким криогенным компонентом топлива. Многокамерный жидкостный ракетный двигатель (ЖРД), включающий камеры сгорания, охлаждаемые криогенным компонентом топлива с изменением его фазового состояния в трактах охлаждения, турбонасосный агрегат, обеспечивающий подачу компонентов топлив к камерам, магистрали, подводящие компонент топлива - охладитель с выхода насоса турбонасосного агрегата на входы в тракты охлаждения камер, согласно изобретению в каждую магистраль, подводящую компонент – охладитель, включен компенсатор отклонения расхода охладителя в виде подпружиненного дросселирующего элемента, изменяющего под воздействием скоростного напора потока охладителя и перепада давления на нем площадь проходного сечения магистрали противоположно изменению скоростного напора и перепада давления на дросселирующем элементе.

Изобретение относится к способам функционального контроля и диагностирования состояния сложных пневмогидравлических объектов, например жидкостных ракетных двигателей (ЖРД). Предложено устройство для измерения температуры стенок сопла ракетного двигателя, которое содержит выполненное из элетропроводящих и жаропрочных материалов сопло, на внутреннюю поверхность которого нанесен слой из материала с низкой работой выхода электронов, при этом эмиссионный слой на поверхности сопла образует катод, на выходе из сопла расположен анод, причем анод электрически последовательно связан с катодом через источник электроэнергии, анод находится в механическом контакте с соплом через слой электроизоляции, эмиссионный слой выполнен в форме кольца толщиной от 5 до 10 мм, в области критического сечения, в электрической цепи между анодом и источником напряжения располагается измерительный комплекс.

Изобретение относится к жидкостным ракетным двигателям, работающим с дожиганием генераторного газа. Камера ЖРД, работающего с дожиганием восстановительного генераторного газа, состоящая из магистралей подвода компонентов топлива, смесительной головки с полостью охлаждения огневого днища, цилиндрической части, дозвуковой и сверхзвуковой частей сопла, согласно изложению, в сверхзвуковой части тракта охлаждения в полости высокого давления выполнена полость тракта охлаждения с пониженным давлением, соединенная с полостью охлаждения огневого днища головки, при этом соединение частей сверхзвуковой части сопла по внутренней и наружной стенкам выполнено в полости тракта охлаждения низкого давления.

Изобретение относится к охлаждению жидкостных ракетных двигателей. Предлагается камера ЖРД, работающая с дожиганием генераторного газа, содержащая смесительную головку со смесительными элементами, корпус камеры с расположенным на нем коллектором подвода горючего, газовода тороидальной формы в районе минимального сечения и неохлаждаемый металлический насадок, согласно изложению между каналами охлаждения в корпусе камеры перед коллектором подвода охладителя выполнены отверстия, соединяющие полость газовода с внутренней полостью корпуса камеры.

Изобретение относится к области ракетного двигателестроения и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит камеру сгорания с трактом охлаждения и форсуночной головкой, генератор синтез-газа, турбонасосный агрегат, включающий в себя насос окислителя, насос горючего, насос воды и турбину, вход которой сообщается с выходом генератора синтез-газа, а выход с форсуночной головкой, при этом охлаждение камеры сгорания осуществляется горючим, в варианте исполнения охлаждение камеры сгорания осуществляется водой.

Изобретение относится к жидкостным ракетным двигателям. Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме, содержащая корпус камеры, смесительную головку, состоящую из периферийной и центральной частей, наружное днище, магистрали подвода горючего и окислителя и расположенный в полости камеры теплообменник, согласно изложению, каналы охлаждения в теплообменнике выполнены с двухсторонним расположением, на наружной и (или) внутренней поверхности теплообменника выполнены интенсификаторы теплообмена, теплообменник хотя бы в одной плоскости сечения состоит из двух или более сегментов, коллектор входа и (или) выхода теплообменника, закрепленного на наружном днище и пилонах корпуса головки, расположены вне полости камеры.

Изобретение относится к ракетным двигателям. Камера жидкостного ракетного двигателя, состоящая из непроницаемой внешней стенки и непроницаемой внутренней стенки, камеры сгорания и сопла, согласно изобретению между внешней стенкой и внутренней стенкой расположена пористая вставка, а камера представляет собой монолитную конструкцию, изготовленную аддитивным методом.

Изобретение относится к ракетным двигателям, в которых используется газодинамическое управление вектором тяги. Предложена камера ЖРД с газодинамическим способом управления вектором тяги и сопловым насадком, содержащая охлаждаемую сверхзвуковую часть с расположенными на ней секторами для подачи рабочего тела на вдув, неохлаждаемый насадок из углерод-углеродного композиционного материала (УУКМ), подводные и отводные коллекторы охладителя и секторы для подачи рабочего тела, в которой согласно изобретению секторы с отверстиями для подачи рабочего тела на вдув расположены в районе выходной части охлаждаемого сопла в месте соединения с насадком из УУКМ, а отверстия вдува выполнены в зоне утолщения ребер, периодически расположенных с ребрами без утолщения, и совместно с кольцевой канавкой обеспечивают обтекание охладителем выходной части сопла и места соединения с сопловым насадком, каналы охладителя сопловой части в районе расположения секторов вдува и между секторами вдува имеют общие подводной и отводной коллекторы. Изобретение обеспечивает увеличение эффективности газодинамического управления вектором тяги, а также улучшение энергомассовых характеристик двигателя. 1 з.п. ф-лы, 5 ил.
Наверх