Способ изготовления лопаток газотурбинных двигателей из деформированных заготовок сплава на основе орторомбического алюминида титана

Изобретение относится к металлургии, а именно к обработке давлением интерметаллидных сплавов на основе орторомбического алюминида титана, и может быть использовано в аэрокосмической промышленности для получения изготовления деталей газотурбинных двигателей с регламентированной структурой и заданными механическими свойствами. Способ деформационно-термической обработки заготовок лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана включает штамповку заготовок лопаток при температуре ниже Тпп. Штамповку заготовок лопаток проводят со степенью деформации не менее 50% при температуре ниже Тпп на 50-200°С, после чего осуществляют термическую обработку, включающую две ступени, на первой из которых проводят закалку на воздухе при температуре ниже Тпп на 50-150°С с выдержкой не менее 0,5 часа, а на второй - старение при температуре ниже Тпп на 200-300°С с выдержкой от 1 до 36 часов, где Тпп - температура превращения β↔α2. Обеспечиваются высокие механические свойства сплава на основе орторомбического алюминида титана σ0,220=1000-1300 МПа; σВ20=1150-1400 МПа; δ20=3-8 %; ψ20=3-5%; σ0,2650=1030 МПа; σВ650=1120 МПа; δ650=6 %; ψ650=4%. 2 ил., 7 пр.

 

Изобретение относится к области обработки металлов и сплавов давлением, а именно к технологии обработки давлением интерметаллидных сплавов на основе орторомбического алюминида титана и может быть использовано в аэрокосмической промышленности для получения из этих материалов деталей газотурбинных двигателей с регламентированной структурой и заданными механическими свойствами.

Интерметаллидные сплавы на основе орторомбического алюминида титана обладают такими свойствами как высокая термическая стабильность, высокие удельные прочностные характеристики при достаточном уровне пластичности. Сочетание таких характеристик позволяет применять их в газотурбинных двигателях в качестве деталей с рабочей температурой до 650°С. Однако, сдерживающим фактором для применения данных сплавов является сложность обеспечения баланса между прочностью, пластичностью и вязкостью разрушения при комнатной и рабочей температуре. В данных сплавах в ходе кристаллизации формируются крупные зерна размером до нескольких миллиметров, что затрудняет пластическую деформацию и не позволяет реализовать весь потенциал материала. Хотя в ходе горячей прокатки микроструктура существенно измельчается, однако из-за узкого температурного интервала процесса не удается получить требуемую для обеспечения высокого комплекса свойств структуру. Термическая обработка также не дает возможности в полной мере улучшить механические свойства. Решением данной проблемы может быть применение сочетания изотермической штамповки и термической обработки, что позволяет помимо получения конечной формы изделия сформировать требуемую структуру в заготовках лопаток из интерметаллидных сплавов на основе орторомбического алюминида титана.

На данный момент известно несколько способов обработки интерметаллидных сплавов на основе орторомбического алюминида титана методами горячей деформации.

Известен способ проведения горячей деформации сплава на основе орторомбического алюминида титана Ti-11,4Al-1,31Zr-0,7V-39,9Nb-0,85Mo-0,14Si-0,065C масс. %) с целью получения прутковых заготовок [Патент РФ № RU 2644830 C2 от 26.06.2017 «Способ изготовления прутковых заготовок из сплавов на основе интерметаллида титана с орто – фазой»] включающий нагрев и предварительную деформацию слитка с получением заготовки, промежуточную и окончательную деформацию заготовки и заключительную термообработку, отличающийся тем, что промежуточную деформацию заготовки осуществляют от 2 до 5 осадок со степенью 25-40%, совмещенных с прессованием со степенью 55-70%, при этом нагрев заготовки перед первой из промежуточных деформаций проводят ступенчато до температуры Тпп+(100-200)°С, где Тпп температура β↔α2 превращения с выдержкой 2-3 часа, а каждую последующую из промежуточных деформаций проводят при температуре на 50-100°С ниже предыдущей с выдержкой на 0,5-1 час меньше, чем на предыдущей, а последнюю из промежуточных деформаций проводят при температуре Тпп-(20-50)°С, причем окончательную деформацию заготовки осуществляют со степенью не более 30% при Тпп-(80-120)°С. После деформации заготовку подвергали двухступенчатой термической обработке: 1. нагрев до Т=900°C выдержка 2,5 часа с последующим охлаждением на воздухе до комнатной температуры; 2. нагрев до Т=850°C выдержка 12 часов с последующим охлаждением на воздухе до комнатной температуры. Механические характеристики при T=20°C: σ0,2=1040 МПа; σВ=1110 МПа; δ=7,0 %; ψ=7,5%; при T=650°C: σ0,2=860 МПа; σВ=890 МПа; δ=13,0 %; ψ=25,0%. Недостатком данного способа являются высокие температуры деформации, приводящие к значительным энергозатратам и трудоемкости процесса, а также низкая прочность после термической обработки.

Известен способ проведения горячей деформации сплава на основе орторомбического алюминида титана для получения поковок [Патент РФ № RU 2 520 924 С1 от 27.06.2014 «Способ изготовления поковок дисков из сплава алюминия титана на основе орто – фазы»], заключающийся в многостадийной деформации слитка с подогревами выше, а затем и ниже температуры полиморфного превращения (Тпп) и последующей термической обработке. Кроме того, слиток подвергается предварительной высокотемпературной газостатической обработке выше температуры Тпп. Механические характеристики при T=20°C: σВ~1200 МПа; δ=6-7 %; при T=650°C: σВ~1000 МПа; δ=9-12 %. Недостатком данного способа являются высокие температуры деформации на начальных этапах, что приводит к повышению требований к штамповым материалам и дополнительным затратам на нагрев до более высоких температур.

Известен способ проведения горячей деформации сплава на основе орторомбического алюминида титана ВИТ1 [Патент РФ № RU 2 761 398 C1 от 08.12.2021 «Способ обработки прутков из орто-сплавов титана для получения лопаток компрессора газотурбинного двигателя» с целью повышения механических характеристик, который включает нагрев прутка до 1100°С, плющение со степенью деформации не менее 0,5, повторный нагрев до 1100°С и выдавливание заготовки в закрытом штампе с формированием поковки с замком и пером лопатки. Затем поковку нагревали до 1100°С, подвергали сначала черновой, а затем чистовой штамповке лопаток. После низкого отжига были получены следующие свойства при температуре 20°С: предел прочности σв =1230 МПа; относительное удлинение δ=20,5% и относительное сужение ψ=46,3%. Недостатком данного способа является высокая температура ковки и последующей штамповки, что существенно повышает требования к штамповым материалам и удорожает производство. Кроме того, отсутствуют данные о жаропрочных характеристиках полученного состояния, что не позволяет в полной мере оценить разработанный способ.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Задачей изобретения является обеспечение высокого комплекса механических характеристик заготовок лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана сочетающих в себе высокую прочность и жаропрочность при достаточном уровне низкотемпературной пластичности.

Технический результат изобретения заключается в получении высоких механических свойств заготовок лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана как при комнатной температуре: σ0,220 =1000-1300 МПа; σВ20 =1150-1400 МПа; δ20 =3-8 %; ψ20 =3-5%; так и при рабочей температуре: σ0,2650 =1030 МПа; σВ650 =1120 МПа; δ650 =6 %; ψ650 =4%, за счет заявленного способа изотермической штамповки и последующей термической обработки.

Задача изобретения решается применением предложенного способа изготовления лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана, включающего штамповку лопаток со степенью деформации не менее 50% при температуре ниже Тпп на 50-200°С, где Тпп-температура β↔α2 превращения, термическую обработку, включающую две ступени: закалку на воздухе с температуры ниже Тпп на 50-150°С с выдержкой не менее 0,5 часа и старение при температуре ниже Тпп на 200-300°С с выдержкой от 1 до 36 часов.

Новизна и изобретательский уровень предложенного изобретения заключается в том, что изотермическая штамповка заготовок лопаток и двухстадийная термическая обработка при температуре существенно ниже Тпп, где Тпп температура β↔α2 превращения, обеспечивает высокий комплекс механических характеристик как при комнатной, так и при рабочих температурах сплава ВИТ1.

Осуществление изобретения на примере сплава на основе орторомбического алюминида титана ВИТ1. Температура β↔α2 превращения (Тпп) определена с помощью дифференциально сканирующей калориметрии и составила 1100°С. Штамповку заготовок лопаток проводят при температуре на 50-200°С ниже Тпп со степенью деформации от 50%. После чего заготовки подвергают двухстадийной термической обработке:

- закалка на воздухе с температуры на 50-200°С ниже Тпп, выдержка от 0,5 часа, но не более двух часов, т.к. более длительная выдержка экономически не целесообразна;

- старение при температуре на 200-300°С ниже Тпп, выдержка 1-36 часов, охлаждение с печью.

Изобретение охарактеризовано на следующих изображениях.

Фигура 1 – Микроструктура заготовки сплава ВИТ1 после деформационно-термической и термической обработки по режиму: изотермическая штамповка при T=950°С со степенью деформации 50%, закалка на воздухе с 1000°С, выдержка 1 час; старение при T=800°С, выдержка 6 часов (а - сканирующая электронная микроскопия, б - просвечивающая электронная микроскопия).

Фигура 2 – Таблица «Механические свойства сплава ВИТ1 после изотермической штамповки и термической обработки»

Возможность осуществления изобретения поясняется следующими примерами технологического процесса изотермической штамповки заготовок лопаток из сплава на основе орторомбического алюминида титана ВИТ1. Механические испытания полученных сплавов проводили с использованием следующих установок: универсальная электромеханическая испытательная машина Instron 5882.

Пример 1.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 950°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=1000°С, выдержка 1 час, старение при 800°С, выдержка 6 часов. Микроструктура полученной штамповки представлена на фигуре 1. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 2.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 1050°С со степенью деформации 80%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=1050°С, выдержка 0,5 часа, старение при 800°С, выдержка 6 часов. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 3.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 900°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=1000°С, выдержка 0,5 часа, старение при 800°С, выдержка 6 часов. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 4.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 900°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=950°С, выдержка 1 час, старение при 800°С, выдержка 6 часов. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 5.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 1000°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=1000°С, выдержка 0,5 часа, старение при 900°С, выдержка 6 часов. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 6.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 950°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=975°С, выдержка 2 часа, старение при 850°С, выдержка 1 час. Результаты механических испытаний представлены в таблице на фигуре 2.

Пример 7.

Проведена деформационно-термическая обработка заготовок сплава ВИТ1 на основе орторомбического алюминида титана ВИТ1. Заготовки подвергали изотермической штамповке при 900°С со степенью деформации 50%. После чего заготовки подвергали термической обработке: закалка на воздухе с температуры T=1000°С, выдержка 1 час, старение при 800°С, выдержка 36 часов. Результаты механических испытаний представлены в таблице на фигуре 2.

Приведенные примеры подтверждают достижение заявленного технического результата изобретения, заключающегося в том, что предложенные режимы термической и деформационно-термической обработок, обеспечивают высокие механические свойства сплава на основе орторомбического алюминида титана ВИТ1 σ0,220 =1000-1300 МПа; σВ20 =1150-1400 МПа; δ20 =3-8 %; ψ20 =3-5%; σ0,2650 =1030 МПа; σВ650 =1120 МПа; δ650 =6 %; ψ650 =4%.

Способ деформационно-термической обработки заготовок лопаток газотурбинных двигателей из сплава на основе орторомбического алюминида титана, включающий штамповку заготовок лопаток при температуре ниже Тпп, отличающийся тем, что штамповку заготовок лопаток проводят со степенью деформации не менее 50% при температуре ниже Тпп на 50-200°С, после чего осуществляют термическую обработку, включающую две ступени, на первой из которых проводят закалку на воздухе при температуре ниже Тпп на 50-150°С с выдержкой не менее 0,5 часа, а на второй - старение при температуре ниже Тпп на 200-300°С с выдержкой от 1 до 36 часов, где Тпп - температура превращения β↔α2.



 

Похожие патенты:

Изобретение относится к металлургии, а именно к изготовлению бесшовных холоднодеформированных труб из титановых сплавов, и может быть использовано для изготовления изделий ответственного назначения. Способ изготовления холоднодеформированных бесшовных труб из титановых сплавов включает механическую обработку горячедеформированных цилиндрических заготовок, прессование, правку и механическую обработку полученных горячепрессованных труб, последующую многопроходную холодную прокатку при осуществлении промежуточных термических обработок в вакууме в зависимости от сплава и конечную термическую обработку труб готового размера в вакууме.

Изобретение относится к металлургии, а именно к изготовлению сплавов с высокотемпературным эффектом памяти формы, и может быть использовано в атомной, авиакосмической, угольной, химической и других отраслях промышленности. Способ изготовления сплава с высокотемпературным эффектом памяти формы включает отжиг сплава, содержащего, ат.%: никель 49,5-50,0, гафний 2,5-5,0, титан - остальное, и последующую деформацию.

Изобретение относится к области металлургии, а именно к интерметаллидным сплавам на основе γ-TiAl фазы и может быть использовано при изготовлении лопатки турбины низкого давления (ТНД) газотурбинного двигателя (ГГД) летательных аппаратов нового поколения. Интерметаллидный сплав на основе γ-TiAl фазы для изготовления лопатки турбины низкого давления газотурбинного двигателя содержит, ат.%: алюминий 44,0, ниобий 3,0, цирконий 2,0, гафний 1,0, бор 0,15, титан - остальное, при этом в литом состоянии количество β(β0)-фазы составляет не более 7 об.%, а после термической обработки количество β(β0)-фазы составляет 2 об.% или менее.

Изобретение относится к металлургии, а именно к трехкомпонентному сплаву титан-цирконий-кислород, и может быть использовано в медицине, в транспортной промышленности или в энергетической промышленности. Трехкомпонентный сплав титан-цирконий-кислород (Ti-Zr-O) содержит от 83 до 95,15 мас.% титана, от 4,5 до 15 мас.% циркония и от 0,35 до 2 мас.% кислорода, причем он способен образовывать однофазный материал, состоящий из стабильного и гомогенного α-твердого раствора со структурой гексагональной плотноупакованной (ГПУ) решетки при комнатной температуре.

Изобретение относится к металлургии, а именно к высокопрочным титановым сплавам. Титановый сплав состоит из, в массовых процентах в расчете на общую массу сплава: 2,0-5,0 алюминия; от более 3,0 до 8,0 олова; 1,0-5,0 циркония; 6,0-12,0 одного или более элементов, выбранных из группы, состоящей из ванадия и ниобия; 0,1-5,0 молибдена; 0,01-0,40 железа; 0,005-0,3 кислорода; 0,001-0,07 углерода; 0,001-0,03 азота; необязательно, меди, при этом общее содержание кислорода, ванадия, молибдена, ниобия, железа, меди, азота и углерода составляет не более 16,0; титана и примесей.

Изобретение относится к металлургии, а именно к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов, и предназначено для изготовления плоского проката, применяемого в авиационной промышленности, а также машиностроении. Способ изготовления плит из двухфазных титановых сплавов включает горячее деформирование слитка с получением сляба, предварительную стадию прокатки сляба за несколько этапов с получением подката, причем заключительный этап стадии осуществляют при температурах (α+β)-области, окончательную стадию прокатки с получением плит, термическую обработку плит и отделочные операции.

Изобретение относится к металлургии, а именно к высокотемпературным титановым сплавам. Титановый сплав содержит, в массовых процентах в расчете на общую массу сплава: от 5,5 до 6,5 алюминия, от 1,9 до 2,9 олова, от 1,8 до 3,0 циркония, от 4,5 до 5,5 молибдена, от 4,2 до 5,2 хрома, от 0,08 до 0,15 кислорода, от 0,03 до 0,20 кремния, от более 0 до 0,30 железа, титан и примеси.

Изобретение относится к металлургии, а именно к стойким к ползучести тиановым сплавам. Титановый сплав, содержит, в массовых процентах в расчете на общую массу сплава: от 5,5 до 6,5 алюминия, от 1,5 до 2,5 олова, от 1,3 до 2,3 молибдена, от 0,1 до 10,0 циркония, от 0,01 до 0,30 кремния, от 0,1 до 2,0 германия, титан и примеси, причем титановый сплав содержит интерметаллическое выделение, содержащее цирконий, кремний и германий.

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники.

Изобретение относится к металлургии, в частности к метастабильному β-титановому сплаву и к его применению в качестве часовой пружины. Метастабильный β-титановый сплав содержит, в мас.%: 24-45 ниобия, 0-20 циркония, 0-10 тантала и/или 0-1,5 кремния и/или менее 2 кислорода, и имеет кристаллографическую структуру, включающую смесь аустенитной фазы и альфа-фазы и присутствующие выделения омега-фазы, объемная доля которых составляет менее 10%, при этом содержание альфа-фазы составляет 1-40 об.%.

Изобретение относится к технологиям повышения износостойкости режущего инструмента из твердого сплава за счет изменения состава и структуры их поверхностных слоев и может быть использовано для увеличения стойкости инструмента к механическому и коррозионно-механическому износам. Способ включает проведение предварительной высокотемпературной цементации изделий, последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, и последующее диффузионное насыщение в свинцово-висмутовом расплаве, содержащем в растворенном состоянии никель и медь в равных долях и в количестве 15-20% от общей массы расплава в диапазоне температур от 1000 до 1500°С в течение 120-300 мин.
Наверх