Система беспроводной передачи электромагнитной энергии



H02J50/12 - Схемы или системы питания электросетей и распределения электрической энергии; системы накопления электрической энергии (схемы источников питания для устройств для измерения рентгеновского излучения, гамма-излучения, корпускулярного или космического излучения G01T 1/175; схемы электропитания, специально предназначенные для использования в электронных часах без движущихся частей G04G 19/00; для цифровых вычислительных машин G06F 1/18; для разрядных приборов H01J 37/248; схемы или устройства для преобразования электрической энергии, устройства для управления или регулирования таких схем или устройств H02M; взаимосвязанное управление несколькими электродвигателями, управление первичными двигатель-генераторными агрегатами H02P; управление высокочастотной энергией H03L;

Владельцы патента RU 2787891:

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (RU)

Изобретение относится к области электротехники и предназначено для беспроводной передачи электромагнитной энергии, например, в беспроводных зарядных устройствах, в каналах передачи информации, в медицинских приборах. Система беспроводной передачи электромагнитной энергии содержит первый резонансный контур с катушкой индуктивности на стороне устройства-источника и второй резонансный контур с катушкой индуктивности, расположенной на стороне целевого устройства. Между указанными катушками расположен металлический экран. При этом величина связи этих катушек выбирается сильнее связи резонансных контуров с устройством-источником и с целевым устройством так, чтобы на амплитудно-частотной характеристике прямых потерь резонансных контуров, в случае когда металлический экран отсутствует, наблюдались два выраженных максимума коэффициента передачи. В качестве рабочей частоты устройства передачи энергии выбирается частота, близкая к частоте высокочастотного максимума коэффициента передачи. Технический результат заключается в возможности передачи электрической энергии через сплошной металлический корпус. 5 ил.

 

Изобретение относится к области электротехники и связи, предназначено для беспроводной передачи электромагнитной энергии, например, в беспроводных зарядных устройствах, в каналах передачи информации, в медицинских приборах.

Известна система беспроводной передачи энергии, которая содержит базовый блок с несколькими цепями генерации магнитного поля и, по меньшей мере, одно устройство, отделимое от упомянутого базового блока и имеющее принимающий индуктор, приспособленный для приема энергии индуктивно, когда упомянутое устройство находится поблизости от одной из упомянутых цепей генерации [Патент РФ № 2506678, МПК H02J 5/00, опубл. 10.02.2014, Бюл. № 4].

Наиболее близким аналогом по совокупности существенных признаков является устройство для беспроводной передачи энергии между устройством-источником и целевым устройством с катушкой индуктивности расположенной на стороне устройства-источника и второй катушкой, расположенной на стороне целевого устройства. Изобретение касается индукционной передачи энергии между устройствами или компонентами устройств для зарядки, по меньшей мере, одного расположенного в устройстве или в компоненте устройства аккумулятора, например, аккумулятора пульта дистанционного управления [Патент РФ № 2419945, МПК H02J 17/00, H01F 38/14, опубл. 27.05.2011, Бюл. № 15 (прототип)].

Общим недостатком всех известных конструкций и конструкции-прототипа является большая потеря электромагнитной энергии при передаче через сплошной металлический корпус источника и (или) приемника энергии.

Техническим результатом заявляемого изобретения является уменьшение потерь при передаче электромагнитной энергии через сплошной металлический корпус.

Заявляемый технический результат достигается тем, что в системе беспроводной передачи электромагнитной энергии, содержащей резонансный контур с катушкой индуктивности на стороне устройства-источника и второй резонансный контур с катушкой индуктивности расположенной на стороне целевого устройства, новым является то, что величина связи указанных катушек выбирается сильнее связи резонансных контуров с устройством-источником и с целевым устройством так, чтобы на частотной зависимости коэффициента передачи резонансных контуров наблюдались два выраженных максимума коэффициента передачи, причем в качестве рабочей частоты устройства передачи энергии выбирается частота, близкая к частоте высокочастотного максимума коэффициента передачи.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием резонансных контуров устройства-источника электрической энергии и целевого устройства с катушками индуктивности, коэффициент связи между которыми больше коэффициентов связи резонансных контуров с устройством-источником и с целевым устройством, чтобы на частотной зависимости коэффициента передачи наблюдались два выраженных максимума. Другим существенным отличием является то, что передача электрической энергии осуществляется от устройства-источника к целевому устройству на частоте, близкой к частоте высокочастотного максимума коэффициента передачи. В этом случае удается обеспечить наименьшие потери мощности при передаче электромагнитной энергии через сплошной металлический корпус.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами: на фиг. 1 показана электрическая принципиальная схема одного из возможных вариантов системы беспроводной передачи электромагнитной энергии, демонстрирующего суть изобретения. На фиг. 2 представлена конструкция устройства, реализованного на основе принципиальной электрической схемы согласно фиг. 1. На фиг. 3 показана конструкция устройства, представленного на фиг. 2, но с разнесенными частями и без элементов крепежа, а на фиг. 4 показано устройство в сборе с вырезом сбоку. На фиг. 5 показаны результаты экспериментальных измерений изготовленного опытного образца устройства.

На фиг. 1 показана электрическая принципиальная схема одного из возможных вариантов системы беспроводной передачи электромагнитной энергии. Устройство состоит (фиг. 1) из металлического экрана (1), разделенного на две части стенкой (2), относительно которой конструкция симметрична. Внутри каждой части экрана (1) размещен параллельный колебательный контур (отдельно не указан), включающий индуктивность (3) и емкость (4). Колебательные контуры соединены с портами (5). Металлический экран (1), включающий общую стенку (2), а также один из выводов каждого колебательного контура соединены с экраном. Таким образом, устройство является взаимным четырехполюсником. Необходимо отметить, что возможны иные варианты реализации электрической принципиальной схемы заявляемого изобретения. Например, для улучшения согласования с внешней нагрузкой устройство может содержать дополнительные элементы согласования, колебательный контур может быть последовательным, а не параллельным и т. д. Экран может быть изготовлен из любого проводящего материала. При необходимости, например, передачи электрической мощности в одном направлении может возникнуть необходимость в согласовании портов устройства на разные сопротивления нагрузки: с одной стороны, на низкоомное сопротивление источника мощности, а с другой – на высокоомное сопротивление маломощного потребителя электрической мощности. В случае необходимости организации канала передачи информации, в устройство могут быть добавлены элементы передатчика и приемника системы связи.

На фиг. 2 показан пример внешнего вида конструкции, реализующей электрическую принципиальную схему согласно фиг. 1. Устройство состоит из двух частей – цилиндрических алюминиевых экранов (6) и (7), размещенных на подставке. Между экранами (6) и (7) (фиг. 3) находится металлизированная медью (толщина слоя 18 мкм) диэлектрическая пластина (8), зажатая с двух сторон медными кольцами (9). С обеих сторон металлизированной диэлектрической пластины (8) расположены катушки индуктивности, намотанные литцендратом (10) на каркасах (11). Число витков в каждой катушке – 12, измеренная индуктивность катушек составила ~ 6,8 мкГн, эквивалентное активное сопротивление потерь на частоте 100 кГц – 0,025 Ом. Указанные значения получены при измерении катушек, расположенных в открытом пространстве. При размещении катушек внутри экранов (6) и (7) их индуктивность будет снижаться, а потери – возрастать. Каркасы (11) катушек закреплены на ползунах (12), в которых закреплены ходовые винты (13). На ходовых винтах (13) расположены регулировочные гайки (14) и контргайки (15). Осевое перемещение регулировочных гаек (14) ограничено стопорными пластинами (16), закрепленными на экранах (6) и (7). Емкостными элементами параллельных колебательных контуров являются конденсаторы (17), закрепленные на диэлектрических колодках (18), которые размещены на металлических пластинах (19). Пластины (19) установлены с внешней стороны экранов (6) и (7), что дает возможность доступа к конденсаторам (17) без механического разъединения экранов (6) и (7). Экспериментально измеренные емкости выбранных конденсаторов (17) составили 480 нФ, эквивалентное сопротивление потерь на частоте 100 кГц – менее 100 мкОм. Для подключения внешней нагрузки в каждом экране (6) и (7) установлен коаксиальный разъем (20). Для обеспечения чистоты эксперимента в конструкции использованы латунные и нержавеющие (немагнитные) элементы крепежа. Экраны (6) и (7) стянуты винтами (фиг. 4) таким образом, чтобы обеспечить их надежный электрический контакт, как между собой, так и с металлическим слоем диэлектрической пластины (8) через деформируемые медные кольца (9). При сборке конструкции ползуны (12) размещены между направляющими (21), ограничивающими возможность вращения ползунов (12) при осевом перемещении ходовых винтов (13).

Устройство настраивают следующим образом с использованием, например, векторного анализатора цепей. В этом случае два порта анализатора цепей подключают к коаксиальным разъемам (20) (фиг. 4). Предварительная настройка выполняется без металлизированной диэлектрической пластины (8), при этом требуемые амплитудно-частотные характеристики устройства можно определить с помощью стандартных методов теории радиотехнических цепей для контуров с индуктивной связью [Атабеков, Г. И. Основы теории цепей. Учебник для вузов. М., «Энергия», 1969]. Уединенные колебательные контуры должны иметь как можно более близкую резонансную частоту fр и как можно более высокую собственную добротность Q0. Эти величины измеряют с помощью векторного анализатора цепей при отсутствии индуктивной связи между контурами, для этого экраны (6) и (7) разъединяют и удаляют друг от друга для исключения связи между контурами. При необходимости резонансные частоты контуров подстраиваются параллельными добавочными. После этого экраны (6) и (7) соединяют вместе (без металлизированной диэлектрической пластины (8)). Для изменения коэффициента магнитной связи k взаимное перемещение катушек индуктивностей осуществляется вращением регулировочных гаек (14). С увеличением k связь между контурами становится больше критической, что показывает на анализаторе цепей двугорбая амплитудно-частотная характеристика прямых потерь S21 (кривая 22 на фиг. 5), имеющая два максимума коэффициента передачи. Для указанных выше значений индуктивностей и емкостей, используемых в эксперименте контуров, измеренное значение частоты первого максимума ~85 кГц, а второго ~120 кГц. Далее, после настройки связанных контуров на одинаковую частоту, экраны (6) и (7) (фиг. 4) разъединяются и между ними вставляется металлизированная диэлектрическая пластина (8); экраны (6) и (7) соединяют вместе и плотно зажимают пластину (8) между медных колец (9). При этом происходит значительное подавление первого максимума двугорбой кривой S21 и незначительное ослабление второго максимума, поэтому на экране анализатора цепей наблюдается одногорбая кривая. Далее, вращением регулировочных гаек (14) устройство подстраивают так, чтобы обеспечить максимальный коэффициент передачи на частоте второго максимума. На фиг. 5 показаны экспериментально измеренные зависимости модулей коэффициентов отражений (23) и коэффициентов передачи (24) настроенного устройства.

Устройство работает следующим образом (фиг. 1). К портам (5) подключают источник электромагнитных колебаний (генератор, инвертор) и нагрузку (при необходимости, через выпрямитель, сглаживающий фильтр, стабилизатор и т. д.). Частота колебаний устанавливается приблизительно равной частоте второго максимума (фиг. 5) двугорбой кривой (22), что соответствует для экспериментального макета (фиг. 2) частоте примерно ~120 кГц. Точная подстройка частоты возможна в ручном или в автоматическом режиме, например, следующими способами. В первом случае измеряют мощность в нагрузке и выбирают оптимальное значение частоты переменного напряжения, при котором наблюдается максимум передачи энергии. Во втором случае в цепи источника электромагнитных колебаний устанавливается измеритель потребляемой мощности, сигнал с выхода которого управляет частотой генератора. Так как индуктивности (3) разделены общей стенкой (2) металлического экрана (фиг. 1), то на частоте первого максимума двугорбой резонансной кривой (22) токи от обоих контуров наводятся в экране синфазно, а на частоте второго максимума ‒ противофазно. В результате первый максимум (фиг. 5) двугорбой резонансной кривой (22) испытывает существенное затухание величиной ~26 дБ (т. е. сигнал ослабляется металлическим экраном в ~400 раз), а на частоте второго максимума двугорбой кривой затухание сигнала увеличивается всего лишь на ~2 дБ относительно затухания в системе без экрана (ослабление менее двух раз). Таким образом, при правильном выборе конструктивных параметров системы колебательных контуров, разделенных сплошным металлическим экраном, на частоте второго максимума двугорбой резонансной кривой реализуется возможность передачи электромагнитной энергии из полностью экранированного объема. Важно отметить, что эффективная компенсация токов в металлическом экране возможна только в том случае, когда толщина экрана меньше толщины скин-слоя. По этой причине необходимо выбирать рабочую частоту системы исходя из толщины металлического экрана.

Экспериментальные исследования показали, что заявляемый технический результат достигнут. Устройство (фиг. 2), включающее два полностью замкнутых электрических экрана с одной общей стенкой, позволяет передавать электромагнитную энергию из одного экрана в другой с малыми потерями. Например, дополнительные потери на прохождение мощности в изготовленном макете составили всего ~2 дБ (фиг. 5, кривая 24), при этом полученный результат может быть улучшен, например, путем выбора оптимальных конструктивных параметров катушек (диаметра, толщины провода и др.).

Система беспроводной передачи электромагнитной энергии, содержащая резонансный контур с катушкой индуктивности на стороне устройства-источника и второй резонансный контур с катушкой индуктивности, расположенной на стороне целевого устройства, отличающаяся тем, что между указанными катушками расположен металлический экран, а величина связи этих катушек выбирается сильнее связи резонансных контуров с устройством-источником и с целевым устройством так, чтобы на амплитудно-частотной характеристике прямых потерь резонансных контуров, в случае когда металлический экран отсутствует, наблюдались два выраженных максимума коэффициента передачи, причем в качестве рабочей частоты устройства передачи энергии выбирается частота, близкая к частоте высокочастотного максимума коэффициента передачи.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для дистанционной зарядки аккумуляторов коптеров. Технический результат заключается в увеличении срока службы эксплуатации аккумулятора.

Изобретение относится к области электротехники. Система для извлечения электрической энергии из электрического поля в силовых кабелях без установления электрического контакта с основными проводниками (101) кабеля (801), которая содержит силовой кабель (606, 801) и устройство для извлечения энергии из электрического поля, захватывающее электрическое поле внутри силового кабеля.

Ректенна // 2786634
Изобретение относится к радиотехнике и может быть использовано в системах беспроводной передачи энергии на расстояние для повышения эффективности ректенн в микроволновом диапазоне, ТГц и видимом диапазоне. Техническим результатом является разработка ректенны, имеющей малые потери энергии в приемной антенне.

Устройство предназначено для преобразования постоянного тока, снимаемого с коллектора циклотронного преобразователя СВЧ-колебаний, в переменный ток различных уровней. Технический результат – повышение точности управления потоками энергии.

Изобретение относится к области электротехники. Технический результат заключается в повышении гибкости, улучшении обнаружения посторонних объектов, связи, поддержки различных нагрузок, адаптируемости, обратной совместимости и характеристики.

Балансир для судна с электродвижением относится к области электротехники и может быть использован для контроля степени заряда и разряда литий-ионных батарей. Техническим результатом заявленного изобретения является расширение функционала устройства-прототипа путём организации обеспечения возможности обслуживающему персоналу судна с электродвижением контролировать степень заряда, а также разряда аккумуляторов, используемых для обеспечения хода судна.

Использование: в области электротехники для обеспечения беспроводного питания и зарядки. Технический результат - повышение эффективности передачи энергии от зарядной станции в приемник потребителя электрической энергии.

Изобретение относится к медицинской технике и может быть использовано для энергообеспечения имплантируемых медицинских приборов, таких как кардиостимуляторы, имплантируемые кардиовертер-дефибрилляторы, нейростимуляторы спинного мозга, приборы глубокой стимуляции мозга, имплантируемые инфузионные помпы, моторизированные телескопические дистракционные стержни (интеллектуальный ортопедический имплантат), кохлеарные имплантаты, имплантируемые медицинские датчики, визуальные протезы (протезы сетчатки), устройства вспомогательного кровообращения.

Изобретение относится к области передачи данных. Технический результат заключается в повышении эффективности передачи данных.

Изобретение относится к области электротехники. Технический результат заключается в повышении скорости зарядки аккумулятора.
Наверх