Устройство для наведения лазерного пучка

Изобретение относится к оптико-механическому приборостроению, к устройствам для перемещения лазерного луча в пространстве, устройствам оптического сканирования и слежения. Устройство для наведения лазерного пучка включает неподвижный корпус, на котором закреплены электропривод, подшипник, вращающийся в подшипнике с помощью электропривода полый вал с установленным на нем плоским отражающим зеркалом под углом 45 градусов к оси вала, устройство снабжено кольцевым датчиком угла со статором и ротором, электропривод содержит кольцевой безредукторный двигатель с кольцевыми статором и ротором, статоры кольцевого датчика угла и кольцевого безредукторного двигателя жестко соединены с неподвижным корпусом, а их роторы соосно закреплены на полом валу, при этом сам вал и связанные с ним подшипник, двигатель и датчик целиком расположены под плоским зеркалом, задняя плоскость этого зеркала выполнена прозрачной для длины волны отклоняемого лазерного пучка, под ней в полом валу установлен жестко связанный с корпусом поглотитель части неотразившегося от отражающей плоскости и прошедшего сквозь плоское отражающее зеркало излучения. Технический результат – повышение быстродействия, точности и мощности управляемых лазерных пучков. 1 ил.

 

Изобретение относится к оптико-механическому приборостроению, в частности к устройствам для перемещения лазерного луча в пространстве, устройствам оптического сканирования и слежения, предназначенным для работы в ограниченных углах точных контуров наведения двухконтурных систем наведения лазерных комплексов.

Известно устройство отклонения луча [1], состоящее из сканирующего зеркала, установленного в центр крестовины, и четырех направляющих стержней, закрепленных по одному на каждой из четырех оконечностей крестовины, при этом каждый направляющий стержень соединен с крестовиной при помощи шарнира, имеющего четыре степени свободы. Направляющие стержни имеют на своей внешней поверхности винтовую нарезку, с помощью которой закреплены в неподвижных резьбовых втулках с аналогичной внутренней нарезкой и имеют возможность перемещаться возвратно-поступательно при вращении в ту или иную сторону.

Недостатками этого устройства отклонения луча являются низкое быстродействие и точность, вызванные громоздкостью конструкции, большим моментом инерции ее подвижных частей и сложностью кинематической схемы.

Известно также сканирующее устройство [2], которое может быть использовано для наведения лазерных пучков, содержащее корпус, в котором на двух опорах установлен вал, с закрепленным на нем зеркалом. Привод зеркала выполнен в виде статора и ротора двигателя, консольно установленного на одном конце вала, а другой консольный конец вала связан с корпусом через торсион с помощью зажима, а также устройство контроля углового положения зеркала. Консольный конец вала со стороны торсиона снабжен подвижной в поперечном направлении опорой, соединенной с корпусом через упругий элемент, а зажим торсиона выполнен в виде вилки и центрального резьбового стержня, установленного с возможностью перемещения в направлении оси вала в паз корпуса.

Недостатками этого устройства отклонения луча являются неявно выраженный резонанс колебания зеркала, что вызывает большое потребление тока двух обмоток управления и снижает точность системы управления положением зеркала.

Наиболее близким по технической сущности к заявляемому устройству является устройство сканирования окружающего пространства для мобильной оптической линии связи [3], которое используется для пространственного отклонения лазерных пучков, состоящее из неподвижного корпуса, на котором закреплены электропривод, подшипник, вращающийся в подшипнике с помощью электропривода полый вал с установленным на нем плоским отражающим зеркалом под углом 45 градусов к оси вала.

Недостатком этого устройства является принципиальная необходимость длинных кинематических связей между двигателями и нагрузкой, что не позволяет получить высокое быстродействие и точность устройства при использовании его в замкнутой системе автоматического управления. Кроме того, в устройстве не предусмотрены конструктивные меры для поглощения тепла, выделяемого частью неотразившегося от зеркала излучения, что приводит к перегреву и деформациям зеркала и не позволяет использовать устройство для точного отклонения мощных лазерных пучков.

Задачей изобретения является создание устройства для наведения лазерного пучка с повышенными эксплуатационными характеристиками за счет увеличения его быстродействия, точности и мощности управляемых лазерных пучков.

Поставленная задача решается тем, что известное устройство сканирования окружающего пространства, осуществляющее пространственное наведение лазерных пучков, содержащее неподвижный корпус, на котором закреплены электропривод, подшипник, вращающийся в подшипнике с помощью электропривода полый вал с установленным на нем плоским отражающим зеркалом под углом 45 градусов к оси вала, снабжено кольцевым датчиком угла со статором и ротором, электропривод содержит кольцевой безредукторный двигатель с кольцевыми статором и ротором, статоры кольцевого датчика угла и кольцевого безредукторного двигателя жестко соединены с неподвижным корпусом, а их роторы соосно закреплены на полом валу, при этом сам вал и связанные с ним подшипник, двигатель и датчик целиком расположены под плоским зеркалом, задняя плоскость этого зеркала выполнена прозрачной для длины волны отклоняемого лазерного пучка, под ней в полом валу установлен жестко связанный с корпусом поглотитель части неотразившегося от отражающей плоскости и прошедшего сквозь плоское отражающее зеркало излучения.

На чертеже представлена схема устройства для наведения лазерного пучка.

Плоское отражающее зеркало 1 закреплено на полом валу 2 под углом 45 градусов к его оси, полый вал жестко соединен с ротором кольцевого электродвигателя 3, осуществляющим передачу вращения непосредственно на вал, и ротором кольцевого датчика угла 4 и вращается в подшипнике 5, установленном в неподвижном корпусе 6, в котором таже установлены статор кольцевого электродвигателя 7 и статор кольцевого датчика угла 8. Внутри полого вала установлен поглотитель мощности излучения 9. Устройство работает следующим образом.

Наведение лазерных пучков осуществляется путем разворота установленного на валу 2 плоского зеркала 1 с помощью кольцевого электродвигателя, при этом ось вращения совпадает с направлением входящего пучка. Поскольку зеркало установлено под углом 45 градусов к направлению падающего на него излучения, отраженный луч будет поворачиваться вместе с зеркалом и при всех углах поворота будет перпендикулярен падающему. Благодаря тому, что вращающиеся части (плоское зеркало, соосно установленные роторы электродвигателя 3 и датчика 4) жестко связаны непосредственно с полым валом, отсутствуют люфты и упругие деформации в элементах конструкции, передающих вращающий момент и осуществляющих измерение отработанных углов поворота, что позволяет реализовать повышенное быстродействие и точность системы управления отклонением пучка. Расположение вращающихся частей устройства под зеркалом со стороны задней неотражающей плоскости позволяет исключить виньетирование конструкцией устройства приходящих и отраженных лазерных пучков, что особенно важно при работе с мощным лазерным излучением. Поскольку часть излучения лазерного пучка неизбежно пройдет через отражающую поверхность зеркала, оно будет нагреваться и за счет тепловых деформаций искажать форму и направление лазерного пучка. Для исключения этого явления задняя поверхность зеркала благодаря своей прозрачности пропускает на поглотитель мощности излучения 9 (например, теплоемкий медный диск) прошедшее через отражающую поверхность излучение.

При работе данного устройства осуществляется отклонение лазерного пучка в одной плоскости, при необходимости отклонять излучение в двух плоскостях используются два аналогичных устройства с ортогонально расположенными в пространстве осями вращения двигателей.

Таким образом, предложено устройство для точного наведения мощного лазерного пучка, в котором узел отклоняющего зеркала выполнен в виде вращающейся закрепленной на полом валу конструкции, жестко связанной с кольцевыми роторами исполнительного и измерительного элементов, а сам полый вал служит для пропускания на поглотитель мощности излучения прошедшего сквозь плоское отражающее зеркало излучения.

Использование предложенного устройства позволяет повысить точность, быстродействие и мощность отклоняемого лазерного пучка системы управления лазерным пучком благодаря исключению люфтов и упругих деформаций в элементах конструкции, передающих вращающий момент на отклоняющее зеркало, и за счет уменьшения тепловых деформаций зеркала.

В настоящее время на предприятии изготовлен макет предлагаемого в заявке устройства для отклонения лазерного пучка и проведены его испытания, которые подтвердили его преимущества по сравнению с известными устройствами.

Источники информации

1. Патент РФ №2369887 С1, опубл. 2009.10.10.

2. Патент SU 1765800 А1, опубл. 1992.30.09.

3. Патент РФ 2749250 С1, опубл. 2021.06.07 - прототип.

Устройство для наведения лазерного пучка, содержащее неподвижный корпус, на котором закреплены электропривод, подшипник, вращающийся в подшипнике с помощью электропривода полый вал с установленным на нем плоским отражающим зеркалом под углом 45 градусов к оси вала, отличающееся тем, что оно снабжено кольцевым датчиком угла со статором и ротором, электропривод содержит кольцевой безредукторный двигатель с кольцевыми статором и ротором, статоры кольцевого датчика угла и кольцевого безредукторного двигателя жестко соединены с неподвижным корпусом, а их роторы соосно закреплены на полом валу, при этом сам вал и связанные с ним подшипник, двигатель и датчик целиком расположены под плоским зеркалом, задняя плоскость этого зеркала выполнена прозрачной для длины волны отклоняемого лазерного пучка, под ней в полом валу установлен жестко связанный с корпусом поглотитель части неотразившегося от отражающей плоскости и прошедшего сквозь плоское отражающее зеркало излучения.



 

Похожие патенты:

Светонаправляющее устройство содержит множество отражающих блоков, направляющих свет облучать объект и выровненных вдоль направления распространения падающего света, каждый из которых включает первый светонаправляющий элемент, отражающий свет. Каждый из множества отражающих блоков переключается между отражающим и пропускающим состояниями посредством вращения первого светонаправляющего элемента.

Светонаправляющее устройство содержит множество отражающих блоков, направляющих свет облучать объект и выровненных вдоль направления распространения падающего света, каждый из которых включает первый светонаправляющий элемент, отражающий свет. Каждый из множества отражающих блоков переключается между отражающим и пропускающим состояниями посредством вращения первого светонаправляющего элемента.

Изобретение относится к области оптического приборостроения и касается светоотражающего устройства. Светоотражающее устройство содержит отражающий элемент, имеющий отражающую поверхность, которая образована в плоской форме.

Изобретение относится к сканирующим системам с наголовным дисплеем для отображения изображений. Сканирующая система отображения, содержащая: источник лазерного света, содержащий два или более разнесенных лазеров; сканирующую зеркальную систему, выполненную с возможностью сканировать свет из источника лазерного света в первом направлении на более высокой частоте и во втором направлении на более низкой частоте, чтобы формировать изображение; датчик слежения за движениями глаз, выполненный с возможностью обнаруживать направление взгляда пользователя; и контроллер, выполненный с возможностью: соотносить направление взгляда с областью в изображении, управлять сканирующей зеркальной системой для сканирования лазерного света в чересстрочном шаблоне, чтобы формировать изображение, и регулировать одно или более из частоты сканирования во втором направлении и смещения фазы между первым кадром и вторым кадром изображения на основе, по меньшей мере, упомянутой области в изображении.

Использование: настоящая технология относится к реализованным посредством компьютера способам и системам для калибровки нескольких лидарных датчиков, установленных на беспилотный автомобиль (SDC), с использованием итеративного алгоритма ближайших точек (Iterative Closest Point Algorithm, ICP). Сущность: способ содержит этапы, на которых: выбирают, посредством электронного устройства, (i) по меньшей мере некоторые из множества первых точек данных и (ii) по меньшей мере некоторые из множества вторых точек данных; согласуют, посредством электронного устройства, первые точки данных со вторыми точками данных, за счет этого определяя множество пар; определяют, посредством электронного устройства, конкретное для пары значение ошибки для данной одной из множества пар; определяют, посредством электронного устройства, весовой коэффициент для данной одной из множества пар на основе вектора нормали, ассоциированного с данной второй точкой данных в данной одной из множества пар; и определяют, посредством электронного устройства, глобальное значение ошибки для второго набора данных.

Датчик гальванометрического сканатора включает блок осветителя, включающий светодиод, щелевую диафрагму, установленную в непосредственной близости от него, поворотное зеркало, апертурную диафрагму, линзу, а также ротор сканатора, установленный в исполнительном двигателе, плоскопараллельную пластину, закрепленную на роторе сканатора, и дифференциальный фотодиод с двумя фоточувствительными площадками.

Датчик гальванометрического сканатора включает блок осветителя, включающий светодиод, щелевую диафрагму, установленную в непосредственной близости от него, поворотное зеркало, апертурную диафрагму, линзу, а также ротор сканатора, установленный в исполнительном двигателе, плоскопараллельную пластину, закрепленную на роторе сканатора, и дифференциальный фотодиод с двумя фоточувствительными площадками.

Изобретение относится к устройству отображения, используют сканирование с помощью лазера для того, чтобы формировать просматриваемые изображения. Сканирующая система отображения изображения, содержащая: источник лазерного света, содержащий два или более лазеров со смещением частоты; сканирующую зеркальную систему, выполненную с возможностью сканировать свет из источника лазерного света в первом направлении на более высокой частоте и во втором направлении на более низкой частоте, чтобы формировать изображение; датчик слежения за движениями глаз, выполненный с возможностью обнаруживать направление взгляда пользователя; и контроллер, выполненный с возможностью соотносить направление взгляда с областью в изображении, управлять сканирующей зеркальной системой для сканирования лазерного света в чересстрочном шаблоне, с тем чтобы формировать изображение, и регулировать одно или более из частоты сканирования во втором направлении и смещения фазы между первым кадром и вторым кадром изображения на основе, по меньшей мере, упомянутой области в изображении.

Изобретение относится к приборам разведки и предназначено для получения и анализа изображений на различных дальностях. Лазерный прибор разведки содержит лазерный сканер, объектив, ПЗС-матрицу, процессор, датчики угла, при этом в корпусе лазерного сканера на одной оси, установленной в подшипники, жестко закреплены центрированные две симметричные близкорасположенные равносторонние призмы-диска, первый излучающий, а второй принимающий отраженный лазерный луч с зеркальной боковой поверхности, разделенные перегородкой, приводимые во вращение двигателем вертикали, связанным с осью, поворот сканера по горизонтали обеспечивается двигателем горизонтали, установленным на подшипниках кронштейна, соединенного осью с корпусом, лазер выполнен с возможностью жесткого крепления под излучающей призмой со смещением на половину длины стороны призмы, а объектив – под принимающей призмой, за ним последовательно: система ПИК детектора, контур отработки сигнала, система обработки информации, память, печать, а также система отображения в LCD.

Изобретение относится к оптико-механическому приборостроению, в частности к устройствам для перемещения лазерного луча в пространстве, устройствам оптического сканирования и слежения. Заявленное устройство сканирования окружающего пространства для мобильной оптической линии связи состоит из корпуса, на котором закреплены приемопередатчик оптической связи, первый шаговый двигатель и первый подшипник, при этом первый шаговый двигатель может вращать полый вал первого подшипника, на котором под углом 45° к оси вала расположено первое плоское зеркало.
Наверх