Способ сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей

Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 4,0 до 30,0 мм. На свариваемые поверхности наносят флюс-пасту в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3. Получают покрытие с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%. Сварку осуществляют в смеси защитных газов, состоящей из 82 об.% аргона и 18 об.% углекислого газа. Технический результат заключается в увеличении области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм. 2 табл.

 

Изобретение относится к технологии сварки продольных и кольцевых швов изделий из углеродистых и низколегированных конструкционных сталей толщиной от 4,0 до 30,0 мм.

Известен способ сварки плавящимся электродом со сквозным проплавлением, при котором металл сварочной ванны удерживают за счет сил поверхностного натяжения из-за нанесенной флюсовой пасты на поверхность стыка со стороны корня шва, состоящей из нескольких фторидов CaF2–BaF2–SrF2. Этот способ служит для повышения качества сварных соединений материалов из углеродистых и низколегированных сталей толщиной от 4,0 мм до 6,0 мм [S. G. Parshin (2012): Using ultrafine particles of activating fluxes for increasing the productivity of MIG/MAG welding of steels, Welding International, 26:10, P. 800-804].

Однако известный способ невозможно использовать для сварки сталей более 6 мм, вследствие возникновения на поверхности расплавленной сварочной ванны шлакового слоя переменного состава из-за образования комплексных соединений, не препятствующих проникновению ионов кислорода к расплаву сварочной ванны, которые уменьшают величину поверхностного натяжения и момент силы, изгибающий поверхность расплавленного металла в сторону увеличения геометрических параметров обратного валика.

Известен способ сварки с помощью поверхностно-инактивного компонента в виде ZrO2 наносимого на обратную сторону стыка размерностью до 60 мкм и толщиной покрытия 200-300 мкм, который позволяет увеличить объем расплавленного металла сварочной ванны, удерживаемый в разделке [Способ управления формированием корневого шва / П.П. Красиков, О.А. Полесский, А.В. Савинов, И.Е. Лапин // Известия ВолгГТУ. Сер. Проблемы материаловедения, сварки и прочности в машиностроении. Вып. 10. - Волгоград, 2014. - № 23 (150). - C. 128-130].

Однако при данном способе нанесения покрытия нет возможности проконтролировать толщину и равномерность нанесенного оксидного слоя, что в свою очередь ухудшает формирование обратного валика, а именно приводит к прожогам и неравномерности получаемых геометрических параметров по длине шва, ухудшая механические свойства получаемого соединения.

Наиболее близким является способ сварки корневого шва с разделкой кромок в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа, с применением флюсовой пасты на основе Al2O3 для стабилизации геометрических параметров получаемого сварного соединения [Stabilization of Root Parameters for Shielded Arc Welding / P.P. Krasikov, A.V. Savinov, O.A. Polesskiy, A.A. Chudin, L.S. Krasikova, I.V. Kozlov, D.S. Borisov and V.V. Filippov // IOP Conference Series: Materials Science and Engineering. Vol. 1118 : International Conference on Mechanical Engineering and Modern Technologies (MEMT 2020) (Tomsk, Russia, 26-30 October, 2020) / Tomsk Polytechnic University. – [IOP Publishing], 2021. – 5 p. – DOI: 10.1088/1757-899X/1118/1/012012].

Недостатком данного способа является ограниченность применения по толщине изделия до 10 мм и параметрами режима сварки.

Задачей предлагаемого технического решения является разработка способа сварки плавящимся электродом в смеси защитных газов 82%Ar+18%CO2 углеродистых и низколегированных конструкционных сталей, обеспечивающего минимальный размер обратного валика в широком диапазоне параметров режима сварки и толщин изделия без ухудшения механических свойств сварного соединения.

Технический результат заключается в увеличение области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм.

Технический результат достигается в способе сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей, при котором сварка ведется в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты на основе порошка оксида, при этом флюс-паста наносится в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3 и нанесенного на свариваемые поверхности с образованием оксидного покрытия плотностью нанесения оксида в 0,045-0,055 г/см2 и относительной массовой концентрации оксида в зоне расплава сварочной ванны равной 1,8-2,2%.

Сущность способа заключается в том, что порошок Y2O3 или CaO просеивается с помощью сита №004 по ГОСТ6613-86 размерная сетка сита, обеспечивает разную размерность зерен оксида менее 39 мкм. После чего полученный порошок разводится спиртом в массовом соотношении 1 часть оксида к 3 частям спирта. Полученная суспензия при помощи пульверизатора с диаметром сопла 0,5 мм с расстояния 15 см наносится на свариваемые поверхности с обеспечением за одно нажатие пятна нанесенного покрытия площадью 12,6 см2 и поверхностной плотностью 0,0225-0,0275 г/см2. Далее сопло пульверизатора перемещается на половину диаметра полученного пятна и наносится второй слой покрытия. При этом получают требуемую плотность нанесения оксида в 0,045-0,055 г/см2 и относительную концентрацию оксида в зоне расплава сварочной ванны равную 1,8-2,2%. Далее осуществляется сварка в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа плавящимся электродом сталей марки Ст3сп толщиной 4 мм с разделкой кромок С2 по ГОСТ 14771-76 и стали 09Г2С толщиной 30 мм с разделкой кромок С17 по ГОСТ 14771-76.

Применение оксидного покрытия плотностью нанесения оксида 0,045-0,055 г/см2 и массовой концентрацией в зоне сварочной ванны в диапазоне 1,8-2,2% приводит к получению обратного валика с параметрами, не выходящими за пределы допустимых по ГОСТ 14771-76. При этом повышение поверхностного натяжения на границе между контактирующим оксидом и жидкой сварочной ванны позволяет расширить диапазон параметров режима сварки. При контакте двух фаз с различной работой выхода электрона на границе между двумя точками вблизи границы контакта возникает контактная разница потенциалов, которая препятствует проникновению к границе расплавленной сварочной ванны ионов кислорода О2- и окислению сварочной ванны с образованием FeO уменьшающего поверхностное натяжение расплавленной сварочной ванны.

Учет размера частиц и выполнение заданных параметров поверхностной плотности нанесенного покрытия создает высокую адгезию между частицами оксида и поверхностью металла, вследствие чего не происходит его осыпание во время сварки и, соответственно, уменьшения объема сварочной ванны, что в свою очередь обеспечивает стабильность получения геометрических параметров обратного валика в широкой области допустимых отклонений заданных параметров сварочного процесса.

Расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа позволяет увеличить диапазон допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения, что значительно облегчает сварочный процесс.

Уменьшение концентрации оксида в зоне сварочной ванны ниже заявленного интервала приводит к увеличенному провисанию обратного валика, уменьшению диапазона режимов сварки, в которых параметры обратного валика находятся в допуске. При высоте обратного валика более 2 мм, происходит уменьшение прочности сварного соединения из-за насыщения металла сварочной ванны газами и появления пор в корне шва. Увеличение концентрации оксида в зоне сварочной ванны выше заявленного интервала не приводит к существенному изменению нормируемого показателя высоты обратного валика.

Экспериментальные данные, подтверждающие расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа для пластин из стали марки Ст3сп (разделка по ГОСТ 14771-76-С2) толщиной 4 мм с использованием оксидного покрытия из Y2O3 приведены в таблице 1.

Таблица 1

Относительная концентрация оксида в зоне сварочной ванны, % Параметры режима сварки Временное сопротивление разрыва, МПа Высота обратного валика, мм
скорость подачи электрод-ной проволоки Vп.п., м/ч напряжение на дуге, Uд., В скорость сварки Vсв., м/ч
1,6 100 26 34 -- несплавление
200 27 460-465 1,5
300 29 2,0
400 33 440-455 3,0
250 26 24 -- прожог
34 440-455 1,7
44 1,0
48 -- несплавление
1,8 100 26 34 460-465 0,1
200 27 0,9
300 29 1,7
400 33 2,0
250 26 24 460-465 1,8
34 1,4
44 0,8
48 0,4
2,0 100 26 34 460-465 0,3
200 27 1,0
300 29 1,8
400 33 1,9
250 26 24 460-465 2,0
34 1,5
44 0,9
48 0,2
2,2 100 26 34 460-465 0,2
200 27 1,1
300 29 1,9
400 33 2,0
250 26 24 2,0
34 1,6
44 0,5
48 0,1
2,4 100 26 34 -- несплавление
200 27 460-465 1,4
300 29 2,0
400 33 -- прожог
250 26 24 прожог
34 460-465 1,8
44 0,15
48 -- несплавление
Механические свойства основного материала (Ст3сп) по ГОСТ 535-2005 460-465 -
-

Экспериментальные данные, подтверждающие расширение диапазона параметров режима сварки в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа для пластин из стали марки 09Г2С (разделка по ГОСТ 14771-76-С17) толщиной 30 мм с использованием оксидного покрытия из CaO приведены в таблице 2.

В таблице 2 для пластин из стали марки 09Г2С (разделка по ГОСТ 14771-76-С17) толщиной 30 мм приведены параметры обратного валика, получаемые в результате сварки, выполненной в соответствии с параметрами по прототипу (толщина пластины 10 мм, смесь защитных газов 82 об.% аргона и 18 об.%, флюс-паста на основе Al2O3).

Нормируемый показатель высоты обратного валика по ГОСТ 14771-76-С2 составляет 1,0±1,0 мм, нормируемый показатель высоты обратного валика по ГОСТ 14771-76-С17 составляет 0+2,0 мм.

Таблица 2

Относительная концентрация оксида в зоне сварочной ванны, % Параметры режима сварки Временное сопротивление разрыва, МПа Высота обратного валика, мм
скорость подачи электродной проволоки Vп.п., м/ч напряжение на дуге, Uд., В скорость сварки Vсв., м/ч
1,6 350 26 34 -- несплавление
400 27 482-485 1,2
500 29 2,5
600 33 470-475 3,2
700 34 -- прожог
550 29 20 -- прожог
24 482-485 2,0
34 1,0
44 0,2
48 -- несплавление
1,8 350 26 34 482-485 0,5
400 27 1,1
500 29 1,5
600 33 1,7
700 34 2,0
550 29 20 482-485 2,0
24 1,7
34 1,5
44 1,3
48 0,2
2,0 350 26 34 482-485 0,2
400 27 1,2
500 29 1,4
600 33 1,5
700 34 1,8
550 29 20 482-485 1,8
24 1,6
34 1,4
44 1,0
48 0,4
2,2 350 26 34 482-485 0,3
400 27 1,2
500 29 1,5
600 33 1,7
700 34 1,8
550 29 20 1,9
24 1,7
34 1,6
44 1,1
48 0,3
2,4 350 26 34 -- несплавление
400 27 482-485 1,1
500 29 1,4
600 33 1,5
700 34 1,9
550 29 20 -- прожог
24 482-485 1,7
34 1,6
44 1,0
48 0,3
по прототипу 400 26 34 -- несплавление
420 27 0,5
480 29 1,0
550 30 2,0
600 32 прожог
Механические свойства основного материала (09Г2С) по ГОСТ 19281-2014 480-485 --

Таким образом, способ сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3 и нанесенного на свариваемые поверхности с образованием оксидного покрытия плотностью нанесения оксида в 0,045-0,055 г/см2 и относительной массовой концентрации оксида в зоне расплава сварочной ванны равной 1,8-2,2%, обеспечивает увеличение области допустимых отклонений заданных параметров сварочного процесса без ухудшения механических свойств сварного соединения для изделий толщиной 4-30 мм.

Способ сварки плавящимся электродом углеродистых и низколегированных конструкционных сталей, при котором сварку ведут в смеси защитных газов 82 об.% аргона и 18 об.% углекислого газа с помощью флюс-пасты на основе порошка оксида, отличающийся тем, что флюс-пасту наносят в виде покрытия из порошка Y2O3 или CaO с размером зерен до 39 мкм, разведенного в спирте в массовом соотношении 1:3, нанесенного на свариваемые поверхности с образованием оксидного покрытия с плотностью нанесения оксида 0,045-0,055 г/см2 и относительной массовой концентрацией оксида в зоне расплава сварочной ванны, равной 1,8-2,2%.



 

Похожие патенты:

Изобретение относится к способу сварки деталей из алюминиевых сплавов и может быть использовано в машиностроении, авиастроении, в атомной энергетике, в нефтехимической, газовой и других отраслях промышленности. Выполняют выступы кромок деталей толщиной d от 3,0 до 6,0 мм.

Группа изобретений относится к области обслуживания верхнего строения железнодорожного пути, в частности к способам восстановления рамных и остряковых рельсов типов Р50 и Р65. Способ заключается в определении зон восстановления поверхности рельса, их предварительной механической обработке и электродуговой наплавке с последующей механической обработкой.

Изобретение относится к способу подготовки листа (1) с предварительным покрытием перед его сваркой с другим листом и устройству для его осуществления. Обеспечивают наличие листа (1) с предварительным покрытием, содержащего металлическую подложку (3), имеющую предварительное покрытие по меньшей мере на одной из ее сторон.

Изобретение относится к газонаполненному детектору (30) (варианты) и способу его изготовления. Наружный корпус (40) детектора имеет профиль, в котором свариваемая часть (56) проходит в виде кольцевого фланца в радиально-наружном направлении относительно центральной оси наружного корпуса.

Настоящее изобретение относится к способу обработки азотированного/углеродоазотированного изделия, включающему: подвержение по меньшей мере части изделия первому этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью до тех пор, пока поверхностный слой взятой части не будет преобразован частично или полностью, и до тех пор, пока распределение концентрации азота в зоне диффузии не будет изменено, и подвержение для преобразования поверхностного слоя части, по меньшей мере обработанной посредством лазера, второму этапу, на котором по меньшей мере один лазерный луч перемещают за по меньшей мере один проход над указанной частью, чтобы сделать возможным снижение концентрации азота в нижележащем диффузионном слое.

Изобретение относится к способу ремонта стенки вертикального резервуара, выполненного из стальных листов из низкоуглеродистых и низколегированных сталей, соединенных между собой сварными соединениями. Вставку устанавливают на стенке резервуара с зазором между свариваемыми кромками от 2,5 до 4,5 мм.

Изобретение относится к способу сварки прихваточными швами сварной стальной трубы большого диаметра открытого профиля. Сварку прихваточными швами выполняют непрерывно на кромках (1a) открытой трубы (1) в процессе производства сварной стальной трубы большого диаметра.

Изобретение относится к способу дуговой сварки трубопроводов. Выполняют разделку кромок торцов труб под сварку, сборку труб и предварительный подогрев кромки торцов труб при температуре от 180 до 270°С.

Изобретение относится к способу дуговой сварки тройникового соединения магистрального трубопровода в виде трубы и велдолета. Выполняют технологическое отверстие в трубе.

Изобретение относится к способу изготовления сварного конструктивного элемента и может найти применение при производстве строительных конструктивных элементов и деталей корпусов автомобиля. Соединение стальных элементов осуществляют дуговой сваркой в атмосфере защитного газа.

Изобретение может быть использовано при изготовлении металлоконструкций из конструкционных коррозионностойких сталей. По первому варианту изобретения способ дуговой сварки осуществляют порошковой проволокой с заданным составом шихты при сварочном токе 110–200 А и напряжении 15–40 В, при этом подачу проволоки осуществляют со скоростью 2–6 м/мин, а вылет проволоки поддерживают в диапазоне 10–30 мм.
Наверх