Способ получения твердого фосфолипидного концентрата

Изобретение относится к пищевой промышленности. Способ получения твёрдого лецитина характеризуется тем, что жидкий фосфолипидный концентрат из масла сои, содержащий 55% веществ, нерастворимых в холодном ацетоне, и 45% нейтральных триглицеридов, или его раствор в органическом растворителе, таком как ацетон, гексан, хлористый метилен или хлороформ, подают в поток диоксида углерода, находящегося в сверхкритическом состоянии, производят экстракцию жидкого фосфолипидного концентрата или его раствора в органическом растворителе под давлением через распыляющее сопло, температура экстракции составляет 40 – 80 °С, давление 200 – 500 атм, отношение массы жидкого фосфолипидного концентрата к массе диоксида углерода в единицу времени составляет от 1:1 до 1:500, продолжительность процесса экстракции 1 – 90 минут, раствор нейтральных триглицеридов в СО2 подвергают декомпрессии в сепараторе, твердый фосфолипидный концентрат отфильтровывают под давлением с получением готового продукта. Изобретение позволяет повысить степень обезжиривания жидкого фосфолипидного концентрата при проведении CO2-экстракции в распылительном режиме. 1 табл., 12 пр.

 

Изобретение относится к пищевой, парфюмерно-косметологической и фармацевтической промышленности и касается способа получения твердого фосфолипидного концентрата (твердого фосфатидного концентрата, твердого лецитина), используемого в качестве эмульгатора жировых эмульсий.

Известно, что диоксид углерода, находящийся в сверхкритическом состоянии (при температуре и давлении, превышающих их критические значения), используют в качестве неполярного растворителя с целью получения ценнейших, экологически чистых, незаменимых комплексов биологически активных веществ (БАВ), содержащихся в натуральном сырье: жирорастворимых витаминов и провитаминов, фитонцидов, антиокислителей, бактерицидных и бактериостатических соединений.

Физической основой сверхкритической флюидной экстракции является высокая растворяющая способность диоксида углерода в сверхкритическом состоянии, обусловленная в основном высокими значениями коэффициента диффузии растворяемого вещества в среде исследуемого объекта, насыщенного диоксидом углерода [В.Т. Миканба. Углекислотные экстракты. - Сухуми: Алашара, 1989, с.26-31].

Эффективность CO2-экстракции зависит от оптимального подбора параметров процесса. В то же время известно, что фосфолипиды отличаются по полярности от нейтральных триглицеридов [Арутюнян Н.С., Корнена Е.П. Фосфолипиды растительных масел// М.: Агропромиздат. - 1986. - 256 с.]. Данное различие положено в основу предлагаемого метода отделения нейтральных триглицеридов от фосфолипидного концентрата с получением твердого концентрата фосфолипидов (твердого лецитина).

Известен способ получения соевого лецитина, включающий обезжиривание фосфолипидного концентрата ацетоном, экстракцию этанолом, очистку на окиси алюминия с последующим выделением целевого продукта [RU 1231658(13)C(51). Способ получения соевого лецитина. 03.06.1994.]. Данный способ подразумевает использование токсичного и пожароопасного органического растворителя - ацетона, что является его явным недостатком.

Известен способ водно-ферментативного дегуммирования растительных масел [RU2637134C2 Усовершенствованный способ водно-ферментативного дегуммирования растительных масел], позволяющий получать фосфолипидный концентрат. Метод заключается в обработке масла смесью, которая содержит по меньшей мере один расщепляющий гликозиды фермент, выбранный из амилаз, амилоглюкозидаз, изоамилаз, глюкоамилаз, глюкозидаз, галактозидаз, глюканаз, пуллуланаз, арабиназ, ламинараназ, пектолиаз, маннаназ, декстраназ, пектиназ, целлюлаз, целлобиаз и ксиланаз, причем по меньшей мере один расщепляющий гликозиды фермент не демонстрирует никакой фосфолипазной и никакой ацилтрансферазной активности и композиция не содержит ни фосфолипазы, ни ацилтрансферазы. Недостатком метода является применение ферментативных препаратов, требующих микробиологической чистоты и точного поддержания технологических условий проведения биохимических процессов.

Наиболее близким к предлагаемому способу по совокупности существенных признаков является способ получения смесей полярных липидов из коровьего молока [RU2480474C2 Смеси полярных липидов, их получение и применение. Шульман А и др.], поэтому данный способ выбран авторами в качестве прототипа.

Способ получения смеси полярных липидов предполагает стадии удаления нелипидного материала из коровьего молока путем диспергирования липидов в смеси полярного органического растворителя и неполярного растворителя с последующим отделением фракции липидов, удалением из этой фракции растворителя, стадию обезжиривания полученной фракции липидов для удаления неполярных липидов растворением в ацетоне или сверхкритическом CO2 и стадию фильтрования и высушивания полученных липидов.

Однако данный способ предполагает получение фосфолипидного концентрата животного происхождения, а стадия обезжиривания предполагает обычную экстракцию сверхкритическим СО2. Способ, взятый за прототип не обеспечивает полной экстракции нейтральных триглицеридов.

Технической задачей предлагаемого способа является повышение степени обезжиривания жидкого фосфолипидного концентрата при проведении CO2-экстракции в распылительном режиме, выражающееся в получении твердого лецитина, не содержащего нейтральных триглицеридов (содержание веществ, нерастворимых в охлажденном ацетоне, не менее 99%).

Способ осуществляется следующим образом. Жидкий фосфолипидный концентрат или его раствор в органическом растворителе, таком как ацетон, гексан, хлористый метилен или хлороформ, подается в поток диоксида углерода, находящегося в сверхкритическом состоянии. Введение фосфолипидного концентрата производится под давлением через распыляющее сопло. Температура экстракции (обезжиривания) составляет 40 - 80 °С, давление 200 - 500 атм. Отношение массы жидкого фосфолипидного концентрата к массе диоксида углерода в единицу времени составляет от 1:1 до 1:500. Продолжительность процесса 1 - 90 минут. Раствор нейтральных триглицеридов в СО2 подвергают декомпрессии в сепараторе, диоксид углерода может быть использован повторно. Твердый фосфолипидный концентрат отфильтровывается под давлением.

Конкретные условия реализации способа (давление, температура, временные режимы, состав раствора) могут варьироваться.

Физико-химические показатели твердого фосфолипидного концентрата, а также его выход определяли по методикам, известным и общепризнанным в данной области [ГОСТ 32052-2013 Добавки пищевые. Лецитины E322. Общие технические условия. МКС 67.220.20. Дата введения 2014-01-01].

Примеры, подтверждающие возможность получения твердого фосфолипидного концентрата по предлагаемому методу приведены в таблице 1.

Исходный жидкий фосфолипидный концентрат из масла сои содержал 55% веществ, нерастворимых в холодном ацетоне и 45% нейтральных триглицеридов.

При проведении процесса в соответствии с предложенным в прототипе, получен пастообразный фосфолипидный концентрат с выходом 80,7 % и содержащий 68,2 % веществ (фосфолипидов), нерастворимых в холодном ацетоне, степень обезжиривания жидкого фосфолипидного концентрата (выход нейтральных триглицеридов) составила 43 %.

Из приведенных в таблице 1 примеров видно, что по предлагаемому способу возможно получить твердый фосфолипидный концентрат с высокими выходом и содержанием фосфолипидов.

Для реализации заявляемого способа может быть использовано стандартное оборудование для проведения сверхкритической флюидной экстракции.

Заявляемый способ является экологически безопасным, т. к. получаемый продукт не содержит органических растворителей, а в результате проведения процесса не образуется токсичных или трудно утилизируемых отходов или побочных продуктов.

Заявляемый способ может быть использован для получения твердого фосфолипидного концентрата как в лабораторной практике, так и в промышленности и пригоден и для периодических, и для непрерывных технологических методов.

Способ получения твердого фосфолипидного концентрата

№/№ примера Растворитель Температура СО2, ОС Давление СО2, атм ГМ Продолжительность, мин Выход ТФЛ, % СО, % ВНА, %
1 - 80 500 1:500 1 55,2 99,4 99,5
2 Ацетон 70 450 1:1 10 55 100 100
3 Гексан 40 400 1:100 20 55 100 100
4 Метиленхлорид 40 350 1:250 80 55,5 99 99,2
5 Хлороформ 60 300 1:400 70 55,2 99,5 99,6
6 - 70 450 1:100 30 55 100 100
7 Ацетон 40 200 1:300 80 55 100 100
8 Гексан 50 300 1:400 40 55,5 99 99,2
9 Метиленхлорид 40 400 1:200 60 55 100 100
10 Хлороформ 80 200 1:500 40 55,2 99,5 99,6
11 - 80 500 1:250 90 55 100 100
12 Прототип 80 500 1:500 90 80,7 43 68,2
Таблица 1. Примеры, подтверждающие возможность осуществления способа получения твердого фосфолипидного концентрата
Примечание: ГМ - массовое отношение жидкого фосфолипидного концентрата к диоксиду углерода, кг/кг, ТФЛ - твердый фосфолипидный концентрат, СО - степень обезжиривания жидкого фосфолипидного концентрата, %, ВНА - содержание веществ, нерастворимых в холодном ацетоне, в твердом фосфолипидном концентрате, %.

Способ получения твёрдого лецитина, характеризующийся тем, что жидкий фосфолипидный концентрат из масла сои, содержащий 55% веществ, нерастворимых в холодном ацетоне, и 45% нейтральных триглицеридов, или его раствор в органическом растворителе, таком как ацетон, гексан, хлористый метилен или хлороформ, подают в поток диоксида углерода, находящегося в сверхкритическом состоянии, производят экстракцию жидкого фосфолипидного концентрата или его раствора в органическом растворителе под давлением через распыляющее сопло, температура экстракции составляет 40 – 80 °С, давление 200 – 500 атм, отношение массы жидкого фосфолипидного концентрата к массе диоксида углерода в единицу времени составляет от 1:1 до 1:500, продолжительность процесса экстракции 1 – 90 минут, раствор нейтральных триглицеридов в СО2 подвергают декомпрессии в сепараторе, твердый фосфолипидный концентрат отфильтровывают под давлением с получением готового продукта.



 

Похожие патенты:

Изобретение относится к пищевой промышленности. Способ комплексной переработки плодов облепихи, характеризующийся тем, что включает приемку сырья, инспекцию - удаление посторонних примесей, а растительные примеси в виде веточек, иголок, листьев направляют на сушку и измельчение с получением растительной кормовой добавки, плоды облепихи после инспекции направляют на мойку, затем подготовленные плоды облепихи помещают в аппарат с СВЧ-энергоподводом и вакуумом, где происходит обезвоживание плодов при частоте электромагнитного поля 2450±50 МГц, давлении 8,5-8,8 кПа, температуре 40-45°С, удельной СВЧ-мощности 200-300 Вт/кг до влажности 25-30% в течение 75-80 минут с получением облепихи обезвоженной с влажностью 25-30% и клеточного сока, при этом облепиху обезвоженную направляют на досушивание до влажности 4-6%, а клеточный сок подают на концентрирование в вакуум-выпарной аппарат, где получают концентрат клеточного сока и ароматическую воду, сушеную облепиху с влажностью 4-6% после сушки направляют в воздушный сепаратор, где мякоть отделяют от косточек, мякоть и косточки по отдельности подают на прессование, прессование мякоти и косточек осуществляют при частоте электромагнитного поля 2450±50 МГц, температуре 40-45°С, удельной СВЧ-мощности 250-300 Вт/кг в течение 8-10 мин до выхода масла из мякоти 75-80%, из косточек 65-70%, после прессования мякоти получают масло и жмых, жмых из мякоти направляют на экстракцию в CO2-экстрактор с получением CO2-экстракта и шрота.

Группа изобретений относится к системам и способам захвата и сбора пара и дыма. Более конкретно, настоящее изобретение относится к системе и способу, используемым для захвата пара, испарений и дыма путем их смешивания с растворителями или растворения в них.

Изобретение относится к пищевой, масложировой и химической промышленностям. Установка для сверхкритических процессов содержит первый насос, первый аппарат высокого давления, сепаратор и соединительные трубопроводы, а также измерительную и запорно-регулирующую арматуру, конденсатор, первый и второй теплообменники, сборник и источник диоксида углерода, который через первый шаровой вентиль соединен с конденсатором, который через второй шаровой вентиль соединен с первым насосом, который через третий шаровой вентиль соединен с первым теплообменником, который через четвертый и пятый шаровой вентили соединен с первым аппаратом высокого давления, который через шестой шаровой вентиль соединен со вторым теплообменником, который через первый регулируемый вентиль соединен с сепаратором, который через седьмой шаровой вентиль соединен со сборником.
Изобретение относится к рыбной промышленности, в частности к способам выделения жирорастворимых каротиноидов. Предложен способ получения ксантофиллов из Sargassum miyabei, включающий экстракцию сырья бурой водоросли смесью 60%-ного водного раствора глицерина с кислотами уксусной и бензойной в соотношении 1000 мл:0,3 мл:0,1 мг соответственно при соотношении сырье:экстрагент 1 кг:2-2,5 л в течение 8 ч, затем экстракт соединяют со смесью оливкового масла с соевым или подсолнечным при их соотношении по объему 40-45:55-60, причем соотношение по объему экстракт:смесь масел составляет 1:1-1,2 и реэкстракцию проводят в течение 8 ч при 22-24°С.

Изобретение относится к усовершенствованному способу реактивного отделения органических молекул от биомассы, включающему стадию реакции для биомассы, которая включает контактирование биомассы с основанием, при этом биомасса получена из сельскохозяйственных продуктов, этап одновременной экстракции с использованием растворителя, где растворитель включает алифатический спирт, и стадию фильтрации для извлечения продуктов, где продукты содержат сложный эфир феруловой кислоты, сложный эфир кумаровой кислоты, феруловую кислоту, кумаровую кислоту или любую комбинацию этих соединений и сложный эфир жирной кислоты, и удаление сложного эфира жирной кислоты из продуктов путем экстракции жидкость-жидкость с получением очищенного жидкого продукта, содержащего сложный эфир кумаровой кислоты, сложный эфир феруловой кислоты, феруловую кислоту, кумаровую кислоту или любую комбинацию этих соединений, при этом для экстракции жидкость-жидкость используют органический растворитель, содержащий пентан, гексан, гептан, циклогексан, бензол, толуол, диэтиловый эфир или их смеси.
Изобретение относится к пищевой промышленности и фармацевтики. Способ получения иммуностимулирующего средства из шрота ягод брусники обыкновенной включает экстрагирование растительного материала, для чего высушенный и измельченный растительный материал помещают в экстрактор, добавляют 60% этанол в соотношении сырье:экстрагент как 1:12, полученную смесь подвергают ультразвуковой обработке частотой 50 кГц при 70±1°С в течение 38-51 мин.

Изобретение относится к пищевой, химической, парфюмерной промышленности. Колонный СВЧ-экстрактор, характеризующийся тем, что содержит металлическую цилиндрическую камеру, состоящую из отдельных секций, установленных по высоте, каждая секция оснащена теплообменной рубашкой, в которую подаётся теплоноситель, и поясом магнетронов, обеспечивающих воздействие электромагнитного СВЧ-поля, каждый магнетрон закрыт защитным кожухом, перепускные коллекторы, обеспечивающие перенос теплоносителя из одной секции экстрактора в другую, внутри металлической цилиндрической камеры размещен непрерывно вращающийся вертикальный вал с закрепленными на нем перфорированными диэлектрическими пластинами ротора, обеспечивающего перемещение смеси обрабатываемого сырья и экстрагента по круговой траектории, дно металлической цилиндрической камеры экстрактора имеет перегрузочные окна, служащие для перемещения смеси исходного сырья и экстрагента между соседними секциями и для подачи смеси на разделение механическим путем с помощью шнека с переменным шагом витков расположенный в перфорированном корпусе, оснащенным рубашкой и патрубком для отвода экстракта.

Изобретение относится к области сельского хозяйства и пищевой промышленности. Предложена центробежная рушка для масличных семян, состоящая из вертикального цилиндрического корпуса, внутри которого установлены кольцевая дека в виде усеченного конуса и роторное устройство с радиальными лопатками, соединенные конусным распределителем с роторным валом, загрузочный бункер с подвижным конусным распределителем на вертикальной штанге, а также патрубок для отвода рушанки и привод.

Изобретение относится к пищевой и масложировой промышленности. Способ переработки шрота из высокобелкового масличного сырья включает следующие стадии: а) шрот с остаточной масличностью не более 1% смешивают с водой или водно-щелочным или водно-солевым раствором, имеющим рН 6,5-10, при массовом соотношении воды или водно-щелочного или водно-солевого раствора и шрота от 4:1 до 25:1 с получением суспензии, b) затем полученную суспензию выдерживают в емкости в течение 5-90 минут при температуре 30-60°С, при этом во время выдержки в емкости суспензию перемешивают с помощью мешалки и осуществляют рециркуляцию суспензии, выходящей через клапан, размещенный в дне емкости, с помощью насоса под давлением обратно в емкость, c) затем суспензию разделяют на белковый экстракт и нерастворимый остаток, далее полученный белковый экстракт направляют на дальнейшую переработку, которая заключается в том, что либо из белкового экстракта удаляют влагу с получением белковой пасты, либо в белковый экстракт добавляют раствор для осаждения белка и затем указанный белковый экстракт разделяют на белковую пасту и сыворотку; полученную сыворотку разделяют на остаточный белок, воду и концентрированную сыворотку, затем полученный остаточный белок добавляют к белковой пасте.

Изобретение относится к масложировой промышленности. Способ отделения масла из технологических потоков при получении биопродукта из зерна, включающий добавление системы технологической добавки в технологический поток в процессе получения биопродукта из зерна, где система технологической добавки включает по меньшей мере одно первое неионное поверхностно-активное вещество (ПАВ) и по меньшей мере одно второе неионное ПАВ, где первое неионное ПАВ включает сорбитан моноолеат ПОЭ (20) и второе неионное ПАВ включает алкоксилированный триглицерид, и где система технологической добавки включает первое неионное ПАВ в количестве по меньшей мере 3% в расчете на общую массу системы технологической добавки и второе неионное ПАВ в количестве по меньшей мере 3% в расчете на общую массу системы технологической добавки, и где массовое отношение первого неионного ПАВ ко второму неионному ПАВ составляет от 1:3 до 3:1.

Изобретение относится к области биофармацевтических и терапевтических средств. Предложены ионизируемые соединения, а также фармацевтическая композиция на основе ионизируемых соединений.
Наверх