Способ получения карбида кремния


C01P2004/64 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2789998:

федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" (RU)

Изобретение относится к производству карбида кремния, который может быть использован для получения керамики, абразивного инструмента, высокотемпературных нагревательных элементов и катализаторов. Способ получения карбида кремния включает подготовку шихты из кремнийсодержащего и углеродсодержащего компонентов, загрузку шихты и нагрев шихты. В качестве кремнийсодержащего компонента используют кремниевую кислоту H2SiO3. В качестве углеродсодержащего компонента используют отход производства кремния – углеродсодержащее сырье, включающее микросилику. При этом соотношение по массе углерода к кремнию выдерживают от 1,25:1 до 1,3:1. Соотношение по массе углерода к кремнию в углеродсодержащем сырье составляет от 2,17:1 до 2,64:1. После подготовки шихты проводят ее термообработку в вакуумной печи при давлении от 0,030 до 0,040 технических атмосфер и температуре от 1450 до 1650 °С в течение от 1 до 2 ч. Изобретение позволяет повысить выход карбида кремния и его чистоту, снизить продолжительность термообработки, упростить технологический процесс. 1 ил., 5 пр.

 

Изобретение относится к неорганической химии, в частности к способам получения карбида кремния, а именно 3С - кубического (β - SiC) карбида кремния, который может быть использован для получения керамики, абразивного инструмента, высокотемпературных нагревательных элементов и катализаторов.

Известен способ получения нанопорошка карбида кремния (Патент РФ №2327638, опубл. 27.06.2008), включающий введение в поток азотной плазмы порошка кремнезема, газообразного углеводорода в сочетании с водородсодержащим газом, их смешивание, причем в качестве порошка кремнезема используют микрокремнеземы, а в качестве водородсодержащего газа - аммиак, вводимый с газообразным углеводородом в мольном соотношении углерода и аммиака 1:(1,0-1,5) при температуре выше 5500°К, продукты взаимодействия охлаждают на первой стадии до температуры от 2800 до 3200оК, а затем до температуры 1000оК, после чего проводят пассивацию парами метановой кислоты, вводимой в поток при мольном соотношении кремния и метановой кислоты 1:(0,05-0,15).

Недостатком известного способа является невысокая чистота получаемого карбида кремния, поскольку при реализации способа происходит загрязнение получаемого продукта ионами тяжелых металлов (тантал, гафний, медь). Кроме того, недостатком является высокие температуры процесса получения карбида кремния (5500оК).

Известен способ получения карбида кремния (Патент США №6022515, опубл. 08.02.2000), включающий взаимодействие в печи при температуре от 1500 до 2300°С приблизительных стехиометрических количеств диоксида кремния и источника углерода, включающий первую стадию, на которой диоксид кремния и источник углерода непрерывно подают в печь, где они реагируют между собой при температуре от 1500 до 1800°С с образованием бета-карбида кремния, и вторую стадию, на которой образованный бета-карбид кремния непрерывно извлекают из указанной печи и преобразуют в альфа-карбид кремния путем термообработки при температуре от 1800 до 2300°C.

Недостатками способа являются высокие температуры процесса до 2300°С, а также то, что процесс осуществим лишь в реакторах небольшого объема, с низким выходом годного продукта, не более 75% и его низкой чистотой.

Известен способ получения карбида кремния (патент США №3485591, опубл. 23.12.1969), по которому частицы оксида кремния и углерода вводят в поток индуцированной плазмы, при этом оксид кремния испаряется в плазме, и инициируется реакция с углеродистым материалом, причем температура реакции взаимодействия поддерживается в диапазоне от 2200оC до 2700оC.

Недостатком известного способа является сложность его реализации и высокая энергоемкость процесса, вследствие применения в способе высоких температур до 2700оC.

Известен способ получения карбида кремния (авторское свидетельство СССР №1730035, опубл. 30.04.1992), включающий приготовление шихты из мелкозернистого буроугольного полукокса и аморфной ультрадисперсной пыли сухой газоочистки производства ферросилиция, причем соотношение кокса к кремнеземсодержащей пыли составляет от 0,55 до 0,6 по массе, гранулирование полученной шихты производят в присутствии от 15 до 25% по массе связующего, в качестве которого используют водный раствор лигносульфонатов или жидкого стекла при концентрации последних в растворе от 5 до 50% масс. Гранулированную шихту подвергают термообработке в электропечах.

Недостатком известного способа является низкий выход продукта от 79 до 86%, при этом получаемый карбид кремния характеризуется низкой чистотой.

Известен способ получения карбида кремния из отхода производства кремния (патент РФ № 2627428, опубл. 08.08.2017), включающий в себя дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение восстановительной плавки, когда вначале, вокруг керна, загружают слой шихты, содержащей кварцит фракцией от 6 до 10 мм, и затем следующим слоем загружают шихту, содержащую кварцевый песок и/или кварцит фракцией от 0,3 до 6,0 мм, после чего в верхнюю часть печи и на периферию загружают слой шихты, содержащий кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем фракцией менее 0,22 мм.

Недостатками известного способа являются низкая чистота и невысокий выход конечного продукта, которые являются следствием следующих процессов: образующийся в качестве промежуточного продукта в процессе карботермического восстановления монооксид кремния SiO, который всегда находится в отходах кремниевого производства, не успевает полностью прореагировать и в значительных количествах уносится с печными газами, вызывая потери кремния и загрязняя окружающую среду; когда в интервале температур от 1800 до 2000°С происходит разложение карбида кремния на кремний и углерод, что также увеличивает потери карбида кремния, который загрязнен примесями углерода, оксида кремния, кварц, кристаллит и т.д. с выходом годного 15-20%.

Известен способ получения карбида кремния (патент РФ № 2642660, опубл. 25.01.2018), принятый за прототип, включающий приготовление шихты из кремнийсодержащего и углеродсодержащего компонентов, загрузку шихты, нагрев шихты, причем в качестве кремнийсодержащего компонента используют нанопорошок общей формулы SiHhOz, где h=0 или 2; z=1, 2, 3 или смесь нанопорошков соединений кремния в равных долях, в качестве углеродсодержащего компонента используют углевод общей формулы Cn(H2O)m, где n≥12; m=n-1 или многоатомный спирт общей формулы CnH2n+2On, где n≥2, или альдегидные либо кетонные производные многоатомных спиртов общей формулы (СН2O)n, где n≥3, или их смеси в равных долях; при весовом соотношении в пересчете на кремний и углерод Si:С=1:(1,04-1,4); приготовление шихты ведут в деионизованной воде от 15 до 20% к реакционному объему, а нагрев шихты осуществляют ступенчато в три стадии: до температуры от 145 до 195°С с выдержкой в течение от 1,5 до 3 часов; до температуры от 800 до 1000°С с выдержкой в течение от 0,4 до 1 часа и до температуры от 1450 до 1650°С с выдержкой в течение от 1 до 1,5 часов.

Недостатком способа является низкий выход продукта от 80 до 85%, высокая продолжительность операций термообработки, а также необходимость длительной очистки полученного продукта, связанной с переводом β - политипа при нагревании и длительной выдержке при температуре более 1700°С, что приводит к вводу дополнительных технологических операций.

Технический результат заключается в повышении выхода карбида кремния высокой чистоты при снижении продолжительности операций термообработки и упрощении технологического процесса.

Технический результат достигается тем, что в качестве кремнийсодержащего компонента используют кремниевую кислоту H2SiO3, а в качестве углеродсодержащего компонента используют отход производства кремния - углеродсодержащее сырье, включающее микросилику, при этом соотношение по массе углерода к кремнию в выдерживают от 1,25:1 до 1,3:1 при соотношении углерода к кремнию в углеродсодержащее сырье от 2,17:1 до 2,64:1, а после подготовки шихты проводят ее последующую термообработку в вакуумной печи при давлении от 0,030 технических атмосфер до 0,040 технических атмосфер и температуре от 1450 до 1650оС, в течение от 1 до 2 часов.

Способ получения карбида кремния поясняется следующими фигурами:

Фиг. 1 - Изображение структуры карбида кремния.

Способ осуществляется следующим образом. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику, в качестве углеродсодержащего компонента, и различные модификации кремниевой кислоты H2SiO3, в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают от 1,25:1 до 1,3:1 при соотношении углерода к кремнию в углеродсодержащем сырье от 2,17:1 до 2,64:1. Выбранный состав шихты обеспечивает получение карбида кремния высокой чистоты, при этом упрощая способ его получения, поскольку углеродсодержащее сырье, включающее микросилику является избыточным отходом кремниевого производства, а кремниевые кислоты широко применяются в различных отраслях народного хозяйства. В процессе реализации способа происходит разложения молекул кремниевых кислот с образованием высокодисперсного оксида кремния, который при заданных условиях в вакууме вступает во взаимодействие с частицами углерода углеродсодержащего компонента с образованием карбида кремния. Выбранное соотношение по массе углерода к кремнию выдерживают от 1,25:1 до 1,3:1 при соотношении углерода к кремнию в углеродсодержащем сырье от 2,17:1 до 2,64:1, что обеспечивает получение продукта необходимого стехиометрического состава высокой чистоты. При соотношении менее 1,25:1 не достигается технический результат, поскольку в этом случае имеет место избыток кремния, при соотношении более 1,3:1 не достигается технический результат, поскольку в этом случае имеет место избыток углерода. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления от 0,030 до 0,040 технических атмосфер и нагревают до температуры от 1450 до 1650оС. Вакуумирование печи до давления от 0,030 технических атмосфер до 0,040 технических атмосфер проводят с целью создания инертной атмосферы с минимальным содержанием газов - азота, кислорода и др., при этом получается продукт высокой химической чистоты. При давлении менее 0,030 технических атмосфер способ проводить нецелесообразно ввиду возможного испарения компонентов и промежуточных продуктов реакции. При давлении более 0,040 технических атмосфер возможно окисление продукта реакции (карбида кремния) и углерода. Температуры, до которых нагревают вакуумную печь, проводя термическую обработку, позволяют обеспечить получение низкотемпературной формы карбида кремния (3С - кубическая (β - SiC). При температуре менее 1450оС не обеспечивается технический результат, поскольку в этом случае процесс характеризуется малой скоростью, в результате чего не образуется заметных количеств карбида кремния. При температуре более 1650оС проведение процесса характеризуется высоким расходом электроэнергии и повышенной продолжительностью процесса. После нагрева проводят выдержку при заданных условиях в течение от 1 до 2 часов, тем самым обеспечивая термообработку. Заданный диапазон времени выдержки, объясняется необходимым временем, которое необходимо для протекания реакции, и повышенным выходом карбида кремния высокой чистоты. При времени выдержки менее 1 часа не достигается заявленный технический результат, так как недостаточно времени для протекания реакции образования карбида кремния, а время выдержки более 2 часов нецелесообразно из-за повышенного расхода электроэнергии и повышенной положительности процесса. После проведения выдержки проводят охлаждение полученного продукта, а затем проводят анализ структуры и морфологии с помощью сканирующего электронного микроскопа Tescan Vega и микрорентгеноспектральный анализ химического состава с помощью рентгеновского энергодисперсионного микроанализатора Aztec X-Act (Oxford Instruments).

Способ поясняется следующими примерами.

Пример 1. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику - 1000 грамм, в качестве углеродсодержащего компонента, и кремниевую кислоту H2SiO3 - 460 грамм, в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают 1,29:1, при соотношении углерода к кремнию в углеродсодержащем сырье 2,17:1. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления 0,030 технических атмосфер, нагревают до температуры 1450оС, после чего проводят выдержку при заданных условиях в течение 1 часа, тем самым обеспечивая термообработку.

Технологические условия обеспечивают получение карбида кремния с выходом 95%, чистотой 99,99 %.

Пример 2. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику - 1000 грамм, в качестве углеродсодержащего компонента, и кремниевую кислоту H2SiO3 - 379 грамм, в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают 1,30:1, при соотношении углерода к кремнию в углеродсодержащем сырье 2,64:1. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления 0,040 технических атмосфер, нагревают до температуры 1650оС, после чего проводят выдержку при заданных условиях в течение 2 часов, тем самым обеспечивая термообработку.

Технологические условия обеспечивают получение карбида кремния с выходом 99%, чистотой 99,99%.

Пример 3. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику - 1000 грамм, в качестве углеродсодержащего компонента, и кремниевую кислоту H2SiO3 - 418 грамм, в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают 1,25:1 при соотношении углерода к кремнию в углеродсодержащем сырье 2,39:1. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления 0,035 технических атмосфер, нагревают до температуры 1550оС, после чего проводят выдержку при заданных условиях в течение 1,5 часов, тем самым обеспечивая термообработку.

Технологические условия обеспечивают получение карбида кремния с выходом 95%, чистотой 99,99%.

Использование в качестве кремнийсодержащего компонента кремниевой кислоты в виде силикагеля или аэросила во всех вышеприведённых примерах приводит к получению аналогичных результатов.

В результате анализов также установлено, что полученный карбид кремния имеет кубическую сингонию, размеры частиц не превышают 80-100 нм (Фиг. 1).

Пример 4. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику - 1000 грамм, в качестве углеродсодержащего компонента, и кремниевую кислоту H2SiO3 - 555 грамм в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают 1,10:1, при соотношении углерода к кремнию в углеродсодержащем сырье 1,8:1. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления 0,025 технических атмосфер, нагревают до температуры 1400оС, после чего проводят выдержку при заданных условиях в течение 50 минут, тем самым обеспечивая термообработку.

Технологические условия не обеспечивают качественный выход карбида кремния высокой чистоты.

Пример 5. На этапе подготовки шихты в графитовый тигель вводят углеродсодержащее сырье, включающее микросилику - 1000 грамм, в качестве углеродсодержащего компонента, и кремниевую кислоту H2SiO3 - 310 грамм в качестве кремнийсодержащего компонента, после чего компоненты перемешивают до однородной массы, при этом соотношение по массе углерода к кремнию выдерживают 1,40:1, при соотношении углерода к кремнию в углеродсодержащем сырье 3,11:1. Затем графитовый тигель с подготовленной шихтой закрывают крышкой, например, из графитового войлока, графлекса и графита в виде пластины, и загружают в печь, вакуумируют до давления 0,045 технических атмосфер, нагревают до температуры 1700оС, после чего проводят выдержку при заданных условиях в течение 2,5 часов, тем самым обеспечивая термообработку.

Технологические условия не обеспечивают качественный выход карбида кремния высокой чистоты.

Таким образом, предложенный способ получения карбида кремния позволяет повысить выход карбида кремния до 95-99%, и получить наноразмерный продукт 40 - 60 нм, с чистотой до 99,99%, при этом снижается продолжительность операций термообработки до 2-х часов и упрощается технологический процесс.

Способ получения карбида кремния, включающий подготовку шихты из кремнийсодержащего и углеродсодержащего компонентов, загрузку шихты и нагрев шихты, отличающийся тем, что в качестве кремнийсодержащего компонента используют кремниевую кислоту H2SiO3, а в качестве углеродсодержащего компонента используют отход производства кремния – углеродсодержащее сырье, включающее микросилику, при этом соотношение по массе углерода к кремнию выдерживают от 1,25:1 до 1,3:1, а соотношение по массе углерода к кремнию в углеродсодержащем сырье составляет от 2,17:1 до 2,64:1, после подготовки шихты проводят ее термообработку в вакуумной печи при давлении от 0,030 до 0,040 технических атмосфер и температуре от 1450 до 1650 °С в течение от 1 до 2 ч.



 

Похожие патенты:

Изобретение относится к технологии выращивания монокристаллов карбида кремния с проводимостью n-типа сублимацией порошка карбида кремния. Способ включает размещение в тигле 4 монокристаллической подложки 2 карбида кремния параллельно поверхности порошка 3 поликристаллического карбида кремния и нагревание порошка 3 карбида кремния в атмосфере инертного газа с помощью двух коаксиально расположенных нагревателей 5, 6, один из которых 6 расположен с внешней стороны тигля 4, а второй 5 – в центральной части тигля 4 в зоне размещения поликристаллического порошка 3 карбида кремния, при этом верхний уровень Х1 поликристаллического порошка 3 карбида кремния располагают выше верхнего торца нагревателя 5, расположенного в центральной части тигля 4, устанавливают подложку 2 на расстоянии от поверхности порошка 3 карбида кремния ΔХ=Х1-Х2=(0,10÷0,20) D, где D – диаметр подложки 2, мм, проводят термическую обработку порошка 3 карбида кремния в атмосфере инертного газа при давлении 550÷700 мм рт.ст.

Изобретение относится к технологии получения монокристаллического карбида кремния SiC – широкозонного полупроводникового материала, используемого в силовой электронике и для создания на его основе интегральных микросхем. Способ получения монокристаллического SiC политипа 4H заключается в размещении ростового тигля, состоящего из верхней 1 и нижней 2 частей, с помещенными внутри него источником карбида кремния 5, пластиной затравочного монокристалла SiC 4 с формообразователем 6 в пространстве камеры роста, нагреве ростового тигля в инертной газовой атмосфере до температур, достаточных для сублимации источника карбида кремния 5 при наличии осевых градиентов температур и переноса летучих кремнийсодержащих соединений от источника карбида кремния 5 к пластине затравочного монокристалла 4, и росте слитка монокристаллического SiC в присутствии соединения церия, в качестве которого используют твердый раствор карбидов тантала и церия с содержанием церия от 0,5 до 1,5 мас.%, который наносят в виде пленки на внутренние поверхности ростового тигля 1, 2 или внутренние поверхности формообразователя 6.

Изобретение относится к области оборудования полупроводникового производства и может быть использовано для формирования структур датчиков физических величин и преобразователей энергии бета-излучения в электрическую форму. CVD-реактор синтеза гетероэпитаксиальных пленок карбида кремния на кремниевых подложках путем химического осаждения из газовой фазы включает внутреннюю кварцевую трубу 1 с коаксиально установленной кварцевой наружной трубой 8, с размещенным внутри двухзонным, выполненным из графита, покрытого карбидом кремния, контейнером 2 с подложкодержателями 4, нагревателем 20 индукционного типа и системой 16, 15 подвода/отвода водорода в качестве газа-носителя, при этом контейнер 2 установлен на полом пьедестале 6, направляющем поток водорода в первую зону, между контейнером 2 и пьедесталом 6 установлена разогреваемая ВЧ-полем индуктора металлическая пластина-диск 7 с отверстиями для прохода потока водорода, первая зона указанного контейнера 2 по ходу газа-носителя включает основание 3 в качестве источника углерода, выполнена без тепловых экранов и предназначена для предварительного подогрева водорода и протекания реакции углерода с водородом в сквозных каналах основания 3 с последующим транспортным переносом полученных газообразных углеводородов во вторую зону, включающую сборку подложкодержателей 4 с подложками и тепловыми экранами 5, причем обе зоны сообщаются между собой отверстиями для переноса углеводородов потоком водорода над кремниевыми подложками.

Изобретение относится к технологии выращивания эпитаксиального 3C-SiC на ориентированном монокристаллическом кремнии. Способ включает предоставление монокристаллической кремниевой подложки 2, имеющей диаметр по меньшей мере 100 мм, в реакторе 7 химического осаждения из газовой фазы с холодными стенками, содержащем кварцевую камеру; нагревание подложки до температуры, равной или большей чем 700°C и равной или меньшей чем 1200°C, с использованием внешних нагревателей 9, которые представляют собой инфракрасные лампы; введение газовой смеси 33 в реактор, тогда как подложка находится при данной температуре, причем газовая смесь содержит прекурсор 16 источника кремния, прекурсор 18 источника углерода, который отличается от прекурсора 16 источника кремния, и несущий газ 20, таким образом, чтобы осадить эпитаксиальный слой 3C-SiC на монокристаллический кремний, при этом прекурсор 16 источника кремния содержит силан или содержащий хлор силан, а прекурсор 18 источника углерода содержит содержащий метил силан.

Изобретение относится к микроэлектронике и касается технологии получения монокристаллов SiC - широко распространенного материала, используемого при изготовлении интегральных микросхем, в частности, методом высокотемпературного физического газового транспорта. Способ получения монокристаллического SiC заключаается в том, что в ростовую камеру 1, снабженную теплоизоляционным экраном 2 с пирометрическим отверстием 3, помещают ростовой тигель 4 с размещенными внутри него напротив друг друга источником 16 из порошка карбида кремния и пластиной 8 затравочного монокристалла карбида кремния SiC, создают в ростовом тигле 4 поля рабочих температур с осевым градиентом в направлении от пластины 8 затравочного монокристалла к источнику 16, осуществляют испарение источника 16 с последующей кристаллизацией карбида кремния 21 на поверхности пластины 8 затравочного монокристалла за счет воздействия нагрева камеры роста 1 нагревателем и охлаждения пластины 8 затравочного монокристалла через пирометрическое отверстие 3, при этом в процессе роста используют дополнительный теплоизоляционный экран 19, сформированный путем намотки листов огнеупорного материала на внешней боковой стенке ростового тигля 4, а также обеспечивают регулируемое истечение кремнийсодержащих летучих соединений, образующихся при испарении источника 16 из ростового тигля 4 в количестве от 20 до 50% от массы выращенного слитка 21 в пересчете на карбид кремния, через отверстия 12 и зазоры 15, расположенные на уровне края фронта кристаллизации, или через упомянутые отверстия и проточку, выполненную на уровне края пластины 8 затравочного монокристалла, путем изменения суммарного сечения отверстий 12, и/или зазора 15, и/или ширины проточки.

Изобретение относится к технологии получения подложки из поликристаллического карбида кремния. Способ состоит из этапов предоставления покрывающих слоев 1b, каждый из которых содержит оксид кремния, нитрид кремния, карбонитрид кремния или силицид металла, выбранного из группы, состоящей из никеля, кобальта, молибдена и вольфрама, или покрывающих слоев, каждый из которых изготовлен из фосфоросиликатного стекла (PSG) или борофосфоросиликатного стекла (BPSG), имеющего свойства текучести допированного P2O5 или B2O3 и P2O5, на обеих поверхностях основной подложки 1a, изготовленной из углерода, кремния или карбида кремния для подготовки поддерживающей подложки 1, имеющей покрывающие слои, каждый из которых имеет гладкую поверхность; формирования пленок 10 поликристаллического карбида кремния на обеих поверхностях поддерживающей подложки 1 осаждением из газовой фазы или выращиванием из жидкой фазы; и химического удаления, по меньшей мере, покрывающих слоев 1b в поддерживающей подложке для отделения пленок поликристаллического карбида кремния 10a, 10b от поддерживающей подложки 1 в состоянии отображения гладкости поверхностей покрывающих слоев 1b на поверхности пленок поликристаллического карбида кремния 10a, 10b, и получения пленок поликристаллического карбида кремния 10a, 10b в качестве подложек из поликристаллического карбида кремния.

Изобретение относится к полупроводниковым структурам карбида кремния. Карбид кремния: материал для радиоизотопного источника энергии, содержащий в своем составе монокристаллическую фазу полупроводниковой структуры карбида кремния в виде пленки, имеющей n- и р-тип проводимости для разделения электронно-дырочных пар, включает в молекулярной структуре карбида кремния элементы: изотоп углерода С12 и дополнительно С14 для преобразования его энергии излучения в электрическую энергию, при этом концентрация радиоизотопа С14 в одном из слоев n- или р-типа проводимости составляет от 5⋅1017 до 1020 см-3.

Изобретение относится к технологии получения составной подложки из SiC с монокристаллическим слоем SiC на поликристаллической подложке из SiC, которая может быть использована при изготовлении мощных полупроводниковых приборов: диодов с барьером Шоттки, pn-диодов, pin-диодов, полевых транзисторов и биполярных транзисторов с изолированным затвором (IGBT), используемых для регулирования питания при высоких температурах, частотах и уровнях мощности, и при выращивании нитрида галлия, алмаза и наноуглеродных тонких пленок.

Изобретение относится к области выращивания слоев нанокристаллического гексагонального карбида кремния (муассанита) и может быть использовано в электронной промышленности. Способ включает перемещение ленты углеродной фольги в горизонтальной плоскости с подачей к ее поверхности расплавленного кремния в динамическом вакууме, скорость перемещения ленты задают в пределах 0,5-3,0 м/мин, а после извлечения ленты с выращенным слоем ее нарезают на мерные полосы, размещают их в печи и нагревают на воздухе до температуры 1050°С в течение 8 часов, при этом перемещение углеродной ленты периодически прерывают с шагом, соответствующим ширине зоны нагрева на 3-5 мин, а затем вновь возобновляют.

Изобретения относятся к химической и полупроводниковой промышленности. Объединяют первую жидкость, включающую кремний, углерод и кислород, со второй жидкостью, содержащей углерод.

Изобретение относится к электротехнике, химической промышленности, нанотехнологии и может быть использовано при изготовлении сенсорных экранов, датчиков ускорения, сейсмографов, систем диагностики состояния конструкций, пьезогенераторов утилизации механической энергии, гибких пьезоактюаторов, а также светодиодов и солнечных элементов.
Наверх