Способ получения антикоррозионного металлополимерного покрытия

Изобретение относится к способам получения антикоррозионного металлополимерного покрытия и может быть использовано в нефтегазовой отрасли, в частности на металлических рабочих поверхностях колонного и емкостного оборудования, аппаратов и т.п., применяемых при добыче, транспортировке и переработке природного газа и других углеводородов. Способ получения антикоррозионного металлополимерного покрытия включает последовательное нанесение на подготовленную абразивно-струйной обработкой металлическую поверхность методом электродуговой металлизации металлического слоя и последующее нанесение поверхностного полимерного покрытия, при этом сначала наносят металлический слой из коррозионно-стойкого металла или сплава толщиной 100-1000 мкм, затем металлизационную струю отключают и наносят поверхностный полимерный слой покрытия толщиной 50-200 мкм, при этом полимер наносят в виде жидкости, а временной промежуток между нанесением металлического и полимерного слоев составляет 3-30 минут. Изобретение направлено на повышение эксплуатационных свойств покрытий за счет увеличения их антикоррозионной стойкости и проведения процесса нанесения металлополимерного покрытия в одном технологическом цикле. 1 пр.

 

Изобретение относится к способам получения антикоррозионного металлополимерного покрытия и может применяться в нефтегазовой отрасли, в частности на металлических рабочих поверхностях колонного и емкостного оборудования, аппаратов и т.п., применяемых при добыче, транспортировке и переработке природного газа и других углеводородов.

На металлических рабочих поверхностях промышленного оборудования в нефтегазовой отрасли наблюдаются значительные коррозионные повреждения. Это связано с различным агрессивным воздействием среды эксплуатации при работе оборудования. Для принятия мер по снижению коррозионного воздействия, а соответственно, и снижения сроков межремонтных периодов оборудования необходимо применение антикоррозионного металлополимерного покрытия.

В качестве ближайшего аналога предлагается патент RU 2715827 C1, С23С 4/12, опубликовано 03.03.2020, Бюл. №7. Способ получения антикоррозионного металлполимерного покрытия, описанный в ближайшем аналоге, включает в себя последовательное нанесение на подготовленную способом абразивно-струйной обработки металлическую поверхность, способом электродуговой металлизации металлического слоя и поверхностного полимерного покрытия.

Заявляемый способ получения антикоррозионного металлополимерного покрытия включает нанесение на металлическую поверхность способом электродугового напыления антикоррозионного металлического слоя покрытия с последующим нанесением поверхностного покрытия из жидкого полимерного материала в виде суспензии или дисперсии.

Задачей заявляемого технического решения является разработка способа получения покрытия с высокой антикоррозионной способностью на металлической поверхности, относительно невысокую стоимость и широкие функциональные возможности.

Технический эффект поставленной задачи состоит в:

- создании повышенной антикоррозионной защиты за счет совместного сочетания антикоррозионных свойств металлического покрытия и поверхностного полимерного покрытия,

- реализации создания антикоррозионного металлополимерного покрытия с последовательным беспрерывным нанесением металлического и полимерного слоев покрытия в рамках одного технологического процесса,

- отсутствии ограничений по площади нанесения,

- понижении энергозатрат на реализацию способа (не требуется дополнительная термообработка),

- повышении эксплуатационных характеристик создаваемых покрытий (минимальный промежуток времени между последовательным беспрерывным нанесением металлического и полимерного слоев покрытия способствует лучшему проникновению и соединению полимерного слоя с металлическим из-за отсутствия окислов и загрязнений металлического слоя, а также увеличенной активации за счет нагретой поверхности металлического слоя).

Технический результат достигается тем, что сначала наносят металлический слой из коррозионностойкого металла или сплава толщиной 100-1000 мкм, затем металлизационную струю отключают и наносят поверхностный полимерный слой покрытия толщиной 50-200 мкм, при этом полимер наносят в виде жидкости, а временной промежуток между нанесением металлического и полимерного слоев составляет 0-30 минут.

Минимальный временной промежуток между нанесением металлического и полимерного слоев выбран 3 минуты с учетом того, что необходимо выполнить переключение аппаратуры с металлизационного напыления на напыление полимерного материала, при этом металлическая поверхность сохраняет температуру, необходимую для плавного высыхания полимерного слоя покрытия, нанесение полимерного покрытия сразу непосредственно после нанесения металлического слоя покрытия может привести к перегреву жидкого полимерного материала, испарению и растрескиванию.

Максимальный временной промежуток между нанесением металлического и полимерного слоев выбран 30 минут с учетом того, что при большем временном промежутке температура металлического покрытия снизится и ожидаемого эффекта - плавного высыхания полимерного слоя не получится.

При нанесении полимерного покрытия в обозначенном временном промежутке (0-30 мин) после нанесения металлического слоя покрытия не требуется дополнительное время для ввода металлополимерного покрытия в эксплуатацию, то есть металлополимерное покрытие после его нанесения на металлическую поверхность практически сразу готово к использованию.

Последующая термообработка для высыхания полимерного покрытия не требуется, так как достаточно теплоты нанесенного металлического покрытия.

Металлический слой из коррозионностойкого металла или сплава наносят для обеспечения механических, антикоррозионных свойств и адгезии к металлической поверхности порядка 5-20 МПа.

Нанесение полимерного покрытия проводят на только что нанесенный, еще в нагретом состоянии металлический слой без перерыва или с минимальным промежутком времени, что способствует лучшему проникновению и соединению полимерного слоя с металлическим из-за отсутствия окислов и загрязнений металлического слоя, а также увеличенной активации за счет теплоты поверхности металлического слоя.

Отличительным признаком заявляемого технического решения является:

- последовательное беспрерывное или с минимальным промежутком времени нанесение полимерного слоя покрытия на нагретое в процессе нанесения металлическое покрытие, что способствует лучшему проникновению и соединению полимерного слоя с металлическим из-за отсутствия окислов и загрязнений металлического слоя, а также увеличенной активации за счет нагретой поверхности металлического слоя;

- теплота от нанесенного металлического покрытия обеспечивает быстрое и плавное высыхание полимерного покрытия, что позволяет использовать антикоррозионное металлополимерное покрытие сразу после его нанесения;

- реализация создания антикоррозионного металлополимерного покрытия, путем последовательного беспрерывного нанесения металлического и полимерного слоев покрытия в рамках одного технологического процесса с использованием одного оборудования.

Способ получения антикоррозионного металлополимерного покрытия включает: нанесение на подготовленную металлическую поверхность способом электродугового напыления металлического слоя из коррозионностойкого металла или сплава для обеспечения механических, антикоррозионных свойств и адгезии к металлической поверхности;

- нанесение поверхностного полимерного слоя покрытия беспрерывно или с минимальным промежутком времени между нанесением металлического и полимерного слоев. Последующая термообработка не требуется, так как для высыхания полимерного покрытия достаточно теплоты нанесенного металлического покрытия.

Для нанесения антикоррозионного металлополимерного покрытия на металлическую поверхность применяется технология электродуговой металлизации. Нанесение слоев выполняется последовательно без перерыва или с минимальным промежутком времени между нанесением металлического и полимерного слоев при использовании установки электродуговой металлизации, укомплектованной дополнительным комплектом для распыления полимерного материала.

Согласно заявляемому способу на металлическую поверхность, подготовленную абразивно-струйной обработкой, наносится способом электродугового напыления металлический слой из коррозионностойкого металла или сплава для обеспечения механических, антикоррозионных свойств и адгезии к металлической поверхности. Далее нанесение металлического слоя прекращается и без перерыва или с минимальным промежутком времени из распылительных головок, установленных на пистолете металлизатора, запускается распыление жидкого полимерного материала в виде суспензии или дисперсии на нагретое нанесенное металлическое покрытие и выполняется нанесение поверхностного полимерного покрытия. При этом поры металлического слоя заполняются полимерным материалом, который на поверхности образует сплошной защитный слой.

Пример 1

Металлическое покрытие напыляют с использованием электродугового металлизатора Thermach на образцы из стали 3. Поверхность под нанесение покрытия готовят абразивно-струйной обработкой. В качестве материалов для металлического слоя используют проволоку Монель НМЖМц 28-2,5-1,5 диаметром 2,5 мм, для полимерного покрытия - Анакрол 2501. Давление воздуха на входе в металлизатор 0,45-0,55 МПа, дистанция напыления 150-200 мм, ток дуги 200-250 А, напряжение 20-25 В.

Полимерное покрытие наносится при следующих параметрах: давление воздуха 0,3-0,4 МПа, дистанция напыления 150-300 мм.

Предлагаемое покрытие и технология его создания отличаются технологичностью, невысокой стоимостью, доступностью технологического оборудования, возможностью нанесения на различные поверхности, в том числе на поверхности объектов, находящихся в эксплуатации без их демонтажа. Полученные покрытия отличаются долговечностью и повышенной коррозионной стойкостью поверхностного слоя.

Способ получения антикоррозионного металлополимерного покрытия, включающий последовательное нанесение на подготовленную абразивно-струйной обработкой металлическую поверхность методом электродуговой металлизации металлического слоя и последующее нанесение поверхностного полимерного покрытия, отличающийся тем, что сначала наносят металлический слой из коррозионно-стойкого металла или сплава толщиной 100-1000 мкм, затем металлизационную струю отключают и наносят поверхностный полимерный слой покрытия толщиной 50-200 мкм, при этом полимер наносят в виде жидкости, а временной промежуток между нанесением металлического и полимерного слоев составляет 3-30 минут.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к антифрикционным бронзовым материалам, и может быть использовано в горнорудной промышленности, машиностроении, энергетике для тяжелонагруженных узлов скольжения. Порошковая проволока для получения в виде покрытия композитной антифрикционной бронзы состоит из медной оболочки и сердечника, выполненного из шихты, содержащей порошки алюминия, железа, никеля, кремния и марганца, при следующем соотношении компонентов в порошковой проволоке, мас.%: железо 11-14, никель 5-9, алюминий 0,2-0,5, кремний 0,7-1,3, марганец 0,2-0,4, медная оболочка - остальное.

Изобретение относится к области металлургии и машиностроения и может быть использовано для восстановления и упрочнения деталей нефтегазового машиностроения. Способ получения стойкого композиционного покрытия на деталях нефтегазового машиностроения, включающий холодное газопламенное напыление, отличающийся тем, что используют порошковую композицию, содержащую по объему: 59,05% Ni, 28,86% W, 5,33% Cr, 1,74% Fe, 1,18% B, 2,45% Si, 1,39% C, c дисперсностью 15-30 мкм, напыление ведут в контролируемой среде кислорода и ацетилена с формированием армированной никелевой основы, содержащей фазу γ-Ni, с равномерным распределением дисперсных карбидных включений WC, а также карбидов и боридов Cr23C6, Cr7C3, Cr3W3C, Cr5B3, B4C, являющихся устойчивыми фазами, повышающими микротвердость и износостойкость покрытия.

Изобретение относится к устройствам детонационного напыления и способам их применения, обеспечивающим эффективное нанесение защитных покрытий на поверхность изделий. Устройство детонационного напыления покрытий на поверхность обрабатываемых деталей включает ствол с газораспределителем и средством воспламенения и по крайней мере один дозатор для подачи порошка, причем ствол содержит казенную секцию и дульную секцию, выполненные в виде осесимметричного канала, при этом дульная секция имеет выходное отверстие и выполнена таким образом, что включает участок, расширяющийся в направлении движения напыляемого порошка.

Изобретение относится к области плазменной техники. Технический результат - исключение зон повышенного давления и разряжения газовой смеси, обеспечение однородности потока плазмы, снижение эрозии на электроде и на сопле, улучшение ресурсных характеристик плазменной горелки в виде надежности и износостойкости.

Изобретение относится к области газотермического напыления, а именно к способам плазменного напыления покрытий на сложнопрофильные поверхности деталей машин. Способ плазменного напыления покрытия на рабочие поверхности шнека включает предварительную обработку поверхностей шнека, обезжиривание и напыление порошкообразного материала.

Изобретение относится к области машино- и приборостроения, а именно к технологиям формирования высокопористых металлооксидных покрытий на титановых изделиях, в том числе медицинского назначения. Способ формирования металлооксидных пористых покрытий на титановых изделиях включает воздушно-абразивную обработку, очистку от технологических загрязнений, электроплазменное напыление порошка гидрида титана дисперсностью 120-150 мкм с дистанции 120-150 мм, при токе дуги плазматрона - 350±10 А и мощности не более 12,5 кВт, затем титановое изделие с покрытием подвергают индукционному нагреву до 750-1150°С в воздушной атмосфере при нормальном давлении, частоте тока 60±10 кГц и удельной потребляемой электрической мощности 30-45 кВт/кг с последующей выдержкой в течение 120-300 с и охлаждению на воздухе до комнатной температуры.

Изобретение относится к способу аддитивного производства металлических изделий. Осуществляют последовательное послойное построение изделия из базового материала в соответствии с созданной трехмерной моделью изделия.

Изобретение относится к способу электровзрывного напыления биоинертного молибденового покрытия на имплантаты из титановых сплавов и может быть использовано в медицинской технике, в травматологии и ортопедии. Способ включает электрический взрыв молибденовой фольги массой 50-500 мг, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности имплантата из титанового сплава при поглощаемой плотности мощности 1,5-1,8 ГВт/м2, осаждение на поверхность продуктов взрыва и формирование на ней биоинертного покрытия на основе молибдена.

Изобретение относится к области металлургии, в частности к способам получения теплозащитных износостойких покрытий на деталях из чугуна или стали, и может быть использовано для повышения долговечности и износостойкости деталей цилиндропоршневой группы автотракторной техники. Способ нанесения теплозащитного износостойкого покрытия на детали из чугуна и стали включает плазменное напыление подслоя состава Co-Cr-Al-Y и последующее напыление керметной композиции из механической порошковой смеси, содержащей, мас.%: нихром 20-30, диоксид циркония, стабилизированный оксидом иттрия, 45-35, оксид алюминия 20-15, молибден 5-10, карбид хрома 5, карбид вольфрама 5, при этом перед плазменным напылением проводят абразивно-струйную обработку поверхности детали карбидом кремния с размером частиц 1,5 мм.

Изобретение относится к плазмотронам для наплавки внутренней поверхности порошковым материалом. Плазмотрон содержит охлаждаемый катодный узел с каналами для подачи плазмообразующего газа, изолятор, анодный узел с охлаждаемым плазмообразующим, защитным соплом, который содержит каналы и полости для подачи и равномерного распределения транспортирующего и защитного газов.

Изобретение относится к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности изделий, работающих в условиях высокотемпературной газовой коррозии при циклических нагревах (теплосменах). Порошковая проволока состоит из стальной оболочки и сердечника, выполненного из шихты, содержащего, мас.%: алюминий 15,0-20,0, хром 2,0-6,0, титан 0,5-1,5, иттрий 0,5-3,0, железо - основа.
Наверх