Анти-cd79b антитела и иммуноконъюгаты и способы их применения
Изобретение относится к области биотехнологии. Описана группа изобретений, включающая иммуноконъюгат, который связывается с CD79b, фармацевтическую композицию для лечения субъекта, страдающего раковым В-клеточным пролиферативным нарушением, применение эффективного количества иммуноконъюгата или фармацевтической композиции для получения лекарственного средства для лечения индивидуума, страдающего злокачественным В-клеточным пролиферативным расстройством, и способ получения иммуноконъюгата. В одном из вариантов реализации иммуноконъюгат содержит в себе анти-CD79b антитело, содержащее вариабельный домен тяжелой цепи, содержащий последовательность SEQ ID NO:208, и вариабельный домен легкой цепи, содержащий последовательность SEQ ID NO:207. Изобретение расширяет арсенал средств, специфически связывающихся с CD79b. 4 н. и 41 з.п. ф-лы, 71 ил., 20 табл., 9 пр.
В настоящей заявке, поданной в соответствии со статьей 37, § 1.53(b) Свода Федеральных Правил (CFR), испрашивается приоритет предварительной заявки на патент США № 60/950052, поданной 16 июля 2007 г., предварительной заявки на патент США рег. № 61/025137, поданной 31 января 2008 г., предварительной заявки на патент США рег. № 61/032790, поданной 29 февраля 2008 г., и предварительной заявки на патент США рег. № 61/054709, поданной 20 мая 2008 г., в соответствии со статьей 35, § 119(е) Кодекса законов США, где описание каждой заявки во всей своей полноте вводится в настоящую заявку посредством ссылки.
Область, к которой относится изобретение
Настоящее изобретение относится к композициям, которые могут быть использованы для лечения гемопоэтической опухоли у млекопитающих, и к способам применения таких композиций.
Уровень техники
В США злокачественные опухоли (рак), после болезней сердца, являются вторым лидирующим заболеванием, приводящим к летальному исходу (Boring et al., CA Cancel J. Clin. 43:7 (1993)). Рак характеризуется увеличением числа патологических или опухолевых клеток, происходящих от нормальной ткани, которая пролифирует с образованием опухолевой массы и инвазией смежных тканей такими неопластическими опухолевыми клетками, с образованием злокачественных клеток, которые, в конечном счете, распространяются через систему кровообращения или лимфатическую систему в региональные лимфоузлы и в периферические области по механизму, называемому метастазированием. При раке клетки пролиферирут в условиях, при которых нормальные клетки расти не могут. Само раковое заболевание проявляется в различных формах широкого ряда, характеризующихся различной степенью инвазивности и агрессивности.
Раковые заболевания, в которых участвуют клетки, образующиеся в процессе гемопоэза, то есть в процессе, благодаря которому образуются клеточные элементы крови, такие как лимфоциты, лейкоциты, тромбоциты, эритроциты и природные клетки-киллеры, называются раком гемопоэтической системы. Лимфоциты, которые могут быть обнаружены в крови и в лимфатической ткани и играют решающую роль в иммунном ответе, подразделяются на два основных класса: В-лимфоциты (В-клетки) и Т-лимфоциты (Т-клетки), которые опосредуют гуморальный и клеточно-опосредуемый иммунный ответ, соответственно.
B-клетки созревают в костном мозге и покидают костный мозг, экспрессируя на своей поверхности антигенсвязывающее антитело. После того, первого контакта «необученных» В-клеток с антигеном, для которого мембраносвязанное антитело является специфическим, клетки начинают быстро делиться, а их потомство дифференцируется в В-клетки памяти и эффекторные клетки, называемые «плазматическими клетками». В-клетки памяти имеют более продолжительное время жизни и продолжают экспрессировать мембраносвязанное антитело, которое обладает такой же специфичностью, как и исходные родительские клетки. Плазматические клетки не продуцируют мембраносвязанное антитело, а вместо этого они продуцируют антитело в форме, которая может секретироваться. Секретируемыми антителами являются основные эффекторные молекулы гуморального иммунного ответа.
T-клетки созревают в тимусе и создают условия для пролиферации и дифференцировки незрелых Т-клеток. В процессе своего созревания T-клетки претерпевают реаранжировку генов, которая приводит к продуцированию Т-клеточного рецептора, и подвергаются позитивному и негативному отбору, который облегчает определение фенотипа клеточной поверхности зрелых Т-клеток. Характерными маркерами клеточной поверхности зрелых Т-клеток являются комплексы CD3:T-клеточный рецептор и один из корецепторов, CD4 или CD8.
В попытке выявления эффективных клеточных мишеней для противораковой терапии были проведены исследования по идентификации трансмембранных или других мембраносвязанных полипептидов, которые специфически экспрессируются на поверхности раковых клеток одного или нескольких конкретных типов по сравнению с одной или несколькими нормальными нераковыми клетками. В большинстве случаев такие мембраносвязанные полипептиды в большом количестве экспрессируются на поверхности раковых клеток, но не на поверхности нераковых клеток. Идентификация таких ассоциированных с опухолью полипептидов-антигенов клеточной поверхности дает возможность специфически разрушать раковые клетки-мишени путем терапии с использованием антител. В этой связи следует отметить, что терапия на основе антител оказалась очень эффективной для лечения некоторых раковых опухолей. Так, например, герцептин (HERCEPTIN®) и ритуксан (RITUXAN®) (оба этих антитела поставляются компанией Genentech Inc., South San Francisco, California) представляют собой антитела, которые с успехом применялись для лечения рака молочной железы и неходжкинской лимфомы, соответственно. Более конкретно, HERCEPTIN® представляет собой гуманизированное моноклональное антитело, которое было получено методами рекомбинантных ДНК и которое селективно связывается с внеклеточным доменом протоонкогена рецептора человеческого эпидермального фактора роста 2 (HER2). Сверхэкспрессия белка HER2 наблюдалось в 25-30% случаев заболеваний первичным раком молочной железы. RITUXAN® представляет собой генетически сконструированное химерное моноклональное антитело «мышь/человек», направленное против антигена CD20, находящегося на поверхности нормальных и злокачественных В-лимфоцитов. Оба эти антитела рекомбинантно продуцируются в клетках СНО.
В попытке выявления эффективных клеточных мишеней для противораковой терапии были проведены исследования по идентификации (1) полипептидов, которые не являются мембраносвязанными и которые, в отличие от нераковых нормальных клеток конкретных типов, специфически продуцируются одной или несколькими раковыми клетками конкретных типов, (2) полипептидов, которые продуцируются раковыми клетками на уровне экспрессии, значительно превышающем уровень экспрессии полипептидов одной или несколькими нормальными нераковыми клетками, или (3) полипептидов, экспрессия которых, в частности, ограничивается тканями одного типа (или очень ограниченного числа тканей других типов), пораженными и не пораженными раком (например, нормальной тканью предстательной железы и опухолевой тканью предстательной железы). Такие полипептиды могут быть постоянно локализованы внутри клеток, либо они могут секретироваться раковыми клетками. Кроме того, такие полипептиды могут экспрессироваться не самими раковыми клетками, а клетками, которые продуцируют и/или секретируют полипептиды, оказывающие потенцирующее действие на раковые клетки или действие, стимулирующее рост раковых клеток. В большинстве случаев такими секретируемыми полипептидами являются белки, которые обеспечивают раковым клеткам, но не нормальным клеткам, преимущественный рост, и такими полипептидами являются, например, ангиогенные факторы, факторы клеточной адгезии, факторы роста и т.п. При этом предполагается, что идентификация антагонистов указанных полипептидов, которые не являются мембраносвязанными, позволит выявлять эффективные терапевтические средства для лечения указанных раковых заболеваний. Кроме того, идентификация характера экспрессии таких полипептидов может быть использована для диагностики конкретных раковых опухолей у млекопитающих.
Несмотря на упомянутые выше успехи в противораковой терапии млекопитающих, необходимость в получении дополнительных терапевтических средств, способных детектировать присутствие опухоли у млекопитающих и эффективно ингибировать рост опухолевых клеток, соответственно, остается особенно актуальной. В соответствии с этим, целью настоящего изобретения является идентификация полипептидов, а именно мембраносвязанных, секретируемых полипептидов или внутриклеточных полипептидов, экспрессия которых, в частности, ограничивается тканями только одного типа (или очень ограниченного числа тканей других типов), гемопоэтическими тканями, пораженными и не пораженными раком; и применение таких полипептидов и нуклеиновых кислот, кодирующих указанные полипептиды, для получения композиций согласно изобретению, которые могут быть использованы в целях терапии и/или диагностики гемопоэтического рака у млекопитающих.
CD79 представляет собой сигнальный компонент В-клеточного рецептора, состоящий из ковалентно связанного гетеродимера, содержащего CD79a (Igα, mb-1) и CD79b (Igβ, B29). Каждый из CD79a и CD79b содержит внеклеточный домен иммуноглобулина (Ig), трансмембранный домен, внутриклеточный сигнальный домен и домен активации иммунорецептора, имеющий тирозиновый мотив (ITAM). CD79 экспрессируется на B-клетках и в клетках неходжкинской лимфомы (НХЛ) (Cabezudo et al., Haematologica, 84:413-418 (1999); D’Arena et al., Am. J. Hematol., 64:275-281 (2000); Olejniczak et al., Immunol. Invest., 35:93-114 (2006)). Все CD79a и CD79b и sIg необходимы для поверхностной экспрессии CD79 (Matsuuchi et al., Curr. Opin. Immunol., 13(3):270-7 (2001)). Средний уровень поверхностной экспрессии CD79b на НХЛ аналогичен его экспрессии на нормальных В-клетках, но в более широких пределах (Matsuuchi et al., Curr. Opin. Immunol., 13(3):270-7 (2001)).
Что касается экспрессии CD79b, то можно сказать, что он более эффективен в продуцировании терапевтических антител против антигена CD79b и обладает минимальной антигенностью или вообще не обладает антигенностью при его введении пациентам, а в частности, при продолжительном лечении. Настоящее изобретение удовлетворяет всем этим и другим требованиям. Настоящее изобретение относится к анти-CD79b антителам, которые не имеют недостатков, присущих современным терапевтическим композициям, а также обладают другими преимуществами, которые будут очевидны из нижеследующего подробного описания.
Использование конъюгатов «антитело-лекарственное средство» (АDC), то есть иммуноконъюгатов, в целях локальной доставки цитотоксических или цитостатических агентов, например, лекарственных средств, для уничтожения или подавления роста опухолевых клеток при лечении рака (Lambert J. (2005) Curr. Opinion in Pharmacology 5:543-549; Wu et al., (2005) Nature Biotechnology 23(9):1137-1146; Payne G. (2003) Cancer Cell 3:207-212; Syrigos & Epenetos (1999) Anticancer Research 19:605-614; Niculescu-Duvaz & Springer (1997) Adv. Drg. Del. Rev. 26:151-172; патент США № 4975278) позволяет осуществлять направленную доставку лекарственного средства в опухоли и обеспечивать их аккумуляцию внутри клеток, тогда как системное введение этих неконъюгированных лекарственных средств может приводить к продуцированию уровней токсичности, которые являются неприемлемыми для нормальных клеток и недостаточными для уничтожения опухолевых клеток (Baldwin et al., 1986, Lancet pp. (Mar. 15, 1986):603-05; Thorpe, 1985, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review” in Monoclonal Antibodies 84:Biological And Clinical Applications, A. Pinchera et al. (eds.), pp. 475-506). В попытках повысить терапевтический индекс, то есть максимально повысить эффективность и максимально снизить токсичность ADC, все усилия были направлены на повышение селективности поликлональных антител (Rowland et al. (1986), Cancer Immunol. Immunother. 21:183-87) и моноклональных антител (mAb), а также на улучшение таких свойств, как связывание с лекарственным средством и высвобождение лекарственных средств (Lambert J. (2005) Curr. Opinion in Pharmacology 5:543-549). Лекарственными средствами, используемыми в конъюгатах «антитело–лекарственное средство», являются бактериальные белковые токсины, такие как дифтерийный токсин, растительные белковые токсины, такие как рицин, и небольшие молекулы, такие как ауристатины, гельданамицин (Mandler et al., (2000) J. of the Nat.Cancer Inst. 92 (19):1573-1581; Mandler et al. (2000), Bioorganic & Med. Chem. Letters 10:1025-1028; Mandler et al. (2002), Bioconjugate Chem. 13:786-791), майтанзиноиды (ЕР 1391213; Liu et al., (1996) Proc. Natl. Acad. Sci. USA 93:8618-8623), калихеамицин (Lode et al. (1998) Cancer Res. 58:2928; Hinman et al. (1993) Cancer Res. 53:3336-3342), дауномицин, доксорубицин, метотрексат и виндезин (Rowland et al. (1986) см. выше). Лекарственные средства могут оказывать влияние на цитотоксические и цитостатические механизмы, включая связывание с тубулином, связывание с ДНК или ингибирование топоизомеразы. Некоторые цитотоксические лекарственные средства, при их конъюгировании с крупными антителами или лигандами белков-рецепторов, имеют тенденцию к потере или уменьшению активности.
Лекарственные средства, а именно ауристатиновые пептиды, ауристатин Е (АЕ) и монометилауристатин (ММАЕ), т.е. синтетические аналоги доластатина (WO 02/088172), были конъюгированы: (i) с химерными моноклональными антителами cBR96 (специфичными к антигену Lewis Y на карциномах); (ii) с сАС10, которое является специфичным к CD30, присутствующему на гематологических злокачественных опухолях (Klussman et al. (2004) Bioconjugate Chemistry 15(4):765-773; Doronina et al. (2003) Nature Biotechnology 21(7):778-784; Francisco et al. (2003) Blood 102(4):1458-1465; публикация заявки на патент США 2004/0018194); (iii) с анти-CD20 антителами, такими как ритуксан (WO 04/032828), используемый для лечения CD20-экспрессирующих раковых опухолей и иммунных расстройств; (iv) с анти-EphB2R антителом 2Н9, используемыми для лечения рака прямой и ободочной кишки (Mao et al. (2004) Cancer Research 64(3):781-788); (v) с антителом против Е-селектина (Bhaskar et al. (2003) Cancer Res. 63:6387-6397); (vi) с трастузумабом (HERCEPTIN®, заявка США 2005/0238649), и (vii) анти-CD30 антителами (WO 03/043583). Варианты ауристатина Е описаны в патентах США 5767237 и 6124431. Монометилауристатин Е, конъюгированный с моноклональными антителами, описан в работе Senter et al., Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623, опубликованной 28 марта 2004 г. Ауристатиновые аналоги ММАЕ и MMAF были конъюгированы с различными антителами (заявка США 2005/0238649).
Стандартный метод присоединения, т.е. ковалентного связывания молекулы лекарственного средства с антителом, по существу позволяет получить гетерогенную смесь молекул, в которых лекарственные средства присоединены в различных участках молекулы антитела. Так, например, цитотоксические лекарственные средства обычно конъюгируют с антителами посредством большого количества лизиновых остатков антитела с получением гетерогенной смеси конъюгата “антитело-лекарственное средство”. В зависимости от условий реакции гетерогенная смесь обычно содержит определенное число антител, к которым присоединены от 0 и примерно до 8 или более молекул связанных лекарственных средств. Кроме того, в каждой подгруппе конъюгатов, с отношением молекул лекарственного средства к молекулам антитела, равным конкретному целому числу, может присутствовать гетерогенная смесь, в которой молекула лекарственного средства присоединена в различных участках антитела. Аналитические и препаративные методы могут быть неподходящими для разделения и характеризации молекул-конъюгатов “антитело-лекарственное средство” в гетерогенной смеси, полученной в результате реакции конъюгирования. Антитела представляют собой крупные, сложные и отличающиеся по своей структуре биомолекулы, которые в большинстве случаев имеют множество реакционноспособных функциональных групп. Способность этих групп реагировать с линкерными реагентами и промежуточными соединениями “лекарственное средство-линкер” зависит от таких факторов, как рН, концентрация, концентрация соли и присутствие сорастворителей. Кроме того, способ многостадийного конъюгирования может оказаться невоспроизводимым, что обусловлено трудностями регуляции условий реакции и характеризации реагентов и промежуточных соединений.
В отличие от большинства аминов, которые являются протонированными и менее нуклеофильными при рН~7, тиолы цистеинов являются реакционноспособными при нейтральном рН. Поскольку свободные тиоловые (RSH, сульфгидрильные) группы являются относительно реакционноспособными, то белки, содержащие цистеиновые остатки, часто имеют окисленную форму и представляют собой связанные с дисульфидом олигомеры, либо они содержат внутренние мостиковые дисульфидные группы. Внеклеточные белки обычно не содержат свободных тиоловых групп (Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London, page 55). Тиоловые группы цистеина антитела обычно являются более реакционноспособными, то есть более нуклеофильными по отношению к электрофильным реагентам конъюгирования, чем аминогруппы или гидроксильные группы антитела. Цистеиновые остатки были введены в белки методами генной инженерии с образованием ковалентных связей с лигандами или с образованием новых внутримолекулярных дисульфидных связей (Better et al (1994) J. Biol. Chem. 13:9644-9650; Bernhard et al. (1994) Bioconjugate Chem. 5:126-132; Greenwood et al. (1994) Therapeutic Immunology 1:247-255; Tu et al. (1999) Proc. Natl. Acad. Sci USA 96:4862-4867; Kanno et al. (2000) J. of Biotechnology, 76:207-214; Chmura et al. (2001) Proc. Nat. Acad. Sci. USA 98(15):8480-8484; патент США 6248564). Однако конструирование тиоловых групп цистеина путем замены различных аминокислотных остатков белка цистеиновыми остатками может быть связано с определенными проблемами, особенно, если присутствуют несвязанные (свободные Cys) остатки или остатки, которые являются относительно доступными для реакции или окисления. В концентрированных растворах белка, независимо от того, присутствуют ли они в периплазме E. coli, супернатантах культуры, или являются частично или полностью очищенными белками, несвязанные остатки Cys на поверхности белка могут связываться и окисляться с образованием межмолекулярных дисульфидов, а следовательно и димеров или мультимеров белка. Образование дисульфидных димеров сообщает новому остатку Cys неспособность образовывать конъюгаты с лекарственным средством, лигандом или другой меткой. Кроме того, если белок в результате окисления образует внутримолекулярную дисульфидную связь между новым сконструированным Cys и уже имеющимся остатком Cys, то обе тиоловые группы Cys становятся недоступными для функционирования в активном центре и к взаимодействию. Кроме того, такой белок может становиться неактивным или неспецифичным в результате неправильной укладки или потери третичной структуры (Zhang et al. (2002) Anal. Biochem. 311:1-9).
Сконструированные на основе цистеина антитела были получены в виде FAB-фрагментов антител (тио-Fab) и экспрессированы как полноразмерные моноклональные антитела IgG (тио-Mab) (Junutula, J.R. et al. (2008) J. Immunol Methods 332:41-52; заявка США 2007/0092940, содержание которых вводится в настоящее описание посредством ссылки). Антитела тио-Fab и тио-Mab были конъюгированы посредством линкеров в положениях нововведенных тиолов цистеина с использованием реагирующих с тиолом линкерных реагентов и реагентов «лекарственное средство–линкер» с получением конъюгатов «антитело–лекарственное средство» (тио-ADC).
Все цитируемые здесь работы, включая патентные заявки и публикации, во всей своей полноте вводятся в настоящее описание посредством ссылки.
сущность изобретения
Настоящее изобретение относится к анти-CD79b антителам или к их функциональным фрагментам, а также к способу их применения для лечения гемопоэтических опухолей.
В одном из своих аспектов настоящее изобретение относится к антителу, которое связывается предпочтительно специфически с любым из вышеописанных или нижеописанных полипептидов. Таким антителом является, но необязательно, моноклональное антитело, фрагмент антитела, включая Fab-, Fab'-, F(ab')2- и Fv-фрагмент, диантитело, однодоменное антитело, химерное антитело, гуманизированное антитело, одноцепочечное антитело или антитело, которое конкурентно ингибирует связывание антитела против полипептида CD79b с его соответствующим антигенным эпитопом. Антитела согласно изобретению могут быть, но необязательно, конъюгированы с рост-ингибирующим агентом или с цитотоксическим средством, таким как токсин, включая, например, ауристатин, майтанзиноид, производное долостатина или калихеамицин, антибиотик, радиоактивный изотоп, нуклеолитический фермент или т.п. Антитела согласно изобретению могут быть, но необязательно, продуцированы в клетках СНО или в бактериальных клетках, а предпочтительно индуцируют гибель клеток, с которыми они связываются. Антитела согласно изобретению, используемые в целях детектирования, могут быть детектируемо помечены, присоединены к твердому носителю или т.п.
В одном из своих аспектов настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность одновалентного антитела (например, аффинность антитела, используемого в качестве Fab-фрагмента против CD79b) или аффинность двухвалентной формы антитела против CD79b (например, аффинность антитела, используемого в качестве IgG-фрагмента против CD79b) по существу аналогична, ниже или выше аффинности одновалентного или аффинности двухвалентного, соответственно, мышиного антитела (например, аффинности мышиного антитела, используемого в качестве Fab-фрагмента или IgG-фрагмента против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента или IgG-фрагмента против CD79b), содержащего последовательность вариабельного домена легкой и тяжелой цепи или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится гуманизированному анти-CD79b антителу, где аффинность указанного антитела в его двухвалентной форме по отношению к CD79b (например, аффинность антитела типа IgG против CD79b) составляет 0,4 нM, 0,2 нM или 0,5 нM.
В одном из своих аспектов настоящее изобретение относится к антителу, которое связывается с CD79b, где указанное антитело содержит по меньшей мере одну, две, три, четыре, пять или шесть HVR, выбранных из группы, состоящей из:
(i) HVR-L1, содержащей последовательность A1-A15, где A1-A15 представляет собой KASQSVDYDGDSFLN (SEQ ID NO: 131),
(ii) HVR-L2, содержащей последовательность B1-B7, где B1-B7 представляет собой AASNLES (SEQ ID NO: 132),
(iii) HVR-L3, содержащей последовательность C1-C9, где C1-C9 представляет собой QQSNEDPLT (SEQ ID NO: 133),
(iv) HVR-H1, содержащей последовательность D1-D10, где D1-D10 представляет собой GYTFSSYWIE (SEQ ID NO: 134),
(v) HVR-H2, содержащей последовательность E1-E18, где E1-E18 представляет собой GEILPGGGDTNYNEIFKG (SEQ ID NO: 135), и
(vi) HVR-H3, содержащей последовательность F1-F10, где F1-F10 представляет собой TRRVPVYFDY (SEQ ID NO: 136).
В одном из своих аспектов настоящее изобретение относится к антителу, которое связывается с CD79b, где указанное антитело содержит по меньшей мере один вариант HVR, где указанный вариант HVR содержит модификацию по меньшей мере одного остатка последовательности, представленной в SEQ ID NO: 131, 132, 133, 134, 135 или 136.
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 15 (SEQ ID NO: 164-166).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен легкой цепи, содержащий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 15 (SEQ ID NO: 156-158).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 16 (SEQ ID NO: 183-185).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен легкой цепи, содержащий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 16 (SEQ ID NO: 175-177).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 17 (SEQ ID NO: 202-204).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен легкой цепи, содержащий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 17 (SEQ ID NO: 194-196).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 18 (SEQ ID NO: 221-223).
В одном из своих аспектов настоящее изобретение относится к антителу, включающему вариабельный домен легкой цепи, содержащий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 18 (SEQ ID NO: 213-215).
В одном из своих аспектов настоящее изобретение относится к анти-СD79b антителу, содержащему вариабельный домен тяжелой цепи, выбранный из SEQ ID NО: 170, 189, 208 или 227. В другом своем аспекте настоящее изобретение относится к анти-CD79b антителу, содержащему вариабельный домен легкой цепи, выбранный из SEQ ID NО: 169, 188, 207 или 226.
В одном из своих аспектов настоящее изобретение относится к сконструированному на основе цистеина анти-CD79b антителу, содержащему одну или несколько свободных цистеиновых аминокислот и последовательность, выбранную из SEQ ID NО: 251-298. Сконструированное на основе цистеина анти-CD79b антитело может связываться с полипептидом CD79b. Сконструированное на основе цистеина анти-CD79b антитело может быть получено способом, включающим замену одного или нескольких аминокислотных остатков родительского анти-CD79b антитела цистеином.
В одном из своих аспектов настоящее изобретение относится к сконструированному на основе цистеина анти-CD79b антителу, содержащему одну или несколько свободных аминокислот цистеинов, где указанное сконструированное на основе цистеина анти-CD79b антитело связывается с полипептидом CD79b, и где указанное антитело было получено способом, включающим замену одного или нескольких аминокислотных остатков родительского анти-CD79b антитела цистеином, где указанное родительское антитело содержит по меньшей мере одну последовательность HVR, выбранную из:
(a) HVR-L1, содержащей последовательность A1-A15, где A1-A15 представляет собой KASQSVDYDGDSFLN (SEQ ID NO: 131) или KASQSVDYEGDSFLN (SEQ ID NO: 137);
(b) HVR-L2, содержащей последовательность B1-B7, где B1-B7 представляет собой AASNLES (SEQ ID NO: 132);
(c) HVR-L3, содержащей последовательность C1-C9, где C1-C9 представляет собой QQSNEDPLT (SEQ ID NO: 133);
(d) HVR-H1, содержащей последовательность D1-D10, где D1-D10 представляет собой GYTFSSYWIE (SEQ ID NO: 134);
(e) HVR-H2, содержащей последовательность E1-E18, где E1-E18 представляет собой GEILPGGGDTNYNEIFKG (SEQ ID NO: 135); и
(f) HVR-H3, содержащей последовательность F1-F10, где F1-F10 представляет собой TRRVPVYFDY (SEQ ID NO: 136) или TRRVPIRLDY (SEQ ID NO: 138).
Сконструированным на основе цистеина анти-CD79b антителом может быть моноклональное антитело, фрагмент антитела, химерное антитело, гуманизированное антитело, одноцепочечное антитело или антитело, которое конкурентно ингибирует связывание антитела против полипептида CD79b с его соответствующим антигенным эпитопом. Антитела согласно изобретению могут быть, но необязательно, конъюгированы с рост-ингибирующим агентом или с цитотоксическим средством, таким как токсин, включая, например, ауристатин или майтанзиноид. Антитела согласно изобретению могут быть, но необязательно, продуцированы в клетках СНО или в бактериальных клетках, а предпочтительно эти антитела ингибируют рост или пролиферацию клеток, с которыми они связываются, или индуцируют гибель этих клеток. Антитела согласно изобретению, используемые в диагностических целях, могут быть детектируемо помечены, присоединены к твердому носителю или т.п.
В одном из своих аспектов настоящее изобретение относится к способам получения антитела согласно изобретению. Так, например, настоящее изобретение относится к способу получения анти-CD79b антитела (которое, как определено в настоящей заявке, включает полноразмерное антитело и его фрагменты), где указанный способ включает экспрессию в подходящей клетке-хозяине рекомбинантного вектора согласно изобретению, кодирующего указанное антитело (или его фрагмент), и выделение указанного антитела.
В одном из своих аспектов настоящее изобретение относится к фармацевтической композиции, включающей антитело согласно изобретению или конъюгат ««антитело–лекарственное средство» согласно изобретению и фармацевтически приемлемый разбавитель, носитель или наполнитель.
В одном из своих аспектов настоящее изобретение относится к промышленному изделию, содержащему контейнер, и к композиции, содержащейся в этом контейнере, где указанная композиция включает одно или несколько анти-CD79b антител согласно изобретению.
В одном из своих аспектов настоящее изобретение относится к набору, содержащему первый контейнер, включающий композицию, содержащую одно или несколько анти-CD79b антител согласно изобретению, и второй контейнер, содержащий буфер.
В одном из своих аспектов настоящее изобретение относится к применению анти-CD79b антитела согласно изобретению в целях получения лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство.
В одном из своих аспектов настоящее изобретение относится к применению промышленного изделия согласно изобретению в целях получения лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство.
В одном из своих аспектов настоящее изобретение относится к применению набора согласно изобретению в целях получения лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство.
В одном из своих аспектов настоящее изобретение относится к способу ингибирования роста клеток, экспрессирующих CD79b, где указанный способ включает контактирование указанной клетки с антителом согласно изобретению и тем самым ингибирование роста указанной клетки. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу терапевтического лечения млекопитающего, страдающего раковой опухолью, содержащей клетки, экспрессирующие CD79b, где указанный способ включает введение указанному млекопитающему терапевтически эффективного количества антитела согласно изобретению и тем самым эффективное лечение указанного млекопитающего. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу лечения или предупреждения клеточно-пролиферативного расстройства, ассоциированного с повышенным уровнем экспрессии CD79b, где указанный способ включает введение индивидууму, нуждающемуся в таком лечении, эффективного количества антитела согласно изобретению и тем самым эффективное лечение или предупреждение указанного клеточно-пролиферативного расстройства. В одном из вариантов изобретения указанным пролиферативным расстройством является рак. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу ингибирования роста клеток, который по меньшей мере частично зависит от рост-потенцирующего действия CD79b, где указанный способ включает контактирование указанной клетки с эффективным количеством антитела согласно изобретению и тем самым ингибирование роста указанных клеток. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу терапевтического лечения опухоли у млекопитающего, рост которой, по меньшей мере частично, зависит от рост-потенцирующего действия CD79b, где указанный способ включает контактирование указанной клетки с эффективным количеством антитела согласно изобретению и тем самым эффективное лечение указанной опухоли. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу лечения рака, включающему введение пациенту фармацевтическои композиции, содержащей описанный здесь иммуноконъюгат и приемлемый разбавитель, носитель или наполнитель.
В одном из своих аспектов настоящее изобретение относится к способу ингибирования пролиферации В-клеток, включающему обработку клеток иммуноконъюгатом, содержащим антитело согласно изобретению, в условиях, благоприятствующих связыванию иммуноконъюгата с CD79b.
В одном из своих аспектов настоящее изобретение относится к способу детектирования присутствия CD79b в образце, который, как предполагается, содержит CD79b, где указанный способ включает обработку указанного образца антителом согласно изобретению и определение уровня связывания указанного антитела с CD79b в указанном образце, где связывание указанного антитела с CD79b в указанном образце является показателем присутствия указанного белка в данном образце.
В одном из своих аспектов настоящее изобретение относится к способу диагностики клеточно-пролиферативного расстройства, ассоциированного с увеличением числа клеток, таких как В-клетки, экспрессирующие CD79b, где указанный способ включает контактирование тестируемых клеток в биологическом образце с любыми из вышеупомянутых антител; определение уровня антитела, связанного с тестируемыми клетками в образце, посредством детектирования связывания указанного антитела с CD79b; и сравнение уровней антитела, связанного с клетками в контрольном образце, где уровень связанного антитела нормализуют по числу CD79b-экспрессирующих клеток в тестируемых и контрольных образцах, и где более высокий уровень связанного антитела в тестируемом образце по сравнению с контрольным образцом указывает на наличие клеточно-пролиферативного расстройства, ассоциированного с клетками, экспрессирующими CD79b.
В одном из своих аспектов настоящее изобретение относится к способу детектирования растворимого CD79b в крови или сыворотке, где указанный способ включает контактирование указанной тестируемой пробы крови или сыворотки, взятой у млекопитающего, у которого подозревается В-клеточно-пролиферативное расстройство, с анти-CD79b антителом согласно изобретению и детектирование увеличения уровня растворимого CD79b в тестируемой пробе крови по сравнению с его уровнем в контрольной пробе крови или сыворотки, взятой у здорового млекопитающего.
В одном из своих аспектов настоящее изобретение относится к способу связывания антитела согласно изобретению с клеткой, экспрессирующей CD79b, где указанный способ включает контактирование указанной клетки с указанным антителом согласно изобретению. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим агентом. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
Краткое описание фигур
На фигуре 1 представлена нуклеотидная последовательность (SEQ ID NO: 1) кДНК PRO36249, где SEQ ID NO: 1 представляет собой клон, обозначенный “DNA225786” (также называемый здесь “CD79b”). Нуклеотидная последовательность кодирует CD79b со старт- и стоп-кодонами, которые выделены жирным шрифтом и подчеркнуты.
На фигуре 2 представлена аминокислотная последовательность (SEQ ID NO: 2), происходящая от кодирующей последовательности SEQ ID NO: 1, представленной на фигуре 1.
На фигуре 3 представлена нуклеотидная последовательность (SEQ ID NO: 3) легкой цепи химерного мышиного анти-CD79b антитела (chMA79b) IgG1 (MA79b представляет собой мышиное моноклональное анти-CD79b антитело). Нуклеотидная последовательность кодирует легкую цепь chMA79b со старт- и стоп-кодонами, которые выделены жирным шрифтом и подчеркнуты.
На фигуре 4 представлена аминокислотная последовательность (SEQ ID NO: 4), не содержащая первых 18 аминокислот сигнальной последовательности и происходящая от кодирующей последовательности SEQ ID NO: 3, представленной на фигуре 3. Вариабельные области не подчеркнуты.
На фигуре 5 представлена нуклеотидная последовательность (SEQ ID NO: 5) тяжелой цепи химерного мышиного антитела (chMA79b) IgG1 (MA79b представляет собой мышиное моноклональное анти-CD79b антитело). Нуклеотидная последовательность кодирует тяжелую цепь chMA79b со старт- и стоп-кодонами, которые выделены жирным шрифтом и подчеркнуты.
На фигуре 6 представлена аминокислотная последовательность (SEQ ID NO: 6), не содержащая первых 18 аминокислот сигнальной последовательности и последнего лизина (К) перед стоп-кодоном и происходящая от кодирующей последовательности SEQ ID NO: 5, представленной на фигуре 5. Вариабельные области не подчеркнуты.
На фигурах 7A-B показано выравнивание последовательностей вариабельных легких цепей: консенсусной последовательности человеческой легкой цепи каппа I (обозначенной “huKI”; SEQ ID NO: 9) с VL-FR1, VL-FR2, VL-FR3, VL-FR4 (SEQ ID NO: 139-142, соответственно), мышиного анти-CD79b антитела (обозначенного “MA79b”; SEQ ID NO: 10), MA79b-связанного «гуманизированного» антитела (обозначенного “huMA79b-гибрид; SEQ ID NO: 11), MA79b-связанного варианта 17 «гуманизированного» антитела (обозначенного “huMA79b.v17”; SEQ ID NO: 169), MA79b-связанного варианта 18 «гуманизированного» антитела (обозначенного “huMA79b.v18”; SEQ ID NO: 188), MA79b-связанного варианта 28 «гуманизированного» антитела (обозначенного “huMA79b.v28”; SEQ ID NO: 207) и MA79b-связанного варианта 32 «гуманизированного» антитела (обозначенного “huMA79b.v32”; SEQ ID NO: 226). Положения пронумерованы по Кабату, а гипервариабельные области (HVR) от MA79b, присоединенные к консенсусной каркасной области вариабельной области легкой цепи каппа I, указаны в рамках.
На фигурах 8A-B проиллюстрировано выравнивание последовательностей вариабельных областей тяжелых цепей: консенсусной последовательности человеческой тяжелой цепи подгруппы III (обозначенной “humIII”; SEQ ID NO: 13) с VH-FR1, VH-FR2, VH-FR3 и VH-FR4 (SEQ ID NO: 143-146), мышиного анти-CD79b антитела (обозначенного “MA79b”; SEQ ID NO: 14), MA79b-связанного «гуманизированного» антитела (обозначенного “huMA79b-гибрид”; SEQ ID NO: 15) (содержащего 71A, 73T и 78A), MA79b-связанного варианта 17 «гуманизированного» антитела (обозначенного “huMA79b.v17”; SEQ ID NO: 170) (содержащего 71A, 73T и 78A), MA79b-связанного варианта 18 «гуманизированного» антитела (обозначенного “huMA79b.v18”; SEQ ID NO: 189) (содержащего 71A, 73T и 78A), MA79b-связанного варианта 28 «гуманизированного» антитела (обозначенного “huMA79b.v28”; SEQ ID NO: 208) (содержащего 71A, 73T и 78A) и MA79b-связанного варианта 32 «гуманизированного» антитела (обозначенного “huMA79b.v32”; SEQ ID NO: 227) (содержащего 71A, 73T и 78A). Положения пронумерованы по Кабату, а гипервариабельные области (HVR) от MA79b, присоединенные к консенсусной каркасной области вариабельной области тяжелой цепи подгруппы III, указаны в рамках.
На фигуре 9 представлены различные последовательности HVR выбранных вариантов MA79b-связанного «гуманизированного» антитела (SEQ ID NOs: 17-21), где каждый вариант имеет одну аминокислотную замену в одной HVR MA79b-связанного «гуманизированного» антитела (HVR-L1 (SEQ ID NO: 131); HVR-L2 (SEQ ID NO: 132); HVR-L3 (SEQ ID NO: 133)). Последовательности вариабельной области легкой цепи и вариабельной области тяжелой цепи, находящиеся за пределами указанной одной аминокислотной замены, идентичны huMA79b-гибриду и на фигуре не показаны. Каких-либо изменений в HVR-H1 (SEQ ID NO: 134), HVR-H2 (SEQ ID NO: 135) или HVR-H3 (SEQ ID NO: 136) MA79b-связанного «гуманизированного» антитела не наблюдалось.
На фигуре 10 представлены различные последовательности HVR выбранных вариантов MA79b-связанного «гуманизированного» антитела (SEQ ID NO: 22-106), включая huMA79b L2-2 (также обозначенное здесь “L2”) и huMA79b H3-10 (также обозначенное здесь “H3”), где каждый вариант имеет множество аминокислотных замен в одной области HVR MA79b-связанного «гуманизированного» антитела (HVR-L2 (SEQ ID NO: 132); HVR-L3 (SEQ ID NO: 133); HVR-H1 (SEQ ID NO: 134); часть HVR-H3 (SEQ ID NO: 136) показана на фигуре 10 как SEQ ID NO: 107). Последовательности вариабельной области легкой цепи и вариабельной области тяжелой цепи, находящиеся за пределами указанных аминокислотных замен, идентичны последовательности huMA79b-гибрида и на фигуре не показаны. Каких-либо изменений в HVR-L1 (SEQ ID NO: 131) или HVR-H2 (SEQ ID NO: 135) MA79b-связанного «гуманизированного» антитела не наблюдалось.
На фигуре 11 проиллюстрирован Biacore-анализ выбранных анти-CD79b антител, включая мышиное анти-CD79b антитело (обозначенное “MA79b”), MA79b-связанное «гуманизированное» антитело (обозначенное «huMA79b-гибрид») и варианты MA79b-связанного «гуманизированного» антитела, включая huMA79b L2-2 (52R, 53K, 55G, 56R; SEQ ID NO: 22), huMA79b H3-10 (98I, 99R, 100L; SEQ ID NO: 94), huMA79b H1-6 (28P, 30T, 31R, 35N; SEQ ID NO: 57) и huMA79b L2/H3 (мутации L2-2 и H3-10, описанные ниже) против указанных антигенов, включая внеклеточный домен человеческого CD79b (huCD79becd), внеклеточный домен человеческого CD79b, присоединенный к Fc (huCD79becd-Fc) и пептид из 16 аминокислот, содержащий эпитоп для MA79b и chMA79b (SEQ ID NO: 16).
На фигуре 12 проиллюстрирован Biacore-анализ выбранных анти-CD79b антител, включая MA79b-связанное «гуманизированное» антитело (обозначенное “huMA79b-гибрид”) и варианты MA79b-связанного «гуманизированного» антитела (обозначенные как 1-34 в первом столбце или как «вся каркасная область» в первом столбце) против внеклеточного домена человеческого CD79b (антигена huCD79becd). Варианты MA79b-связанного «гуманизированного» антитела включают варианты «всех каркасных областей», в которых присутствуют потенциально важные мышиные каркасные остатки, и варианты (обозначенные 1-34) с комбинациями мутаций в каркасной области в присутствии или в отсутствие мутаций HVR вариабельной области тяжелой цепи и вариабельной области легкой цепи. Вариант 17 MA79b-связанного «гуманизированного» антитела (обозначенный здесь “huMA79b.v17”) указан в первом столбце как 17, вариант 18 MA79b-связанного «гуманизированного» антитела (обозначенный здесь “huMA79b.v18”) указан в первом столбце как 18, вариант 28 MA79b-связанного «гуманизированного» антитела (обозначенный здесь “huMA79b.v28”) указан в первом столбце как 28, а вариант 32 MA79b-связанного «гуманизированного» антитела (обозначенный здесь “huMA79b.v32”) указан в первом столбце как 32. Укладка, характерная для двухвалентного связывания, представлена как Kd конкретного варианта MA79b-связанного «гуманизированного» антитела (обозначенная “Kdvariant”)/Kd химерного антитела MA79b (chMA79b) (обозначенного “Kdchimera”); величины под столбцом, озаглавленном «укладка, характерная для двухвалентного связывания», представляют Kdvariant/Kdchimera. Недетектируемое связывание обозначено на фигуре как “NDB”.
На фигурах 13A-B (консенсусные каркасные вариабельные области тяжелой цепи (VH)) и на фигуре 14 (консенсусные каркасные вариабельные области легкой цепи (VL)) указаны репрезентативные консенсусные каркасные акцепторные последовательности человеческого антитела, используемые для осуществления настоящего изобретения, вместе с последовательностями-идентификаторами, такими как: (фигуры 13A-B) консенсусная каркасная область человеческой VH подгруппы I без CDR по Кабату (SEQ ID NO: 108), консенсусная каркасная область человеческой VH подгруппы I без удлиненных гипервариабельных областей (SEQ ID NO: 109-111), консенсусная каркасная область человеческой VH подгруппы II без CDR по Кабату (SEQ ID NO: 112), консенсусная каркасная область человеческой VH подгруппы II без удлиненных гипервариабельных областей (SEQ ID NO: 113-115), консенсусная каркасная область человеческой VH подгруппы III без CDR по Кабату (SEQ ID NO: 116), консенсусная каркасная область человеческой VH подгруппы III без удлиненных гипервариабельных областей (SEQ ID NO: 117-119), акцепторная каркасная область человеческой VH без CDR по Кабату (SEQ ID NO: 120), акцепторная каркасная область человеческой VH без удлиненных гипервариабельных областей (SEQ ID NO: 121-122), акцепторная каркасная область человеческой VH2 без CDR по Кабату (SEQ ID NO: 123) и акцепторная каркасная область человеческой VH2 без удлиненных гипервариабельных областей (SEQ ID NO: 124-26) и (фигура 14) консенсусная каркасная область человеческой VL каппа подгруппы I (SEQ ID NO: 127), консенсусная каркасная область человеческой VL каппа подгруппы II (SEQ ID NO: 128), консенсусная человеческая каркасная область каппа подгруппы III (SEQ ID NO: 129) и консенсусная человеческая каркасная область каппа подгруппы IV (SEQ ID NO: 130).
На фигурах 15A (легкая цепь) и 15B (тяжелая цепь) представлены аминокислотные последовательности антитела согласно изобретению (huMA79b.v17). На фигуре 15A (легкая цепь) и 15B (тяжелая цепь) показаны аминокислотные последовательности каркасной области (FR), гипервариабельной области (HVR), первого константного домена (CL или CH1) и Fc-области (Fc) одного из вариантов антитела согласно изобретению (huMA79b.v17) (SEQ ID NO: 152-159 (фигура 15A) и SEQ ID NOs: 160-168 (фигура 15B)). Также представлены полноразмерные аминокислотные последовательности (вариабельные и константные области) легкой и тяжелой цепей huMA79b.v17 (SEQ ID NO: 303 (фигура 15A) и 304 (фигура 15B), соответственно, с подчеркнутыми константными доменами. Представлены аминокислотные последовательности вариабельных доменов (SEQ ID NO: 169 (фигура 15A для легкой цепи) и SEQ ID NO: 170 (фигура 15B для тяжелой цепи)).
На фигурах 16A (легкая цепь) и 16B (тяжелая цепь) представлены аминокислотные последовательности антитела согласно изобретению (huMA79b.v18). На фигуре 16A (легкая цепь) и 16B (тяжелая цепь) показаны аминокислотные последовательности каркасной области (FR), гипервариабельной области (HVR), первого константного домена (CL или CH1) и Fc-области (Fc) одного из вариантов антитела согласно изобретению (huMA79b.v18) (SEQ ID NO: 171-178 (фигура 16A) и SEQ ID NO: 179-187 (фигура 16B)). Также представлены полноразмерные аминокислотные последовательности (вариабельные и константные области) легкой и тяжелой цепей huMA79b.v18 (SEQ ID NO: 305 (фигура 16A) и 306 (фигура 16B), соответственно, с подчеркнутыми константными доменами. Представлены аминокислотные последовательности вариабельных доменов (SEQ ID NO: 188 (фигура 16A для легкой цепи) и SEQ ID NO: 189 (фигура 16B для тяжелой цепи)).
На фигурах 17A (легкая цепь) и 17B (тяжелая цепь) представлены аминокислотные последовательности антитела согласно изобретению (huMA79b.v28). На фигурах 17A (легкая цепь) и 17B (тяжелая цепь) показаны аминокислотные последовательности каркасной области (FR), гипервариабельной области (HVR), первого константного домена (CL или CH1) и Fc-области (Fc) одного из вариантов антитела согласно изобретению (huMA79b.v28) (SEQ ID NO: 190-197 (фигура 17A) и SEQ ID NO: 198-206 (фигура 17B)). Также представлены полноразмерные аминокислотные последовательности (вариабельные и константные области) легкой и тяжелой цепей huMA79b.v28 (SEQ ID NO: 307 (фигура 17A) и 308 (фигура 17B), соответственно, с подчеркнутыми константными доменами. Представлены аминокислотные последовательности вариабельных доменов (SEQ ID NO: 207 (фигуры 7A-В для легкой цепи) и SEQ ID NO: 208 (фигуры 8А-B для тяжелой цепи)).
На фигурах 18A (легкая цепь) и 18B (тяжелая цепь) представлены аминокислотные последовательности антитела согласно изобретению (huMA79b.v32). На фигурах 18A (легкая цепь) и 18B (тяжелая цепь) показаны аминокислотные последовательности каркасной области (FR), гипервариабельной области (HVR), первого константного домена (CL или CH1) и Fc-области (Fc) одного из вариантов антитела согласно изобретению (huMA79b.v32) (SEQ ID NO: 209-216 (фигура 18A) и SEQ ID NO: 217-225 (фигура 18В)). Также представлены полноразмерные аминокислотные последовательности (вариабельные и константные области) легкой и тяжелой цепей huMA79b.v32 (SEQ ID NO: 309 (фигура 18A) и 310 (фигура 18B), соответственно, с подчеркнутыми константными доменами. Представлены аминокислотные последовательности вариабельных доменов (SEQ ID NO: 226 (фигура 18А для легкой цепи) и SEQ ID NO: 227 (фигура 18B для тяжелой цепи)).
На фигуре 19 проиллюстрировано выравнивание аминокислотных последовательностей CD79b человека (SEQ ID NO: 2), собакоподобных обезьян (cyno) (SEQ ID NO: 7) и мышей (SEQ ID NO: 8). Аминокислотные последовательности CD79b человека и собакоподобных обезьян идентичны на 85%. Также показаны сигнальная последовательность, тестируемый пептид (эпитоп из 11 аминокислот для MA79b, chMA79b и антитела против CD79b собакоподобных обезьян, описанные в примере 1; ARSEDRYRNPK (SEQ ID NO: 12)), трансмембранный (TM) домен и домен мотива активации иммунорецептора на основе тирозина (ITAM). Область, показанная в рамке, представляет собой область CD79b, которая отсутствует в сплайсированном варианте CD79b (как описано в примере 1).
На фигуре 20 представлен график ингибирования роста опухоли in vivo в BJAB-люциферазной модели ксенотрансплантата, где из указанного графика видно, что введение анти-CD79b антител ((a) chMA79b-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 2,9 (таблица 9), и (b) huMA79b L2/H3-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 2,4 (таблица 9)) мышам SCID, имеющим человеческую В-клеточную опухоль, приводит к значительному ингибированию роста опухоли. Контроль включает Herceptin® (трастузумаб)-SMCC-DM1 (анти-HER2-SMCC-DM1).
На фигуре 21A представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата Granta-519 (человеческой лимфомы клеток коры головного мозга), где из указанного графика видно, что введение анти-CD79b антител ((a) chMA79b-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 3,6 (таблица 10), (b) huMA79b.v17-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 3,4 (таблица 10), (c) huMA79b.v28-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 3,3 или 3,4 (таблица 10), (d) huMA79b.v18-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 3,4 (таблица 10), и (e) huMA79b.v32-SMCC-DM1, загрузка лекарственного средства составляет приблизительно 2,9 (таблица 10)) мышам SCID, имеющим человеческую В-клеточную опухоль, приводит к значительному ингибированию роста опухоли. Контроль включает Herceptin® (трастузумаб)-SMCC-DM1 (анти-HER2-SMCC-DM1). На фигуре 21В представлен график изменения процента по массе у исследуемых мышей с ксенотрансплантатом Granta-519 (фигура 21A и таблица 10), указывающий на отсутствие каких-либо значимых изменений массы в течение первых 7 дней проведения исследований. «hu» означает гуманизированное антитело, а “ch” означает химерное антитело.
На фигуре 22 представлены конъюгаты «сконструированное на основе цистеина анти-CD79b антитело–лекарственное средство» (ADC), где молекула лекарственного средства присоединена к сконструированной цистеиновой группе: в легкой цепи (LC-ADC); тяжелой цепи (HC-ADC) и в Fc-области (Fc-ADC).
На фигуре 23 проиллюстрированы стадии: (i) восстановления аддуктов цистеиновых дисульфидов и межцепьевых и внутрицепьевых дисульфидов в анти-CD79b антителе, сконструированном на основе цистеина (ThioMab), восстановителем TCEP (гидрохлоридом трис-(2-карбоксиэтил)фосфина); (ii) частичного окисления, то есть повторного окисления с образованием межцепьевых и внутрицепьевых дисульфидов под действием dhAA (дегидроаскорбиновой кислоты); и (iii) конъюгирования повторно окисленного антитела с промежуточным соединением «лекарственное средство–линкер» с образованием конъюгата «цистеиновое анти-CD79b антитело–лекарственное средство» (ADC).
На фигуре 24 показаны (A) последовательность легкой цепи (SEQ ID NO: 229) и (B) последовательность тяжелой цепи (SEQ ID NO: 228) гуманизированного анти-CD79b антитела, сконструированного на основе цистеина (тио-huMA79b.v17-HC-A118C), где аланин, присутствующий в положении 118 в соответствии с Европейской системой нумерации (положение аланина 118 в соответствии с последовательной системой нумерации; положение по Кабату - 114), в тяжелой цепи был заменен на цистеин. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 25 показаны (A) последовательность легкой цепи (SEQ ID NO: 231) и (B) последовательность тяжелой цепи (SEQ ID NO: 230) гуманизированного анти-CD79b антитела, сконструированного на основе цистеина (тио-huMA79b.v18-HC-A118C), где аланин, присутствующий в положении 118 в соответствии с Европейской системой нумерации (положение аланина 118 в соответствии с последовательной системой нумерации; положение по Кабату - 114) в тяжелой цепи был заменен на цистеин. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 26 показаны (A) последовательность легкой цепи (SEQ ID NO: 233) и (B) последовательность тяжелой цепи (SEQ ID NO: 232) гуманизированного анти-CD79b антитела, сконструированного на основе цистеина (тио-huMA79b.v28-HC-A118C), где аланин, присутствующий в положении 118 в соответствии с Европейской системой нумерации (положение аланина 118 в соответствии с последовательной системой нумерации; положение по Кабату - 114) в тяжелой цепи был заменен на цистеин. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 27 показаны (A) последовательность легкой цепи (SEQ ID NO: 235) и (B) последовательность тяжелой цепи (SEQ ID NO: 234) анти-CD79b антитела, сконструированного на основе цистеина (тио-huMA79b-LC-V205C), где валин в положении 205 по Кабату (положение валина 209 в соответствии с последовательной системой нумерации) легкой цепи был заменен на цистеин. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в легкой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело.
На фигуре 28 показаны (A) последовательность легкой цепи (SEQ ID NO: 237) и (B) последовательность тяжелой цепи (SEQ ID NO: 236) анти-CD79b антитела, сконструированного на основе цистеина (тио-huMA79b-НC-А118C), где аланин, присутствующий в положении 118 в соответствии с Европейской системой нумерации (положение аланина 118 в соответствии с последовательной системой нумерации; положение по Кабату - 114) в тяжелой цепи был заменен на цистеин. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело.
На фигурах 29A-B представлены FACS-графики, указывающие на то, что связывание конъюгатов «анти-CD79b антитело тиоMAb–лекарственное средство» (TDC) согласно изобретению с CD79b, экспрессируемым на поверхности клеток BJAB, содержащих люциферазу, аналогично связыванию конъюгированных (A) вариантов LC(V205C) тио-MAb и (B) вариантов HC(A118C) тио-MAb антитела chMA79b с MMAF. Детектирование проводили с помощью масс-спектрометрии (МС) с использованием ФЭ-конъюгированного антитела против человеческого IgG. «Тио» означает сконструированное на основе цистеина антитело.
На фигурах 30A-D представлены FACS-графики, указывающие на то, что связывание конъюгатов «анти-CD79b антитело тиоMAb–лекарственное средство» (TDC) согласно изобретению с CD79b, экспрессируемым на поверхности клеток BJAB, содержащих люциферазу, аналогично связыванию (A) «оголенных» (неконъюгированных) вариантов НC (А118С) тио-MAb huMA79b.v18 и конъюгированных вариантов HC (A118C) тио-MAb антитела huMA79b.v18 с различными указанными конъюгатами лекарственных средств ((В) MMAF, (C) MMAE и (D) DM1)). Детектирование проводили с помощью масс-спектрометрии (МС) с использованием ФЭ-конъюгированного антитела против человеческого IgG. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигурах 31A-D представлены FACS-графики, указывающие на то, что связывание конъюгатов «анти-CD79b антитело тиоMAb–лекарственное средство» (TDC) согласно изобретению с CD79b, экспрессируемым на поверхности клеток BJAB, содержащих люциферазу, аналогично связыванию (A) «оголенных» (неконъюгированных) вариантов НC (А118С) тио-MAb huMA79b.v28 и конъюгированных вариантов HC (A118C) тио-MAb антитела huMA79b.v28 с различными указанными конъюгатами лекарственных средств ((В) MMAЕ, (C) DM1 и (D) MMAF)). Детектирование проводили с помощью масс-спектрометрии (МС) с использованием ФЭ-конъюгированного антитела против человеческого IgG. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигурах 32A-D представлены FACS-графики, указывающие на то, что связывание конъюгатов «антитело против CD79b собакоподобных обезьян тио-MAb–лекарственное средство» (TDC) согласно изобретению с CD79b, экспрессируемым на поверхности BJAB-клеток, экспрессирующих CD79b собакоподобных обезьян, аналогично связыванию (A) «оголенных» (неконъюгированных) вариантов НLC(А118с) тио-Mab против CD79b собакоподобных обезьян (ch10D10) и конъюгированных вариантов HC (A118C) тио-MAb против CD79b собакоподобных обезьян (ch10D10) с различными указанными конъюгатами лекарственных средств ((В) MMAE, (C) DM1 и (D) MMAF)). Детектирование проводили с помощью масс-спектрометрии (МС) с использованием ФЭ-конъюгированного антитела против человеческого IgG. «Тио» означает сконструированное на основе цистеина антитело.
На фигуре 33A представлен график ингибирования роста опухоли in vivo у моделей ксенотрансплантата Granta-519 (человеческой лимфомы клеток коры головного мозга), на котором видно, что введение анти-CD79b TDC, которые отличаются в положениях введенного цистеина (LC (V205C) или HC (A118C)) и/или различными дозами лекарственного средства, мышам SCID, имеющим человеческие В-клеточные опухоли, приводит к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-chMA79b-HC(A118C)-MC-MMAF с загрузкой лекарственного средства приблизительно 1,9 (таблица 11) или тио-chMA79b-LC(V205C)-MC-MMAF с загрузкой лекарственного средства приблизительно 1,8 (таблица 11), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали hu-anti-HER2-MC-MMAF и тио-hu-anti-HER2-HC(A118C)-MC-MMAF и chMA79b-MC-MMAF. На фигуре 33B представлен график изменения процента по массе у исследуемых мышей с ксенотрансплантатом Granta-519 (фигура 33A и таблица 11), указывающий на отсутствие каких-либо значимых изменений массы в течение первых 14 дней проведения исследований. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 34A представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата клеток BJAB, содержащих люциферазу (лимфомы Беркитта), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (MCvcPAB-MMAE, BMPEO-DM1 или MC-MMAF), мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,87 (таблица 12), тио-huMA79b.v28-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,85 (таблица 12), или тио-huMA79b.v28-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,95 (таблица 12), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE), контрольное антитело huMA79b.v28 (huMA79b.v28-SMCC-DM1 и тио-huMA79b.v28-HC(A118C)) и контрольное анти-CD22 антитело (тио-hu-anti-CD22(10F4v3)-HC(A118C)-MC-MMAF). На фигуре 34B представлен график изменения процента по массе у исследуемых мышей с ксенотрансплантатом BJAB-люциферазы (фигура 34А и таблица 12), указывающий на отсутствие каких-либо значимых изменений массы в течение первых 7 дней проведения исследований. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 35A представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата WSU-DLCL2 (диффузной крупноклеточной лимфомы), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (MCvcPAB-MMAE, BMPEO-DM1 или MC-MMAF), мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,87 (таблица 13), тио-huMA79b.v28-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,85 (таблица 13), или тио-huMA79b.v28-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,95 (таблица 13), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE), контрольное антитело huMA79b.v28 (huMA79b.v28-SMCC-DM1 и тио-huMA79b.v28-HC(A118C)) и контрольное анти-CD22 антитело (тио-hu-anti-CD22(10F4v3)-HC(A118C)-MC-MMAF). На фигуре 35B представлен график изменения процента по массе у исследуемых мышей с ксенотрансплантатом WSU-DLCL2 (фигура 35А и таблица 13), указывающий на отсутствие каких-либо значимых изменений массы в течение первых 7 дней проведения исследований. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 36 представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата DOHH2 (фолликулярной лимфомы), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (BMPEO-DM1, MC-MMAF или MCvcPAB-MMAE)), мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-BMPEO-DM1 с загрузкой лекарственного средства приблизительно 1,85 (таблица 14), тио-huMA79b.v28-MC-MMAF с загрузкой лекарственного средства приблизительно 1,95 (таблица 14), или тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE) с загрузкой лекарственного средства приблизительно 1,87 (таблица 14), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE), контрольное антитело huMA79b.v28 (huMA79b.v28-SMCC-DM1 и тио-huMA79b.v28-HC(A118C)) и контрольное анти-CD22 антитело (тио-hu-anti-CD22(10F4v3)-HC(A118C)-MC-MMAF). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 37 представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата клеток BJAB, содержащих люциферазу, (лимфомы Беркитта), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (MCvcPAB-MMAE, BMPEO-DM1 или MC-MMAF), и/или в различных дозах мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1 с загрузкой лекарственного средства приблизительно 1,85 (таблица 15), тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,9 (таблица 15), или тио-huMA79b.v28-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,9 (таблица 15), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали носитель (только буфер), контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE), контрольное антитело huMA79b.v28 (тио-huMA79b.v28-HC(A118C)) и контрольное анти-CD22 антитело (тио-hu-anti-CD22(10F4v3)-HC(A118C)-MC-MMAF). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 38A представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата Granta-519 (человеческой лимфомы клеток коры головного мозга), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (BMPEO-DM1 или MC-MMAF), и/или в различных дозах мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1 с загрузкой лекарственного средства приблизительно 1,85 (таблица 16) или тио-huMA79b.v28-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,95 (таблица 16), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF). На фигуре 38B представлен график изменения процента по массе у исследуемых мышей с ксенотрансплантатом Granta-519 (фигура 38А и таблица 16), указывающий на отсутствие каких-либо значимых изменений массы в течение первых 14 дней проведения исследований. «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 39 представлен график ингибирование роста опухоли in vivo у модели ксенотрансплантата WSU-DLCL2 (диффузной крупноклеточной лимфомы), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (BMPEO-DM1, MC-MMAF или MCvcPAB-MMAE), и/или в различных дозах мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,85 (таблица 17), тио-huMA79b.v28-HC(A118C)-MC-MMAF с загрузкой лекарственного средства приблизительно 1,9 (таблица 17) или тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,9 (таблица 17), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали носитель (только буфер) и контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MC-MMAF, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 40 представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата Granta-519 (человеческой лимфомы клеток коры головного мозга), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (BMPEO-DM1 или MCvcPAB-MMAE), и/или в различных дозах мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1 с загрузкой лекарственного средства приблизительно 1,85 (таблица 18) или тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,87 (таблица 18), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAЕ). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 41 представлен график, построенный по результатам анализа на пролиферацию опухолевых клеток in vitrо (A) BJAB, (B) Granta-519 или (C) WSU-DLCL2, обработанных различными концентрациями 0,001-10000 нг TDC на мл, включая: (1) контрольное антитело тио-hu-anti-gD-HC(A118C)-MCvcPAB-MMAE, с загрузкой 2,0 MMAE/Ab, (2) контрольное антитело тио-hu-anti-gD-HC(A118C)-MC-MMAF, c загрузкой 2,1 MMAF/Ab, (3) контрольное антитело тио-hu-anti-gD-HC(A118C)-BMPEO-DM1, с загрузкой 2,1 DM1/Ab, (4) тио-huMA79b.v18-HC(A118C)-MC-MMAF, с загрузкой 1,91 MMAF/Ab, (5) тио-huMA79b.v18-HC(A118C)-BMPEO-DM1, с загрузкой 1,8 DM1/Ab, и (6) тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой 2,0 MMAE/Ab. “Тио” означает сконструированное на основе цистеина антитело, а “hu” означает гуманизированное антитело. “gD” означает гликопротеин D.
На фигуре 42 представлена нуклеотидная последовательность кДНК (SEQ ID NO: 238) PRO283627, где SEQ ID NO: 235 представляет собой клон, обозначенный “DNA548455” (также называемый здесь “cyno CD79b”). Нуклеотидная последовательность кодирует CD79b собакоподобных обезьян со старт- и стоп-кодонами, которые указаны жирным шрифтом и подчеркнуты.
На фигуре 43 представлена аминокислотная последовательность (SEQ ID NO: 239), происходящая от кодирующей последовательности SEQ ID NO: 235, представленной на фигуре 42.
На фигуре 44 представлена нуклеотидная последовательность (SEQ ID NO: 240) легкой цепи антитела против CD79b собакоподобных обезьян (ch10D10). Нуклеотидная последовательность кодирует легкую цепь антитела против CD79b собакоподобных обезьян (ch10D10) со старт- и стоп-кодонами, которые указаны жирным шрифтом и подчеркнуты.
На фигуре 45 представлена аминокислотная последовательность (SEQ ID NO: 241), не содержащая первых 18 аминокислот сигнальной последовательности и происходящая от кодирующей последовательности SEQ ID NO: 240, представленной на фигуре 44. Вариабельные области (SEQ ID NO: 302) не подчеркнуты.
На фигуре 46 представлена нуклеотидная последовательность (SEQ ID NO: 242) тяжелой цепи антитела против CD79b собакоподобных обезьян (ch10D10). Нуклеотидная последовательность кодирует тяжелую цепь антитела против CD79b собакоподобных обезьян (ch10D10) со старт- и стоп-кодонами, которые указаны жирным шрифтом и подчеркнуты.
На фигуре 47 представлена аминокислотная последовательность (SEQ ID NO: 243), не содержащая первых 18 аминокислот сигнальной последовательности и последнего лизина (К) перед стоп-кодоном и происходящая от кодирующей последовательности SEQ ID NO: 242, представленной на фигуре 46. Вариабельные области (SEQ ID NO: 301) не подчеркнуты.
На фигуре 48 показаны (A) последовательность легкой цепи (SEQ ID NO: 245) и (B) последовательность тяжелой цепи (SEQ ID NO: 244) антитела против CD79b собакоподобных обезьян, сконструированного на основе цистеина (тио-anti-cynoCD79b-HC-A118C), где аланин, присутствующий в положении 118 в соответствии с Европейской системой нумерации (положение аланина 118 в соответствии с последовательной системой нумерации; положение по Кабату - 114), в тяжелой цепи был заменен на цистеин. Аминокислота D в положении 6 в соответствии с Европейской системой нумерации (на фигуре заштрихована) в тяжелой цепи может альтернативно представлять собой Е. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе в тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело.
На фигуре 49 показаны (A) последовательность легкой цепи (SEQ ID NO: 300) и (B) последовательность тяжелой цепи (SEQ ID NO: 299) антитела против CD79b собакоподобных обезьян, сконструированного на основе цистеина (тио-anti-cynoCD79b-LC-V205C), где валин в положении 205 по Кабату (положение валина 209 в соответствии с последовательной системой нумерации) в легкой цепи был заменен на цистеин. Аминокислота D в положении 6 в соответствии с Европейской системой нумерации (на фигуре заштрихована) в тяжелой цепи может альтернативно представлять собой Е. Молекула лекарственного средства может быть присоединена к введенной цистеиновой группе тяжелой цепи. На каждой фигуре модифицированная аминокислота показана жирным шрифтом с двойным подчеркиванием. Константные области подчеркнуты одной чертой. Вариабельные области не подчеркнуты. Fc-область показана курсивом. «Тио» означает сконструированное на основе цистеина антитело.
На фигуре 50 представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата BJAB-cynoCD79b (клетки BJAB, экспрессирующие cynoCD79b) (лимфомы Беркитта), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «линкер–лекарственное средство» (BMPEO-DM1, MC-MMAF или MCvcPAB-MMAE), мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,85 (таблица 19), тио-huMA79b.v28-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,9 (таблица 19), или тио-huMA79b.v28-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,9 (таблица 19), тио-anti-cyno-CD79b (ch10D10)-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,8 (таблица 19), тио-anti-cyno-CD79b (ch10D10)-HC(A118C)-MC-MMAF, с загрузкой лекарственного средства приблизительно 1,9 (таблица 19), или тио-anti-cyno-CD79b (ch10D10)-HC(A118C)-MCvcPAB-MMAE, с загрузкой лекарственного средства приблизительно 1,86 (таблица 19), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1, тио-hu-anti-HER2-HC(A118C)-MCvcPAB-MMAE, тио-hu-anti-HER2-HC(A118C)-MC-MMAF). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
На фигуре 51 представлен график ингибирования роста опухоли in vivo у модели ксенотрансплантата BJAB-cynoCD79b (клетки BJAB, экспрессирующие cynoCD79b) (лимфомы Беркитта), где показано, что введение анти-CD79b TDC, конъюгированных с различными молекулами «ВМРЕО-DM1-линкер–лекарственное средство», в различных дозах мышам SCID, имеющим человеческие В-клеточные опухоли, приводило к значительному ингибированию роста опухоли. Модели ксенотрансплантата, обработанные тио-huMA79b.v28-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,85 (таблица 20), или тио-anti-cyno (ch10D10)-HC(A118C)-BMPEO-DM1, с загрузкой лекарственного средства приблизительно 1,8 (таблица 20), обнаруживали значительное ингибирование роста опухоли во время исследования. В качестве контроля использовали контрольное анти-HER2 антитело (тио-hu-anti-HER2-HC(A118C)-BMPEO-DM1), контрольное антитело huMA79b.v28 (тио-huMA79b.v28-HC(A118C) и контрольное антитело anti-cynoCD79b(ch10D10) (тио-anti-cynoCD79b(ch10D10)-HC(A118C)). «Тио» означает сконструированное на основе цистеина антитело, а «hu» означает гуманизированное антитело.
Подробное описание предпочтительных вариантов изобретения
Настоящее изобретение относится к способам, композициям, наборам и промышленным изделиям, применяемым для идентификации композиций, используемых для лечения гемопоэтической опухоли у млекопитающих, и к способам применения таких композиций согласно изобретению в указанных целях.
Подробное описание указанных способов, композиций, наборов и промышленных изделий приводится ниже.
I. Общие методы
Настоящее изобретение может быть осуществлено, если это не оговорено особо, стандартными методами, применяемыми в молекулярной биологии (включая рекомбинантные методы), в микробиологии, биологии клетки, биохимии и иммунологии, и известными специалистам. Такие методы подробно описаны в литературе, например, в руководствах «Molecular Cloning: A Laboratory Manual», second edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987, и в современных периодических изданиях); “PCR: The Polymerase Chain Reaction”, (Mullis et al., ed., 1994); “A Practical Guide to Molecular Cloning” (Perbal Bernard V., 1988); “Phage Display: A Laboratory Manual” (Barbas et al., 2001).
II. Определения
Для лучшего понимания настоящего изобретения ниже приводятся определения терминов, употребляемых в настоящем описании, при этом, если это не оговорено особо, подразумевается, что термины, употребляемые в единственном числе, могут означать и существительные во множественном числе, и наоборот. Если при определении любого термина в данном описании возникают противоречия с определением, приводимым в любом документе, вводимом в настоящее описание посредством ссылки, то они могут быть урегулированы в соответствии с описанием, представленным ниже.
Используемый здесь термин “маркер В-клеточной поверхности” или “антиген В-клеточной поверхности” означает антиген, экспрессируемый на поверхности В-клетки, на которую может быть направлен антагонист, связывающийся с этой клеткой, включая но не ограничиваясь ими, антитела против антигена В-клеточной поверхности или растворимой формы антигена В-клеточной поверхности, обладающие способностью ингибировать связывание лиганда с природным В-клеточным антигеном. Примерами маркеров В-клеточной поверхности являются маркеры поверхности лейкоцитов, такие как CD10, CD19, CD20, CD21, CD22, CD23, CD24, CD37, CD40, CD53, CD72, CD73, CD74, CDw75, CDw76, CD77, CDw78, CD79a, CD79b, CD80, CD81, CD82, CD83, CDw84, CD85 и CD86 (описание см. в публикации “The Leukocyte Antigen Facts Book, 2nd Edition, 1997, ed. Barclay et al., Academic Press, Harcourt Brace & Co., New York). Другими маркерами В-клеточной поверхности являются RP105, FcRH2, B-клеточный CR2, CCR6, P2X5, HLA-DOB, CXCR5, FCER2, BR3, BAFF, BLyS, Btig, NAG14, SLGC16270, FcRH1, IRTA2, ATWD578, FcRH3, IRTA1, FcRH6, BCMA и 239287. Маркер В-клеточной поверхности, представляющий особый интерес, экспрессируется преимущественно на В-клетках, в отличие от других не-В-клеточных тканях млекопитающего, и может экспрессироваться как на В-клетках-предшественниках, так и на зрелых В-клетках.
Используемый здесь термин «CD79b» означает любой природный CD79b, происходящий от любых позвоночных, включая млекопитающих, таких как приматы (например, человек, собакоподобные обезьяны (cyno) и грызуны (например, мыши и крысы), если это не оговорено особо. Человеческий CD79b также обозначается здесь «PRO36249» (SEQ ID NO: 2) и кодируется нуклеотидной последовательностью (SEQ ID NO: 1), также обозначаемой здесь «DNA225786». CD79b собакоподобных обезьян также обозначается здесь «cyno-CD79b» или «PRO283627» (SEQ ID NO: 239) и кодируется нуклеотидной последовательностью (SEQ ID NO: 238), также обозначаемой здесь «DNA548455». Термин «CD79b» охватывает «полноразмерный» непроцессированный CD79b, а также любую форму CD79b, которая образуется в результате процессинга в клетке. Этот термин также охватывает природные варианты CD79b, например, сплайсированные варианты, аллельные варианты, и изоформы. Описанные здесь полипептиды CD79b могут быть выделены из различных источников, например, из человеческих тканей или из других источников, либо они могут быть получены рекомбинантными методами или методами синтеза. «Нативная последовательность полипептида CD79b» включает полипептид, имеющий такую же аминокислотную последовательность, как и соответствующий природный полипептид CD79b. Такие полипептиды CD79b с нативной последовательностью могут быть выделены из природного источника, либо они могут быть получены рекомбинантными методами или методами синтеза. Термин «полипептид CD79b с нативной последовательностью», в частности, охватывает природные усеченные или секретируемые формы специфического полипептида CD79b (например, последовательность внеклеточного домена), природные варианты (например, альтернативно сплайсированные формы) и природные аллельные варианты полипептида. В некоторых вариантах изобретения описанные здесь полипептиды CD79b с нативной последовательностью представляют собой зрелые полипептиды или полноразмерные полипептиды с нативной последовательностью, содержащие полноразмерные аминокислотные последовательности, представленные в описании графического материала. В описании графического материала, старт- и стоп-кодоны (если они указаны) показаны жирным шрифтом и подчеркнуты. Остатки нуклеиновой кислоты, обозначенные “N” в описании графического материала, представляют собой любые остатки нуклеиновой кислоты. Хотя полипептиды CD79b, указанные в описании графического материала, начинаются с метиониновых остатков, обозначенных в данном описании как положение аминокислоты 1, однако возможно, что в качестве начального аминокислотного остатка для полипептидов CD79b могут быть использованы и другие метиониновые остатки, расположенные выше или ниже от положения аминокислоты 1, как показано в описании графического материала.
Используемые здесь термины «MA79b» или «мышиное анти-CD79b антитело» или «мышиное антитело против CD79b», в частности, означают мышиное моноклональное анти-CD79b антитело, которое содержит вариабельный домен легкой цепи SEQ ID NO: 10 (фигуры 7A-B) и вариабельный домен тяжелой цепи SEQ ID NO: 14 (фигуры 8A-B). Мышиное моноклональное анти-CD79b антитело может быть закуплено у коммерческих фирм, таких как Biomeda (антитело против человеческого CD79b; Foster City, CA), BDbioscience (антитело против человеческого CD79b; San Diego, CA) или Ancell (антитело против человеческого CD79b; Bayport, MN), либо оно может быть выделено из гибридомного клона 3A2-2E7, депонированного в Американской коллекции типовых культур (ATCC) под депозитарным номером HB11413, присвоенным ATCC 20 июля 1993 г.
Используемый здесь термин «chMA79b» или «химерное антитело MA79b», в частности, означает химерное антитело против человеческого CD79b (описанное ранее в заявке на патент США № 11/462336, поданной 3 августа 2006 г.), где указанное химерное анти-CD79b антитело содержит легкую цепь SEQ ID NO: 4 (фигура 4). Легкая цепь SEQ ID NO: 4 также содержит вариабельный домен SEQ ID NO: 10 (фигуры 7A-B) и константный домен легкой цепи человеческого IgG1. Химерное анти-CD79b антитело также содержит тяжелую цепь SEQ ID NO: 6 (фигура 6). Тяжелая цепь SEQ ID NO: 6 также содержит вариабельный домен SEQ ID NO: 14 (фигуры 8A-B) и константный домен тяжелой цепи человеческого IgG1.
Используемый здесь термин «анти-cynoCD79b» или «антитело против CD79b собакоподобных обезьян» означает антитела, которые связываются с CD79b собакоподобных обезьян (SEQ ID NO: 239 фигуры 43) (как было описано ранее в заявке на патент США № 11/462336, поданной 3 августа 2006 г.). Используемый здесь термин “анти-cynoCD79b (ch10D10)» или «ch10D10» означает химерное антитело против CD79b собакоподобных обезьян (описанное ранее в заявке на патент США № 11/462336, поданной 3 августа 2006 г.), которое связывается с CD79b собакоподобных обезьян (SEQ ID NO: 239 фигуры 43). Анти-cynoCD79b(ch10D10) или ch10D10 представляет собой химерное антитело против CD79b собакоподобных обезьян, которое содержит легкую цепь SEQ ID NO: 241 (фигура 45). Анти-cynoCD79b(ch10D10) или ch10D10 также содержит тяжелую цепь SEQ ID NO: 243 (фигура 47).
Используемый здесь термин «MA79b-гибрид» или «MA79b-связанное гуманизированное антитело» или «huMA79b-гибрид», в частности, означает гибрид, полученный путем присоединения гипервариабельных областей, происходящих от мышиного анти-CD79b антитела (MA79b), к акцепторной последовательности человеческой консенсусной VL каппа I (huKI) и человеческой консенсусной VH подгруппы III (huIII) с заменами R71A, N73T и L78A (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992)) (см. пример 1A и фигуры 7 (SEQ ID NO: 11) и 8 (SEQ ID NO: 15)).
Используемый здесь термин «модификация» аминокислотного остатка/положения означает замену в первичной аминокислотной последовательности по сравнению с исходной аминокислотной последовательностью, где указанная замена происходит в результате модификации последовательности, включающей указанные аминокислотные остатки/положения. Так, например, типичными модификациями являются замена остатка (или остатка в указанном положении) другим аминокислотным остатком (например, консервативная или неконсервативная замена), инсерция одной или нескольких (обычно менее чем 5 или 3) аминокислот, смежных с указанным остатком/положением, и делеция указанного остатка/положения. Термин «аминокислотная замена» или ее вариант означает замену имеющегося аминокислотного остатка в предварительно определенной (исходной) аминокислотной последовательности другим аминокислотным остатком. Вообще говоря и предпочтительно, модификация приводит к изменению по меньшей мере одной физико-биохимической активности полипептидного варианта по сравнению с активностью полипептида, содержащего исходную аминокислотную последовательность (или «последовательность дикого типа»). Так, например, в случае антител, измененной физико-биохимической активностью может быть аффинность связывания с молекулой-мишенью, способность связываться с молекулой-мишенью и/или влияние на связывание с молекулой-мишенью.
Используемый здесь термин “антитело” применяется в самом широком смысле, а в частности охватывает отдельные моноклональные анти-CD79b антитела (включая агонисты, антагонисты, нейтрализующие антитела, полноразмерные моноклональные антитела или интактные моноклональные антитела), композиции анти-CD79b антител, обладающие полиэпитопной специфичностью, поликлональные антитела, поливалентные антитела, мультиспецифические антитела (например, биспецифические антитела, при условии, что они обладают нужной биологической активностью), образованные по меньшей мере из двух интактных антител, одноцепочечные анти-CD79b антитела и фрагменты анти-CD79b антител (см. ниже), включая Fab-, Fab’-, F(ab’)2- и Fv- фрагменты, диантитела, однодоменные антитела (sdAbs), при условии, что они обладают нужной биологической или иммунологической активностью. Используемые здесь термины «иммуноглобулин (Ig)» и «антитело» являются синонимами. Антитело может быть человеческим, гуманизированным и/или аффинно зрелым.
Термин «анти-CD79b антитело» или «антитело, которое связывается с CD79b» означает антитело, которое способно связываться с CD79b с аффинностью, достаточной для использования данного антитела в качестве диагностического и/или терапевтического средства, нацеленного на CD79b. Предпочтительно уровень связывания анти-CD79b антитела с неродственным белком, то есть белком, не являющимся CD79b, составляет менее чем примерно 10% от связывания антитела с CD79b, как было определено с помощью, например, радиоиммуноанализа (РИА). В некоторых вариантах изобретения антитело, связывающееся с CD79b, имеет константу диссоциации (Kd), составляющую ≤1 мкM, ≤100 нM, ≤10 нM, ≤1 нM или ≤0,1 нM. В некоторых вариантах изобретения анти-CD79b антитело связывается с эпитопом CD79b, который является консервативным у CD79b различных видов.
«Выделенное» антитело представляет собой антитело, которое было идентифицировано и выделено и/или очищено от компонентов его природного окружения. Контаминирующими компонентами его природного окружения являются материалы, негативно влияющие на терапевтическую эффективность антитела, и такими компонентами могут быть ферменты, гормоны и другие белковые или небелковые растворенные вещества. В предпочтительных вариантах изобретения указанное антитело может быть очищено: (1) на более чем 95% по массе антитела, как может быть определено методом Лаури, а более предпочтительно не более чем на 99% по массе антитела, (2) до степени, достаточной для получения, по меньшей мере, 15 остатков у N-концевой или внутренней части аминокислотной последовательности, что может быть определено с использованием секвенатора, снабженного центрифужным сосудом, или (3) до гомогенности, что может быть подтверждено с помощью электрофореза в ДСН-ПААГ в восстанавливающих или в невосстанавливающих условиях с окрашиванием кумасси синим или, предпочтительно, серебром. Термин “выделенное антитело” включает антитело in situ в рекомбинантных клетках, если отсутствует, по меньшей мере, один природный компонент этого антитела. Однако, обычно, выделенное антитело может быть получено, по меньшей мере, в одной стадии очистки.
Основная 4-цепочечная молекула антитела представляет собой гетеротетрамерный гликопротеин, состоящий из двух идентичных легких (L) цепей и двух идентичных тяжелых (H) цепей (антитело IgM состоит из 5 основных гетеротетрамерных молекул вместе с дополнительным полипептидом, называемым J-цепью, а поэтому оно содержит 10 антигенсвязывающих сайтов, а секретированные антитела IgА могут полимеризоваться с образованием поливалентных конструкций, содержащих 2-5 основных 4-цепочечных молекулы вместе с J-цепью). В случае IgG 4-цепочечная молекула в основном имеет размер примерно 150000 дальтон. Каждая L-цепь связана с Н-цепью одной ковалентной дисульфидной связью, а две Н-цепи связаны друг с другом одной или несколькими дисульфидными связями в зависимости от изотипа Н-цепи. Каждая H- и L-цепь также имеет равномерно расположенные внутрицепьевые дисульфидные мостики. Каждая Н-цепь имеет у своего N-конца вариабельный домен (VH), за которым следуют три константных домена (CH) для каждой из α- и γ-цепей, и четыре CH-домена для изотипов μ и ε. Каждая L-цепь имеет у своего N-конца вариабельный домен (VL), за которым следует константный домен (CL) у его другого конца. VL расположена на одной линии с VH, а CL расположена на одной линии с первым константным доменом тяжелой цепи (CH1). Очевидно, что конкретные аминокислотные остатки образуют пограничную область между вариабельными доменами легкой цепи и тяжелой цепи. Спаривание VH и VL приводит к образованию одного антигенсвязывающего сайта. Структура и свойства антител различных классов описаны, например, в публикации Basic and Clinical Immunology, 8th edition, Daniel P. Stites, Abba I. Terr and Tristram G. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994, page 71 and Chapter 6.
L-цепь, происходящая от антитела позвоночных любого вида, может принадлежать к одному из двух четко различаемых типов, называемых каппа и лямбда, исходя из аминокислотных последовательностей их константных доменов. Иммуноглобулины, в зависимости от аминокислотной последовательности константного домена их тяжелых цепей (CH), могут быть отнесены к различным классам или изотипам. Существует пять классов иммуноглобулинов: IgA, IgD, IgE, IgG и IgM, имеющие тяжелые цепи, обозначаемые α, δ, ε, γ и μ, соответственно. Классы γ и α также подразделены на подклассы, исходя из относительно небольших различий в последовательностях и функциях CH, например, у человека экспрессируются иммуноглобулины следующих подклассов: IgG1, IgG2, IgG3, IgG4, IgA1 и IgA2.
Термины «вариабельная область» или «вариабельный домен» антитела означает амино-концевые домены тяжелой или легкой цепи антитела. Вариабельный домен тяжелой цепи может называться “VH”. Вариабельный домен легкой цепи может называться “VL”. Эти домены в основном являются наиболее вариабельными частями антитела и содержат антигенсвязывающие сайты.
Термин “вариабельный” относится к некоторым сегментам вариабельных доменов, которые имеют значительные отличия в последовательностях различных антител. Домен V опосредует связывание с антигеном и определяет специфичность конкретного антитела к конкретному антигену. Однако вариабельность неравномерно распределяется по всем вариабельным доменам, состоящим из 110 аминокислот. Но обычно области V состоят из относительно инвариантных сегментов, называемых каркасными областями (FR), состоящими из 15-30 аминокислот, отделенных более короткими областями с гипервариабельностью, называемыми «гипервариабельными областями», каждая из которых имеет длину в 9-12 аминокислот. Каждый вариабельный домен нативной тяжелой и легкой цепей содержит четыре FR, имеющих, главным образом, β-складчатую конфигурацию и соединенных тремя гипервариабельными областями, которые образуют петли, соединяющие, а в некоторых случаях образующие часть β-складчатой структуры. Гипервариабельные области в каждой цепи удерживаются в непосредственной близости друг от друга посредством FR и, вместе с гипервариабельными областями другой цепи, участвуют в образовании антигенсвязывающего сайта антител (см. Kabat et al. Sequences of Proteins of Immunological Interest, Fifth Edition, National Institutes of Health, Bethesda, MD (1991)). Константные домены не принимают непосредственного участия в связывании антитела с антигеном, но обладают различными эффекторными функциями, такими как участие антитела в антитело-зависимой клеточной цитотоксичности (ADCC).
“Интактное” антитело представляет собой антитело, содержащее антигенсвязывающую вариабельную область, а также CL и по меньшей мере константные домены тяжелой цепи, CH1, CH2 и CH3. Константные домены могут представлять собой константные домены нативной последовательности (например, константные домены человеческой нативной последовательности) или варианты их аминокислотных последовательностей. Интактное антитело предпочтительно обладает одной или несколькими эффекторными функциями.
Используемый здесь термин «оголенное антитело» означает антитело, которое не является конъюгированным с цитотоксической молекулой или радиоактивной меткой.
«Фрагменты антител» содержат часть интактного антитела, а предпочтительно антигенсвязывающую или вариабельную область интактного антитела. Примерами фрагментов антител являются Fab-, Fab’-, F(ab’)2– и Fv-фрагменты; диантитела; линейные антитела (см. патент США № 5641870, пример 2; Zapata et al., Protein Eng. 8(10):1057-1062 [1995]); молекулы одноцепочечных антител; и мультиспецифические антитела, образованные из фрагментов антител. В одном из вариантов изобретения фрагмент антитела содержит антигенсвязывающий сайт интактного антитела, а поэтому он сохраняет свою способность связываться с антигеном.
В результате гидролиза антител папаином образуются два идентичных антигенсвязывающих фрагмента, называемых “Fab”-фрагментами, и один оставшийся “Fc”-фрагмент, название которого указывает на его способность легко кристаллизоваться. Fab-фрагмент состоит из полноразмерной L-цепи вместе с доменом вариабельной области H-цепи (VH), и первого константного домена одной тяжелой цепи (CH1). Каждый Fab-фрагмент является одновалентным в отношении связывания с антигеном, то есть он имеет один антигенсвязывающий сайт. В результате обработки антитела пепсином образуется один крупный F(ab')2-фрагмент, который приблизительно соответствует двум связанным дисульфидной связью Fab-фрагментам, обладающим двухвалентной антигенсвязывающей активностью и способностью перекрестно связываться с антигеном. Fab’-фрагменты отличаются от Fab-фрагментов присутствием нескольких дополнительных остатков у карбокси-конца домена CH1, включая один или несколько цистеинов, происходящих от шарнирной области антитела. Fab'-SH, используемый в настоящей заявке, представляет собой Fab', в котором цистеиновый(е) остаток(тки) константных доменов имеют свободную тиоловую группу. F(ab')2-фрагменты антитела первоначально были получены в виде пар Fab'-фрагментов, которые имеют расположенные между ними шарнирные цистеины. Специалистам также известны другие методы химического связывания фрагментов антител.
Fc-фрагмент содержит карбокси-концевые части обеих Н-цепей, связанных посредством дисульфидных связей. Эффекторные функции антител определяют по последовательностям Fc-области, которые представляют собой также части, распознаваемые Fc-рецепторами (FcR), находящимися на клетках некоторых типов.
«Fv» представляет собой минимальный фрагмент антитела, содержащий полноразмерный антиген-распознающий сайт и антигенсвязывающий сайт. Этот фрагмент состоит из димера одного вариабельного домена тяжелой цепи и одного вариабельного домена легкой цепи, жестко связанных друг с другом нековалентной связью. В одноцепочечном Fv (scFv) один вариабельный домен тяжелой цепи и один вариабельный домен легкой цепи могут быть ковалентно связаны гибким пептидным линкером, в результате чего легкая и тяжелая цепь могут ассоциироваться друг с другом с образованием «димерной» структуры, аналогичной структуре двухцепочечных Fv. После укладки этих двух доменов образуется шесть гипервариабельных петель (3 петли, каждая из которых происходит от Н- и L-цепи), которые обеспечивают аминокислотные остатки для связывания с антигеном и сообщают антителу специфичность связывания с антигеном. Однако даже один вариабельный домен (или половина Fv, содержащая только три CDR, специфичных к антигену) обладает способностью распознавать антиген и связываться с ним, хотя и с меньшей аффинностью, чем весь сайт связывания.
«Одноцепочечные Fv-фрагменты», также обозначаемые "sFv" или “scFv”, представляют собой фрагменты антитела, которые включают домены VH и VL антитела, соединенные в одной полипептидной цепи. Предпочтительно полипептид scFv также содержит между доменами VH и VL полипептидный линкер, который обеспечивает образование scFv со структурой, необходимой для связывания с антигеном. Описание scFv можно найти в работе Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994); Borrebaeck 1995, см. ниже.
Термин “диантитела” означает фрагменты антител с двумя антигенсвязывающими сайтами, где указанные фрагменты включают вариабельный домен тяжелой цепи (VH), соединенный с вариабельным доменом легкой цепи (VL) в одной и той же полипептидной цепи (VH-VL). Небольшие фрагменты антител получают путем конструирования scFv-фрагментов (см. предыдущий абзац) с использованием коротких линкеров (примерно 5-10 остатков) между доменами VH и VL, так, чтобы достигалось межцепочечное, но не внутрицепочечное, спаривание доменов V, с образованием двухвалентного фрагмента, то есть фрагмента, имеющего два антигенсвязывающих сайта. Диантитела могут быть двухвалентными или биспецифическими. Биспецифическими диантителами являются гетеродимеры двух «перекрестно связанных» scFv-фрагментов, в которых домены VH и VL двух антител присутствуют на различных полипептидных цепях. Диантитела более подробно описаны, например, в EP 404097; WO 93/11161; Hudson et al., Nat. Med. 9:129-134 (2003); и Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993). Триантитела и тетраантитела также описаны в публикации Hudson et al., Nat. Med. 9:129-134 (2003).
Используемый здесь термин “моноклональное антитело” означает антитело, полученное от популяции в основном гомогенных антител, то есть отдельных антител, входящих в данную популяцию и являющихся идентичными за исключением возможных природных мутаций, которые могут присутствовать в небольших количествах. Моноклональные антитела являются в высокой степени специфическими и направлены против одной антигенной детерминанты. Кроме того, в отличие от препаратов поликлональных антител, которые включают различные антитела, направленные против различных детерминант (эпитопов), каждое моноклональное антитело направлено против одной детерминанты на антигене. Помимо своей специфичности, моноклональные антитела обладают тем преимуществом, что они могут быть синтезированы так, чтобы они не содержали примесей других антител. Термин “моноклональный” не означает, что данное антитело должно быть продуцировано каким-либо конкретным методом. Так, например, моноклональные антитела согласно изобретению могут быть получены с помощью гибридомной технологии, впервые описанной Kohler et al. (1975) Nature 256:495, либо они могут быть получены методами рекомбинантных ДНК в клетках бактерий, эукариотических организмов или растений (см. патент США № 4816567). “Моноклональные антитела” могут быть также выделены из фаговых библиотек антител методами, описанными, например, Clackson et al., Nature, 352:624-628 (1991) и Marks et al., J. Mol. Biol., 222:581-597 (1991).
Используемые здесь моноклональные антитела включают, в частности, “химерные” антитела, в которых часть тяжелой и/или легкой цепи идентична или гомологична соответствующим последовательностям антител, происходящих от конкретного вида или принадлежащих к конкретному классу или подклассу антител, а остальная(ые) цепь(и) идентична(ы) или гомологична(ы) соответствующим последовательностям антител, происходящих от другого вида или принадлежащих к другому классу или подклассу антител, а также включают фрагменты таких антител, при условии, что они обладают нужной биологической активностью (см. патент США № 4816567 и публикацию Morrison et al. Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)). Представляющими интерес химерными антителами согласно изобретению являются «приматизированные» антитела, содержащие антигенсвязывающие последовательности вариабельных доменов, происходящие от последовательностей константной области приматов, не являющихся человеком (например, мартышек, человекообразных обезьян и т.п.), и человека.
“Гуманизированные формы” нечеловеческих антител (например, антител грызунов) представляют собой химерные антитела, которые содержат минимальную последовательность, происходящую от нечеловеческого антитела. По большей части, гуманизированные антитела представляют собой человеческие иммуноглобулины (антитело-реципиент), в которых остатки, происходящие от гипервариабельной области данного антитела-реципиента, заменены остатками, происходящими от гипервариабельной области нечеловеческого антитела (донорного антитела), такого как мышиное антитело, крысиное антитело, кроличье антитело или антитело приматов, не являющихся человеком, где указанные антитела обладают нужной специфичностью, аффинностью и связывающей способностью. В некоторых случаях остатки каркасной области (FR) человеческого иммуноглобулина заменены соответствующими остатками нечеловеческого антитела. Кроме того, гуманизированные антитела могут содержать остатки, которые не обнаруживаются в антителе-реципиенте или в антителе-доноре. Эти модификации вводят для улучшения свойств антитела. В общих чертах, гуманизированное антитело может содержать в основном все или по меньшей мере один, а обычно два вариабельных домена, в которых все или почти все гипервариабельные петли соответствуют гипервариабельным петлям не-человеческого иммуноглобулина, и все или почти все FR представляют собой FR с последовательностью человеческого иммуноглобулина. Гуманизированное антитело также содержит, но необязательно, по меньшей мере часть константной области иммуноглобулина (Fc), обычно области человеческого иммуноглобулина. Более подробное описание см. у Jones et al. Nature, 321:522-525 (1986); Riechmann et al. Nature 332:323-329 (1998) и Presta Curr. Op. Struct. Biol., 2:593-596 (1992). См. также нижеследующие обзорные статьи и цитируемые там работы: Vaswani and Hamilton, Ann. Allergy, Asthma & Immunol. 1:105-115 (1998); Harris, Biochem. Soc. Transactions 23:1035-1038 (1995); Hurle and Gross, Curr. Op. Biotech. 5:428-433 (1994).
Используемый здесь термин «тио» или «thio» относится к антителу, сконструированному на основе цистеина, а используемый здесь термин “hu” относится к гуманизированному антителу.
«Человеческое антитело» представляет собой антитело, имеющее аминокислотную последовательность которая соответствует аминокислотной последовательности антитела, продуцируемого у человека, и/или полученного любым из методов продуцирования человеческих антител, описанных в настоящей заявке. Это определение человеческого антитела, в частности, исключает гуманизированное антитело, содержащее антигенсвязывающие остатки нечеловеческого антитела. Человеческие антитела могут быть получены различными методами, известными специалистам, включая использование библиотек фагового представления. Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991). Для получения человеческих моноклональных антител могут быть также применены методы, описанные в публикации Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., J. Immunol., 147(1):86-95 (1991). См. также van Dijk & van de Winkel, Curr. Opin. Pharmacol., 5:368-74 (2001). Человеческие антитела могут быть получены путем введения антигена трансгенному животному, которое было модифицировано в целях продуцирования таких антител в ответ на антигенную стимуляцию, но у которого были блокированы эндогенные локусы, например, у иммунизированной мыши с ксенотрансплантатом (см, например, патенты США №№ 6075181 и 6150584, относящиеся к технологии XENOMOUSETM). См., также, например, публикацию Li et al., Proc. Natl. Acad. Sci. USA, 103:3557-3562 (2006), относящуюся к человеческим антителам, полученным с применением технологии человеческих В-клеточных гибридом.
Используемые здесь термины “гипервариабельная область”, “HVR” или “HV” означают области вариабельного домена антитела, которые являются в данной последовательности гипервариабельными и/или образуют петли определенной структуры. В общих чертах, указанные антитела содержат шесть гипервариабельных областей; три области в VH (Н1, Н2, Н3) и три области в VL (L1, L2, L3). В настоящей заявке используется ряд гипервариабельных областей, которые входят в объем настоящего изобретения. Гипервариабельные области (комплементарность-определяющие области (CDR)) по Кабату обладают высокой степенью вариабельности последовательности и находят широкое применение (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed., Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). Вместо определения гипервариабельных областей по Кабату, Чотия предложил определять гипервариабельные области по локализации структурных петель (Chothia & Lesk, J. Mol.Biol. 196:901-917 (1987)). Конец петли CDR-H1 по Чотия, при нумерации в соответствии с нумерацией Кабата, варьируется между положениями H32 и H34 в зависимости от длины петли (это происходит потому, что в соответствии со схемой нумерации по Кабату инсерции находятся в положениях H35A и H35B; при этом, если не присутствует ни 35A, ни 35B, то петля заканчивается в положении 32; если присутствует только 35A, то петля заканчивается в положении 33; а если присутствуют 35A и 35B, то петля заканчивается в положении 34). Определение гипервариабельных областей AbМ представляет собой компромисс между “CDR” по Кабату и “структурными петлями” по Чотия, и такие определения используются в компьютерной программе по моделированию антител Oxford Molecular’s AbМ. «Контактные» гипервариабельные области определяют, исходя из анализа имеющихся сложных кристаллических структур. Остатки каждой из этих гипервариабельных областей приводятся ниже.
Петля | По Кабату | AbМ | По Чотия | Контактные области |
L1 | L24-L34 | L24-L34 | L26-L32 | L30-L36 |
L2 | L50-L56 | L50-L56 | L50-L56 | L46-L55 |
L3 | L89-L97 | L89-L97 | L89-L97 | L89-L96 |
Н1 | Н31-Н35В | Н26-Н35В | Н26-Н32 | Н30-Н35В |
(Нумерация по Кабату) | ||||
Н1 | Н31-Н35 | Н26-Н35 | Н26-Н32 | Н30-Н35 |
(Нумерация по Чотия) | ||||
Н2 | Н50-Н65 | Н50-Н58 | Н52-Н56 | Н47-Н58 |
Н3 | Н95-Н102 | Н95-Н102 | Н95-Н102 | Н93-Н101 |
Термин “гипервариабельные области” может включать “удлиненные гипервариабельные области”, а именно: 24-36 или 24-34 (L1), 46-56 или 50-56 (L2) и 89-97 (L3) в VL; и 26-35В (Н1), 50-65, 47-65 или 49-65 (Н2) и 93-102, 94-102 или 95-102 (Н3) в VH. Остатки вариабельных доменов для каждого из указанных определений пронумерованы по Кабату и др., см. выше.
“Каркасными” или “FR” остатками являются остатки вариабельных доменов, за исключением остатков гипервариабельных областей, определенных выше.
Используемый здесь термин “остаток вариабельного домена, пронумерованный по Кабату” или “аминокислотное положение, пронумерованное по Кабату” и их варианты означает систему, используемую для нумерации вариабельных доменов тяжелой цепи или вариабельных доменов легкой цепи антител, описанной в справочнике по антителам Кабата (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed., Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). В соответствии с этой системой нумерации, фактическая первичная аминокислотная последовательность может содержать меньшее число или дополнительное число аминокислот, соответствующее укороченной или удлиненной FR- или CDR-области вариабельного домена. Так, например, вариабельный домен тяжелой цепи может включать инсерцию одной аминокислоты (остатка 52а в соответствии с нумерацией Кабата) после остатка 52 Н2, и остатки (например, остатки 82а, 82b и 82с и т.п., в соответствии с нумерацией Кабата), встроенные после остатка 82 FR тяжелой цепи. Нумерация остатков данного антитела по Кабату может быть осуществлена после выравнивания его последовательности в областях гомологии со “стандартной” последовательностью, пронумерованной по Кабату.
Система нумерации по Кабату обычно применяется к остаткам в вариабельном домене (приблизительно остаткам 1-107 легкой цепи и остаткам 1-113 тяжелой цепи)(например, Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). Европейская система нумерации «EU» или «Eu-индекс» обычно применяется к остаткам константной области тяжелой цепи иммуноглобулина (например, EU-индекс описан у Kabat et al., см. выше). Термин «EU-индекс по Кабату» означает нумерацию остатков человеческого антитела IgG1 в соответствии с Европейской системой нумерации. Если это не указано в настоящем описании, то указание на число остатков в вариабельном домене антител означает остатки, пронумерованные в соответствии с системой нумерации Кабата. Если это не указано в настоящем описании, то указание на число остатков в константном домене антител означает остатки, пронумерованные в соответствии с Европейской системой нумерации (см., например, предварительную заявку на патент США № 60/640323, на фигурах дана Европейская нумерация).
“Аффинно зрелым” антителом является антитело, имеющее одну или несколько модификаций в одной или нескольких HVR, где указанные модификации приводят к повышению аффинности антитела к антигену, по сравнению с родительским антителом, которое не имеет такую(их) модификацию(ий). Предпочтительные аффинно зрелые антитела имеют наномолярные или даже пикомолярные аффинности к антигену-мишени. Аффинно зрелые антитела получают методами, известными специалистам. В публикации Marks et al. Bio/Technology 10:779-783 (1992) описано созревание аффинности посредством перестановки доменов VH и VL. Неспецифический мутагенез HVR и/или каркасных остатков описан в публикациях Barbas et al. Proc Nat. Acad. Sci, USA 91:3809-3813 (1994); Schier et al. Gene 169:147-155 (1995); Yelton et al. J. Immunol. 155:1994-2004 (1995); Jackson et al., J. Immunol. 154(7):3310-9 (1995); и Hawkins et al, J. Mol. Biol. 226:889-896 (1992).
«Блокирующее» антитело или «антитело-антагонист» представляет собой антитело, ингибирующее или снижающее биологическую активность антигена, с которым оно связывается. Предпочтительные блокирующие антитела или антитела-антагонисты в основном или полностью ингибируют биологическую активность антигена.
Используемый здесь термин «антитело-агонист» означает антитело, которое имитирует по меньшей мере одну из функциональных активностей представляющего интерес полипептида.
«Видоспецифическое антитело», например, антитело млекопитающего против человеческого IgE, представляет собой антитело, которое обладает более высокой аффинностью связывания с антигеном, происходящим от млекопитающего первого вида, по сравнению с гомологом антигена, происходящего от млекопитающего второго вида. Обычно видоспецифическое антитело «специфически связывается» с человеческим антигеном (то есть имеет величину аффинности связывания (Kd) не более чем примерно 1×10-7 M, предпочтительно не более чем примерно 1×10-8, а наиболее предпочтительно не более чем примерно 1×10-9 M), тогда как аффинность связывания с гомологом антигена, происходящего от млекопитающего второго вида, не являющегося человеком, по меньшей мере примерно в 50 раз, или по меньшей мере примерно в 500 раз, или по меньшей мере примерно в 1000 раз ниже аффинности связывания с человеческим антигеном. Видоспецифическое антитело может представлять собой любое из антител различных типов, определенных выше, но предпочтительно таким антителом является гуманизированное или человеческое антитело.
Термин “аффинность связывания” по существу означает силу суммарных нековалентных взаимодействий одного сайта связывания молекулы (например, антитела) с его партнером по связыванию (например, с антигеном). Если это не оговорено особо, то используемый здесь термин “аффинность связывания” означает природную аффинность связывания, при которой происходит взаимодействие 1:1 между членами пар связывания (например, антитела с антигеном). Аффинность связывания молекулы Х с ее партнером Y, в общих чертах, может называться константой диссоциации (Kd). Аффинность может быть определена стандартными методами, известными специалистам, включая описанные здесь методы. Низкоаффинные антитела обычно связываются с антигеном с меньшей скоростью и имеют тенденцию легко диссоциироваться, тогда как высокоаффинные антитела обычно связываются с антигеном с большей скоростью и имеют тенденцию оставаться связанными в течение более длительного периода времени. Специалистам в данной области известны различные методы измерения аффинности связывания, и для осуществления настоящего изобретения может быть применен любой из этих методов. Конкретные репрезентативные варианты осуществления изобретения описаны ниже.
Используемое здесь определение «или выше», если оно употребляется по отношению к аффинности связывания, означает более высокий уровень связывания молекулы с его партнером по связыванию. Используемое здесь определение «или выше», если оно употребляется в настоящей заявке, означает более сильное связывание, определяемое меньшим численным значением Kd. Так, например, антитело, которое имеет аффинность связывания с антигеном «0,6 нM или выше»”, означает антитело, которое имеет аффинность связывания с антигеном <0,6 нM, то есть 0,59 нM, 0,58 нM, 0,57 нM и т.п. или любую величину менее чем 0,6 нM.
В одном из вариантов изобретения “Kd” или “величину Kd” согласно изобретению определяют с помощью анализа на связывание с радиоактивно меченным антигеном (РИА), осуществляемого с использованием Fab-варианта представляющего интерес антитела и его антигена, описанного ниже, где указанный анализ позволяет измерять аффинность связывания Fab с антигеном в растворе путем уравновешивания Fab минимальной концентрацией (125I)-меченного антигена в присутствии титрационного набора немеченных антигенов, с последующей иммобилизацией связанного антигена на планшете, сенсибилизированном антителом против Fab-фрагмента (Chen et al. (1999) J. Mol. Biol. 293:865-881). В целях создания соответствующих условий для анализа микротитрационные планшеты (Dynex) сенсибилизируют в течение ночи 5 мкг/мл связывающего анти-Fab антитела (Cappel Labs) в 50 мМ карбонате натрия (рН 9,6), а затем блокируют 2%-ым (масс./об.) альбумином бычьей сыворотки в PBS в течение 2-5 часов при комнатной температуре (приблизительно при 23°С). В неадсорбирующем планшете (Nunc # 269620), 100 пМ или 26 пМ [125I]-антигена смешивают с серийными разведениями представляющего интерес Fab (например, в соответствии с оценкой анти-VEGF антитела, Fab-12, Presta et al. (1997) Cancer Res. 57:4593-4599). Затем представляющий интерес Fab инкубируют в течение ночи, однако, для гарантии достижения равновесия, инкубирование может быть проведено в течение более длительного периода времени (например, 65 часов). После этого смеси переносят в планшет для иммобилизации и инкубируют при комнатной температуре (например, в течение одного часа). Затем раствор удаляют и планшет восемь раз промывают 0,1% Твином-20 в PBS. После сушки планшетов добавляют 150 мкл/лунку сцинтилляционной жидкости (MicroScint-20; Packard), и планшеты подсчитывают на гамма-счетчике Topcount (Packard) в течение десяти минут. Концентрации каждого Fab, которые составляют 20% или менее от максимального связывания, отбирают для их использования в анализах на конкурентное связывание. В соответствии с другим вариантом изобретения Kd или величину Kd измеряют в анализе методом поверхностного плазмонного резонанса с использованием BIAcoreTM-2000 или BIAcoreTM-3000 (BIAcore, Inc., Piscataway, NJ) при 25°С с использованием чипов СМ5 с иммобилизованным на них антигеном при величине единиц отклика (RU), составляющей ~10. Вкратце, биосенсорные чипы с карбоксиметилированным декстраном (CM5, BIAcore Inc.) активируют гидрохлоридом N-этил-N’-(3-диметиламинопропил)карбодиимида (EDC) и N-гидроксисукцинимидом (NHS) в соответствии с инструкциями поставщиков. Антиген разводят 10 мМ ацетатом натрия, рН 4,8, до 5 мкг/мл (~0,2 мкМ), а затем инъецируют при скорости потока 5 мкл/минуту до достижения величины единиц отклика (RU) связанного белка, составляющей ~10. После инъекции антигена для блокирования непрореагировавших групп вводят 1М этаноламин. Для измерения кинетики реакции вводят инъекции двукратных серийных разведений Fab (0,78 нМ-500 нМ) в PBS, содержащем 0,05% твина-20 (PBSТ) при 25°С и при скорости потока приблизительно 25 мкл/мин. Скорость ассоциации (kon) и скорость диссоциации (koff) вычисляют с использованием простой лангмюровской модели связывания 1:1 (BIAcore Evaluation Software version 3.2) при одновременном построении сенсорограмм ассоциации и диссоциации. Константу равновесной диссоциации (Кd) вычисляют как отношение koff/kon. См., например, Chen, Y., et al. (1999) J. Mol. Biol. 293:865-881. Если скорость ассоциации превышает 106 М-1 ⋅ с-1, как было определено выше методом поверхностного плазмонного резонанса, то такая скорость ассоциации может быть определена методом гашения флуоресценции, который позволяет измерять увеличение или уменьшение интенсивности флуоресцентного излучения (возбуждение = 295 нм; излучение = 340 нм, полоса пропускания 16 нм) при 25°С для 20 нМ антитела против антигена (в Fab-форме) в PBS, рН 7,2, в присутствии возрастающих концентраций антигена, как было измерено на спектрометре, таком как спектрофотометр, снабженный ограничителем потока (Aviv Instrumtnts), или на спектрофотометре SLM-Aminco серии 8000 (ThermoSpectronic), снабженном кюветой для перемешивания, содержащей красный краситель.
«Скорость ассоциации» («on-rate») или «kon» согласно изобретению может быть также определена описанным выше методом поверхностного плазмонного резонанса с использованием BIAcoreTM-2000 или BIAcoreTM-3000 (BIAcore, Inc., Piscataway, NJ).
Используемые здесь термины “по существу аналогичный” или “по существу тот же самый” означают достаточно высокую степень сходства между двумя численными величинами (обычно между одной величиной, соответствующей антителу согласно изобретению, и другой величиной, соответствующей эталонному/сравниваемому антителу), а именно такую степень сходства, которая позволяла бы специалисту в данной области считать различие между этими двумя величинами несущественным или биологически и/или статистически незначимым в отношении их биологических свойств, определяемых указанными величинами (например, величинами Kd). Различия между указанными двумя величинами составляет предпочтительно менее чем примерно 50%, более предпочтительно менее чем примерно 40%, еще более предпочтительно менее чем примерно 30%, еще более предпочтительно менее чем примерно 20%, а наиболее предпочтительно менее чем примерно 10% по сравнению с величинами эталонного/сравниваемого антитела.
Используемые здесь термины «по существу пониженный» или «по существу отличающийся» означают достаточно высокую степень различия между двумя численными величинами (обычно между одной величиной, соответствующей антителу согласно изобретению, и другой величиной, соответствующей эталонному/сравниваемому антителу), а именно такую степень различия, которая позволяла бы специалисту в данной области считать такое различие между этими двумя величинами статистически значимым в отношении их биологических свойств, определяемых указанными величинами (например, величинами Kd, НАМА-ответ). Различия между указанными двумя величинами составляет предпочтительно более чем примерно 10%, более предпочтительно более чем примерно 20%, еще более предпочтительно более чем примерно 30%, еще более предпочтительно более чем примерно 40%, а наиболее предпочтительно более чем примерно 50% по сравнению с величинами эталонного/сравниваемого антитела.
Термин «антиген» означает предварительно определенный антиген, с которым может селективно связываться антитело. Антигеном-мишенью может быть полипептид, углевод, нуклеиновая кислота, липид, гаптен или другое природное или синтетическое соединение. Предпочтительным антигеном-мишенью является полипептид.
Используемый здесь термин «акцепторная человеческая каркасная область» означает каркасную область, содержащую аминокислотную последовательность каркасной области VL или VH, происходящую от человеческой каркасной области иммуноглобулина, или от человеческой консенсусной каркасной области. Акцепторная человеческая каркасная область, «происходящая от» человеческой каркасной области иммуноглобулина или человеческой консенсусной каркасной области, может содержать одну и ту же аминокислотную последовательность, либо она может содержать аминокислотную последовательность с уже имеющимися изменениями. Если в аминокислотной последовательности уже имелись изменения, то предпочтительно, чтобы число таких изменений не превышало 5, а предпочтительно 4 или менее, или 3 или менее. Если аминокислотные изменения уже присутствовали в VH, то предпочтительно, чтобы эти изменения были только в трех, двух или в одном из положений 71H, 73H и 78H; так, например, аминокислотными остатками в этих положениях могут быть 71A, 73T и/или 78A. В одном из вариантов изобретения акцепторная человеческая каркасная область VL идентична последовательности человеческой каркасной области VL иммуноглобулина или человеческой консенсусной каркасной последовательности.
«Человеческая консенсусная каркасная область» представляет собой каркасную область, которая включает наиболее часто встречающиеся аминокислотные остатки, используемые при выборе каркасных последовательностей VL или VH человеческого иммуноглобулина. Обычно последовательности VL или VH человеческого иммуноглобулина выбирают из подгруппы последовательностей вариабельных доменов. В основном подгруппа последовательностей определяется по Кабату и др. В одном из вариантов изобретения, для VL, такой подгруппой является подгруппа каппа I по Кабату и др. В одном из вариантов изобретения, для VH, такой подгруппой является подгруппа III по Кабату и др.
«Консенсусная каркасная область VH подгруппы III» содержит консенсусную последовательность, выделенную из аминокислотных последовательностей тяжелой цепи подгруппы III по Кабату и др. В одном из вариантов изобретения аминокислотная последовательность консенсусной каркасной области VH подгруппы III содержит по меньшей мере часть каждой из нижеследующих последовательностей или все эти последовательности: EVQLVESGGGLVQPGGSLRLSCAAS (SEQ ID NO: 143)-H1-WVRQAPGKGLEWV (SEQ ID NO: 144)-H2-RFTISRDNSKNTLYLQMNSLRAEDTAVYYC (SEQ ID NO: 145)-H3-WGQGTLVTVSS (SEQ ID NO: 146).
«Консенсусная каркасная область VL подгруппы I» содержит консенсусную последовательность, выделенную из аминокислотных последовательностей вариабельной легкой цепи каппа подгруппы I по Кабату и др. В одном из вариантов изобретения аминокислотная последовательность консенсусной каркасной области VL подгруппы I содержит по меньшей мере часть каждой из нижеследующих последовательностей или все эти последовательности: DIQMTQSPSSLSASVGDRVTITC (SEQ ID NO: 139)-L1-WYQQKPGKAPKLLIY (SEQ ID NO: 140)-L2-GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC (SEQ ID NO: 141)-L3-FGQGTKVEIKR (SEQ ID NO: 142).
«Немодифицированная человеческая каркасная область» представляет собой человеческую каркасную область, имеющую такую же аминокислотную последовательность, как и акцепторная человеческая каркасная область, например, в ней отсутствуют замены человеческих аминокислот на нечеловеческие аминокислоты, как и в акцепторной человеческой каркасной области.
Используемый здесь термин «модифицированная гипервариабельная область» означает гипервариабельную область, содержащую одну или несколько (например, от одной и примерно до 16) аминокислотных замен.
Используемый здесь термин «немодифицированная гипервариабельная область» означает гипервариабельную область, имеющую такую же аминокислотную последовательность, как и последовательность нечеловеческого антитела, от которого она происходит, то есть последовательность, не содержащую одной или нескольких аминокислотных замен.
Антитело, которое “связывается” с представляющим интерес антигеном, например, с опухолеассоциированным полипептидным антигеном-мишенью, представляет собой антититело, связывающееся с антигеном с аффинностью, которая является достаточной для того, чтобы это антитело можно было использовать в качестве терапевтического средства для доставки в клетку или в ткань, экспрессирующую этот антиген, и чтобы это антитело не обладало бы значительной перекрестной реактивностью с другими белками. В указанных вариантах изобретения уровень связывания антитела с белком, который «не является мишенью», составляет менее чем примерно 10% от уровня связывания антитела с его конкретным белком-мишенью, как было определено с помощью анализа, проводимого с применением клеточного сортинга с активацией флуоресценции (FACS) или радиоиммунопреципитации (РИА). Что касается связывания антитела с молекулой-мишенью, то термин «специфически связывающееся с» или «специфически связывается с» конкретным полипептидом или эпитопом на конкретном полипептиде-мишени или «является специфичным к» конкретному полипептиду или эпитопу на конкретном полипептиде-мишени означает, что такое связывание антитела значительно отличается от неспецифического взаимодействия. Специфическое связывание может быть измерено, например, путем определения уровня связывания молекулы по сравнению с уровнем связывания контрольной молекулы, которая по существу представляет собой молекулу, имеющую аналогичную структуру, но не обладающую связывающей активностью. Так, например, специфическое связывание может быть определено путем оценки конкурентного связывания с контрольной молекулой, которая является аналогичной данной мишени, например, по избытку немеченой мишени. В этом случае специфическое связывание обнаруживается, когда связывание меченой мишени с зондом конкурентно ингибируется избытком немеченой мишени. Используемый здесь термин «специфически связывающееся с» или «специфически связывается с» конкретным полипептидом или эпитопом на конкретном полипептиде-мишени или «является специфичным к» конкретному полипептиду или эпитопу на конкретном полипептиде-мишени может, например, означать, что данная молекула имеет Kd по отношению к мишени по меньшей мере примерно 10-4 M, альтернативно по меньшей мере примерно 10-5 M, альтернативно по меньшей мере примерно 10-6 M, альтернативно по меньшей мере примерно 10-7 M, альтернативно по меньшей мере примерно 10-8 M, альтернативно по меньшей мере примерно 10-9 M, альтернативно по меньшей мере примерно 10-10 M, альтернативно по меньшей мере примерно 10-11 M, альтернативно по меньшей мере примерно 10-12 M или более. В одном из вариантов изобретения термин «специфическое связывание» означает связывание, при котором молекула связывается с конкретным полипептидом или эпитопом на конкретном полипептиде, но в основном не связывается с любым другим полипептидом или полипептидным эпитопом.
Антитело, которое «ингибирует рост опухолевых клеток, экспрессирующих полипептид CD79b» или «рост-ингибирующее антитело» представляет собой антитело, которое значительно ингибирует рост раковых клеток, экспрессирующих или сверхэкспрессирующих соответствующий полипептид CD79b. Полипептидом CD79b может быть трансмембранный полипептид, экспрессируемый на поверхности раковых клеток, либо им может быть полипептид, продуцируемый и секретируемый раковыми клетками. Предпочтительные рост-ингибирующие анти-CD79b антитела ингибируют рост CD79b-экспрессирующих опухолевых клеток более чем на 20%, предпочтительно примерно на 20%-50%, а еще более предпочтительно более чем на 50% (примерно на 50%-100%), по сравнению с соответствующим контролем, который обычно представляет собой опухолевые клетки, не обработанные тестируемым антителом. В одном из вариантов изобретения ингибирование роста может быть измерено при концентрации антитела, составляющей примерно 0,1-30 мкг/мл или примерно 0,5 нм-200 нМ в клеточной культуре, где указанное ингибирование роста определяют через 1-10 дней после обработки опухолевых клеток антителом. Ингибирование роста опухолевых клеток in vivo может быть определено различными методами, описанными ниже в разделе «Экспериментальные примеры». Указанное антитело ингибирует рост in vivo, если введение анти-CD79b aнтитела в количестве примерно 1 мкг/кг-примерно 100 мг/кг массы тела приводит к снижению размера опухоли или пролиферации опухолевых клеток в течение периода времени примерно от 5 дней до 3 месяцев, а предпочтительно примерно от 5 до 30 дней с момента первого введения антитела.
Антитело, которое “индуцирует апоптоз”, представляет собой антитело, которое индуцирует запрограммированную клеточную гибель, как было определено по связыванию с аннексином V, фрагментации ДНК, сморщиванию клеток, расширению эндоплазматического ретикулума, фрагментации клеток и/или по образованию мембранных везикул (называемых апоптотическими тельцами). Такой клеткой обычно является клетка, сверхэкспрессирующая полипептид СD79b. Предпочтительной клеткой являются опухолевые клетки, например, гемопоэтические клетки, такие как В-клетки, Т-клетки, базофилы, эозинофилы, нейтрофилы, моноциты, тромбоциты или эритроциты. Для оценки клеточных событий, ассоциированных с апоптозом, существуют различные методы. Так, например, транслокация фосфатидилсерина (PS) может быть определена по связыванию с аннексином; фрагментация ДНК может быть оценена по образованию ДНК-лэддера; а конденсация ядра/хроматина вместе с фрагментацией ДНК может быть оценена по любому увеличению гиподиплоидных клеток. Предпочтительно антителом, индуцирующим апоптоз, является антитело, которое приводит примерно к 2-50-кратному, предпочтительно примерно к 5-50-кратному, а наиболее предпочтительно примерно к 10-50-кратному индуцированию связывания с аннексином по сравнению с необработанными клетками в анализе на связывание с аннексином.
Антителом, которое «индуцирует гибель клеток», является антитело, которое превращает жизнеспособные клетки в нежизнеспособные клетки. Такими клетками являются клетки, экспрессирующие полипептид CD79b, и клетки определенного типа, которые специфически экспрессируют или сверхэкспрессируют полипептид CD79b. Указанными клетками могут быть раковые или нормальные клетки конкретного типа. Полипептидом CD79b может быть трансмембранный полипептид, экспрессируемый на поверхности раковых клеток, либо им может быть полипептид, продуцируемый и секретируемый раковыми клетками. Указанными клетками могут быть раковые клетки, например, В-клетки или Т-клетки. Гибель клеток in vitro может быть определена в отсутствие комплемента и иммунных эффекторных клеток для идентификации гибели клеток, индуцированной антитело-зависимой клеточно-опосредуемой цитотоксичностью (ADCC) или комплемент-зависимой цитотоксичностью (CDC). Таким образом, анализ на гибель клеток может быть осуществлен с использованием термоинактивированной сыворотки (то есть в отсутствие комплемента) и в отсутствие иммунных эффекторных клеток. Для того чтобы определить, может ли антитело индуцировать гибель клеток, может быть оценена потеря целостности мембраны путем поглощения йодида пропидия (PI), трипанового синего (см. Moore et al. Cytotechnology 17:1-11 (1995)) или 7AAD по сравнению необработанными клетками. Предпочтительными антителами, индуцирующими гибель клеток, являются антитела, индуцирующие поглощение PI в анализе на поглощение PI в клетках BT474.
Термин «эффекторные функции» антитела означает биологические активности, приписываемые Fc-области (Fc-области с нативной аминокислотной последовательностью или Fc-области с измененной аминокислотной последовательностью) антитела и варьирующиеся в зависимости от изотипа антитела. Примерами эффекторных функций антител являются: связывание с C1q и комплемент-зависимая цитотоксичность; связывание с Fc-рецептором; антитело-зависимая клеточно-опосредуемая цитотоксичность (ADCC); фагоцитоз; ингибирование функции рецепторов клеточной поверхности (например, В-клеточного рецептора) и активация В-клеток.
Используемый здесь термин «Fc-область» означает С-концевую область тяжелой цепи иммуноглобулина, включая Fc-области с нативной последовательностью и Fc-области с измененной последовательностью. Хотя границы Fc-области тяжелой цепи иммуноглобулина могут варьироваться, однако Fc-область тяжелой цепи человеческого IgG обычно определяется как фрагмент, простирающийся от аминокислотного остатка в положении Cys226, или от Pro230, до карбокси-конца. С-концевой лизин (остаток 447 в соответствии с Европейской системой нумерации) Fc-области может быть удален, например, в процессе продуцирования или очистки антитела, либо посредством рекомбинантного конструирования нуклеиновой кислоты, кодирующей тяжелую цепь антитела. В соответствии с этим, композиция интактных антител может включать популяции антител со всеми удаленными остатками K447, популяции антител с остатками К447, которые не были удалены, и популяции антител со смесью антител, в которых присутствует или отсутствует остаток K447.
«Функциональная Fc-область» обладает «эффекторной функцией» Fc-области с нативной последовательностью. Репрезентативными эффекторными функциями являются связывание с C1q; CDC; связывание с Fc-рецептором; ADCC; фагоцитоз; ингибирование функции рецепторов клеточной поверхности (например, B-клеточного рецептора; BCR) и т.п. Для достижения эффекторных функций обычно необходимо, чтобы Fc-область была объединена со связывающим доменом (например, вариабельным доменом антитела), и такие эффекторные функции могут быть оценены с помощью различных анализов, описанных, например, в разделе «Определения» настоящей заявки.
«Fc-область с нативной последовательностью» содержит аминокислотную последовательность, идентичную аминокислотной последовательности природной Fс-области. Человеческими Fc-областями с нативной последовательностью являются Fc-область нативной последовательности человеческого IgG1 (не-A и A-аллотипов); Fc-область нативной последовательности человеческого IgG2; Fc-область нативной последовательности человеческого IgG3 и Fc-область нативной последовательности человеческого IgG4, а также их природные варианты.
«Вариант Fc-области» содержит аминокислотную последовательность, отличающуюся от нативной последовательности Fc-области по меньшей мере одной аминокислотной модификацией, а предпочтительно одной или несколькими аминокислотными заменами. Предпочтительно вариант Fc-области имеет по меньшей мере одну аминокислотную замену, например, по меньшей мере замену примерно 1-10 аминокислот, а предпочтительно примерно 1-5 аминокислот, по сравнению с нативной последовательностью Fc-области или Fc-области родительского полипептида. Вариант Fc-области, описанный в настоящей заявке, предпочтительно по меньшей мере примерно на 80%, более предпочтительно по меньшей мере примерно на 90%, а наиболее предпочтительно по меньшей мере примерно на 95% гомологичен нативной последовательности Fc-области и/или Fc-области родительского полипептида.
“Антитело-зависимая клеточно-опосредуемая цитотоксичность” или “ADCC” означает форму цитотоксичности, при которой секретируется Ig, связанный с Fc-рецепторами (FcR), присутствующими на некоторых цитотоксических клетках (например, на природных клетках-киллерах (NK), нейтрофилах и макрофагах), что позволяет этим цитотоксическим эффекторным клеткам специфически связываться с антиген-несущими клетками-мишенями и тем самым уничтожать эти клетки-мишени под действием цитотоксинов. Эти антитела «вооружают» цитотоксические клетки и являются абсолютно необходимыми для такого цитолиза. Первичные клетки, опосредующие ADCC, то есть NK-клетки, экспрессируют только FcγRIII, тогда как моноциты экспрессируют FcγRI, FcγRII и FcγRIII. Данные, полученные для экспрессии FcR на гемопоэтических клетках, систематизированы в таблице 3 на странице 464 Ravetch & Kinet Annu. Rev. Immunol. (1991) 9:457-92. Для оценки ADCC-активности представляющей интерес молекулы может быть проведен анализ на ADCC in vitro, такой как анализ, описанный в патентах США №№ 5500362 или 5821337. Эффекторными клетками, подходящими для таких анализов, являются мононуклеарные клетки периферической крови (МКПК) и природные клетки-киллеры (NK). Альтернативно или дополнительно ADCC-активность представляющей интерес молекулы может быть оценена in vivo, например, на модели животного, такой как модель, описанная Clynes et al., Proc. Natl. Acad. Sci., USA, 95:652-656 (1998).
Термины «Fc-рецептор» или «FcR» используются для описания рецептора, который связывается с Fc-областью антитела. Предпочтительным FcR является человеческий FcR с нативной последовательностью. Кроме того, предпочтительным FcR является FcR, который связывается с антителом IgG (гамма-рецептор), и рецепторы подклассов FcγRI, FcγRII и FcγRIII, включая аллельные варианты и альтернативно сплайсированные формы этих рецепторов. Рецепторами FcγRII являются FcγRIIA (“активирующий рецептор”) и FcγRIIB (“ингибирующий рецептор”), которые имеют аналогичные аминокислотные последовательности, отличающиеся, главным образом, своими цитоплазматическими доменами. Активирующий рецептор FcγRIIA содержит в своем цитоплазматическом домене активирующий мотив иммунорецептора на основе тирозина (ITAM). Ингибирующий рецептор FcγRIIB содержит в своем цитоплазматическом домене ингибирующий мотив иммунорецептора на основе тирозина (ITIM). (см. обзор М. Daeron, Annu. Rev. Immunol., 15:203-234 (1997)). FcR описаны в публикациях Ravetch & Kinet, Annu. Rev. Immunol. 9:457-92 (1991); Capel et al., Immunomethods, 4:25-34 (1994) и de Haas et al., J. Lab. Clin. Med., 126:330-41 (1995). Используемый здесь термин “FcR” также охватывает и другие FcR, включая FcR, которые будут идентифицированы в будущем. Этот термин также включает рецептор, имеющийся у новорожденных, FcRn, который является ответственным за передачу материнских IgG плоду (Guyer et al., J. Immunol., 117:587 (1976) и Kim et al., J. Immunol., 24:249 (1994)).
Связывание с человеческим FcRn in vivo и время полужизни полипептидов, связывающихся с человеческим FcRn с высокой аффинностью связывания, могут быть проанализированы, например, у трансгенных мышей или в трансфицированных человеческих клеточных линиях, экспрессирующих человеческий FcRn, или у приматов, которым были введены полипептиды с вариантом Fc-области. В WO 2000/42072 (Presta) описаны варианты антител, обладающих повышенной или пониженной активностью связывания с FcR. См., также, например, Shields et al. J. Biol. Chem. 9(2):6591-6604 (2001).
«Человеческие эффекторные клетки» представляют собой лейкоциты, экспрессирующие один или несколько FcR и обладающие эффекторными функциями. Предпочтительно указанные клетки экспрессируют, по меньшей мере, FcγRIII и обладают эффекторной ADCC-функцией. Примерами человеческих лейкоцитов, опосредующих ADCC, являются мононуклеарные клетки периферической крови (МКПК), природные клетки-киллеры (NK), моноциты, цитотоксические Т-клетки и нейтрофилы; при этом предпочтительными являются МКПК и NK-клетки. Эффекторные клетки могут быть выделены из их природного источника, например, из крови.
«Комплемент-зависимая цитотоксичность» или «CDС» означает лизис клеток-мишеней в присутствии комплемента. Классический путь активации комплемента инициируется связыванием первого компонента системы комплемента (С1q) с антителами (соответствующего подкласса), которые связываются с их когнатным антигеном. Для оценки активации комплемента может быть проведен анализ на CDС, например, как описано Gazzano-Santoro et al., J. Immunol. Methods, 202:163 (1996). Полипептидные варианты, имеющие модифицированные аминокислотные последовательности Fc-области (полипептиды с вариантом Fc-области) и обладающие повышенной или пониженной способностью связываться с C1q, описаны в патенте США № 6194551B1 и в WO99/51642. См. также Idusogie et al. J. Immunol. 164:4178-4184 (2000).
Термин «антитело, содержащее Fc-область» означает антитело, включающее Fc-область. C-концевой лизин (остаток 447 в соответствии с Европейской системой нумерации EU) Fc-области может быть удален, например, в процессе очистки антитела или путем рекомбинантного конструирования нуклеиновой кислоты, кодирующей данное антитело. В соответствии с этим, композиция, содержащая антитело, имеющее Fc-область согласно изобретению, может содержать антитело с остатком K447; антитело, где все K447 были удалены; или смесь антител, содержащих и не содержащих остаток K447.
«Внеклеточный домен» полипептида CD79b или «ECD» представляет собой форму полипептида CD79b, в основном не содержащего трансмембранных и цитоплазматических доменов. Обычно ECD полипептида CD79b составляет менее 1% от указанных трансмембранных и/или цитоплазматических доменов, а предпочтительно менее чем 0,5% таких доменов. Следует отметить, что любой из трансмембранных доменов, идентифицированных для полипептидов CD79b согласно изобретению, идентифицируют в соответствии с критериями, обычно применяемыми специалистами для идентификации гидрофобного домена такого типа. Точные границы трансмембранного домена могут варьироваться, но наиболее вероятно, что они отличаются не более чем примерно на 5 аминокислот у любого конца первоначально идентифицированного домена. Поэтому внеклеточный домен полипептида CD79b может содержать, но необязательно, примерно 5 или менее аминокислот на любой стороне пограничной области «трансмембранный домен/внеклеточный домен», идентифицированной как описано в примерах или в описанни настоящей заявки, и такие полипептиды, содержащие или не содержащие присоединенный к ним сигнальный пептид, и нуклеиновая кислота, кодирующая эти полипептиды, входят в объем настоящего изобретения.
Предполагаемая локализация «сигнальных пептидов» описанного здесь полипептида CD79b может быть указана в описании настоящей заявки и/или в описании графического материала. Однако следует отметить, что С-концевая граница сигнального пептида может варьироваться, но наиболее вероятно, что она отличается не более чем примерно на 5 аминокислот с любой стороны С-концевой границы сигнального пептида, первоначально идентифицированного в настоящей заявке, где указанная С-концевая граница сигнального пептида может быть идентифицирована в соответствии с критериями, обычно применяемыми специалистами для идентификации элемента аминокислотной последовательности такого типа (например, Nielsen et al., Prot. Eng. 10:1-6 (1997) и von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Кроме того, также известно, что в некоторых случаях отщепление сигнальной последовательности от секретированного полипептида не является полностью равномерным, что приводит к образованию более чем одной секретируемой молекулы. Такие зрелые полипептиды, в которых сигнальный пептид отщепляется в пределах не более чем примерно 5 аминокислот с любой стороны от С-концевой границы сигнального пептида, идентифицированного в настоящей заявке, и полинуклеотиды, кодирующие такие полипептиды, входят в объем настоящего изобретения.
Термин «вариант полипептида CD79b» означает полипептид CD79b, а предпочтительно активный полипептид CD79b, определенный в настоящем описании и имеющий аминокислотную последовательность, которая по меньшей мере примерно на 80% идентична полноразмерной последовательности нативного полипептида CD79b, описанного в настоящей заявке; последовательности полипептида CD79b, не содержащего сигнального пептида, описанного в настоящей заявке; последовательности внеклеточного домена полипептида CD79b, содержащего или не содержащего сигнальный пептид, описанный в настоящей заявке; или последовательности любого другого фрагмента полноразмерного полипептида CD79b, описанного в настоящей заявке (такого как полипептид, кодируемый нуклеиновой кислотой, которая представляет собой лишь часть полноразмерной последовательности, кодирующей полноразмерный полипептид CD79b). Такими вариантами полипептида CD79b являются, например, полипептиды CD79b, в которых один или несколько аминокислотных остатков добавлены или делетированы у N- или С-конца полноразмерной нативной аминокислотной последовательности. Обычно вариант полипептида CD79b имеет аминокислотную последовательность, которая по меньшей мере примерно на 80% и альтернативно по меньшей мере примерно на 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентична аминокислотной последовательности полноразмерного нативного полипептида CD79b, описанного в настоящей заявке; последовательности полипептида CD79b, не содержащего сигнального пептида, описанного в настоящей заявке; последовательности внеклеточного домена полипептида CD79b, содержащего или не содержащего сигнальный пептид, описанный в настоящей заявке; или последовательности любого другого конкретно определенного фрагмента полноразмерного полипептида CD79b, описанного в настоящей заявке. Обычно варианты полипептида CD79b имеют длину по меньшей мере примерно 10 аминокислот или альтернативно по меньшей мере примерно 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600 аминокислот или более. Варианты полипептидов CD79b имеют, но необязательно, не более чем одну консервативную замену и альтернативно не более чем 2, 3, 4, 5, 6, 7, 8, 9 или 10 консервативных аминокислотных замен по сравнению с нативной последовательностью полипептида CD79b.
«Процент (%) идентичности аминокислотных последовательностей» пептидов или полипептидов, то есть последовательностей полипептида CD79b, идентифицированного в настоящей заявке, определяют как процент аминокислотных остатков в последовательности-кандидате, которые идентичны аминокислотным остаткам в конкретной пептидной или полипептидной последовательности, то есть последовательности полипептида CD79b, после выравнивания этих последовательностей и введения в них “пробелов”, если это необходимо, для достижения максимального процента идентичности последовательностей, причем какие-либо консервативные замены не рассматриваются как часть идентичных последовательностей. Выравнивание, осуществляемое в целях определения процента идентичности аминокислотных последовательностей, может быть проведено различными методами, известными специалистам, например, с использованием общедоступных компьютерных программ, таких как программы BLAST, BLAST-2, ALIGN или MеgAlign (DNASTAR). Специалист в данной области может самостоятельно определить соответствующие параметры выравнивания, включая использование любых алгоритмов, необходимых для достижения оптимального выравнивания по всей длине сравниваемых последовательностей. Однако, в целях настоящего изобретения, % идентичности аминокислотных последовательностей вычисляют с применением компьютерной программы ALIGN-2, используемой для сравнения последовательностей, где полный исходный код программы ALIGN-2 представлен ниже в таблице 1. Компьютерная программа ALIGN-2, используемая для сравнения последовательностей, была разработана фирмой Genentech, Inc., и указанный исходный код, представленный ниже в таблице 1, был зарегистрирован в документации для пользователей в Ведомстве по копирайту США, Вашингтон, D.C., 20559, под регистрационным номером U.S. Copyright Registration № TXU510087. Программа ALIGN-2 является общедоступной программой, поставляемой фирмой Genentech, Inc., South San Francisco, California, либо она может быть составлена на основе исходного кода, представленного ниже в таблице 1. Программа ALIGN-2 должна быть составлена для применения в операционной системе UNIX, а предпочтительно в системе UNIX V4.0D. Все параметры сравнения последовательностей были установлены в программе ALIGN-2 и не изменялись.
В случае когда для сравнения аминокислотных последовательностей используется программа ALIGN-2, то % идентичности данной аминокислотной последовательности А с данной аминокислотной последовательностью В (которая альтернативно может быть названа данной аминокислотной последовательностью А, имеющей или составлящей определенный % идентичности с данной аминокислотной последовательностью В) вычисляют следующим образом:
100 • X/Y,
где Х представляет собой число аминокислотных остатков, которые были оценены, как полностью соответствующие при выравнивании последовательностей с использованием программы ALIGN-2, с помощью которой проводили сравнение последовательностей А и В, и где Y представляет собой полное число аминокислотных остатков в последовательности В. При этом следует отметить, что если длина аминокислотной последовательности А не равна длине аминокислотной последовательности В, то % идентичности аминокислотной последовательности А с аминокислотной последовательностью В не равен % идентичности аминокислотной последовательности В с аминокислотной последовательностью А.
Термин «вариант полинуклеотида CD79b» или «последовательность нуклеиновой кислоты варианта CD79b» означает молекулу нуклеиновой кислоты, кодирующую полипептид CD79b, а предпочтительно активный полипептид CD79b, определенный в настоящем описании и имеющий последовательность нуклеиновой кислоты, которая по меньшей мере примерно на 80% идентична полноразмерной последовательности нуклеиновой кислоты, кодирующей полноразмерный нативный полипептид CD79b, описанный в настоящей заявке; полноразмерный нативный полипептид CD79b, не содержащий сигнального пептида, описанного в настоящей заявке; внеклеточный домен полипептида CD79b, содержащий или не содержащий сигнальный пептид, описанный в настоящей заявке; или последовательность любого другого фрагмента полноразмерного полипептида CD79b, описанного в настоящей заявке (такого как полипептид, кодируемый нуклеиновой кислотой, которая представляет собой лишь часть полноразмерной последовательности, кодирующей полноразмерный полипептид CD79b). Обычно вариант полинуклеотида CD79b имеет последовательность нуклеиновой кислоты, которая по меньшей мере примерно на 80%, и альтернативно по меньшей мере примерно на 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентична последовательности нуклеиновой кислоты, кодирующей полноразмерный нативный полипептид CD79b, описанный в настоящей заявке; полноразмерную последовательность нативного полипептида CD79b, не содержащего сигнального пептида, описанного в настоящей заявке; внеклеточный домен полипептида CD79b, содержащего или не содержащего сигнальную последовательность, описанный в настоящей заявке; или последовательность любого другого фрагмента полноразмерного полипептида CD79b, описанного в настоящей заявке. Эти варианты не содержат нативную нуклеотидную последовательность.
Обычно полинуклеотидные варианты CD79b имеют длину по меньшей мере примерно 5 нуклеотидов, и альтернативно по меньшей мере примерно 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990 или 1000 нуклеотидов, где в контексте настоящего описания термин «приблизительно» означает длину указанной нуклеотидной последовательности ±10% от длины рассматриваемой последовательности.
«Процент (%) идентичности последовательностей нуклеиновой кислоты», то есть последовательностей нуклеиновой кислоты, кодирующей CD79b, идентифицированной в настоящей заявке, определяют как процент нуклеотидов в последовательности-кандидате, которые идентичны нуклеотидам в представляющей интерес последовательности нуклеиновой кислоты CD79b, после выравнивания этих последовательностей и введения в них “пробелов”, если это необходимо, для достижения максимального процента идентичности последовательностей. Выравнивание, осуществляемое в целях определения процента идентичности последовательностей нуклеиновой кислоты, может быть проведено различными методами, известными специалистам, например, с использованием общедоступных компьютерных программ, таких как программы BLAST, BLAST-2, ALIGN или MеgAlign (DNASTAR). Однако, в целях настоящего изобретения, % идентичности последовательностей нуклеиновой кислоты вычисляют с применением компьютерной программы ALIGN-2, используемой для сравнения последовательностей, где полный исходный код программы ALIGN-2 представлен ниже в таблице 1. Компьютерная программа ALIGN-2, используемая для сравнения последовательностей, была разработана фирмой Genentech, Inc., и указанный исходный код, представленный ниже в таблице 1, был зарегистрирован в документации для пользователей в Ведомстве по копирайту США, Вашингтон, D.C., 20559, под регистрационным номером U.S. Copyright Registration № TXU510087. Программа ALIGN-2 является общедоступной программой, поставляемой фирмой Genentech, Inc., South San Francisco, California, либо она может быть составлена на основе исходного кода, представленного ниже в таблице 1. Программа ALIGN-2 должна быть составлена для применения в операционной системе UNIX, а предпочтительно в системе UNIX V4.0D. Все параметры сравнения последовательностей были установлены в программе ALIGN-2 и не изменялись.
В случае когда для сравнения последовательностей нуклеиновой кислоты используется программа ALIGN-2, то % идентичности данной последовательности нуклеиновой кислоты С с данной последовательностью нуклеиновой кислоты D (которая альтернативно может быть названа данной последовательностью нуклеиновой кислоты С, имеющей или составлящей определенный % идентичности с данной последовательностью нуклеиновой кислоты D) вычисляют следующим образом:
100 • W/Z,
где W представляет собой число нуклеотидов, которые были оценены, как полностью идентичные при выравнивании последовательностей с использованием программы ALIGN-2, с помощью которой проводили сравнение последовательностей С и D, и где Z представляет собой полное число нуклеотидов в последовательности D. При этом следует отметить, что если длина последовательности нуклеиновой кислоты C не равна длине последовательности нуклеиновой кислоты D, то % идентичности последовательности нуклеиновой кислоты С с последовательностью нуклеиновой кислоты D не равен % идентичности нуклеиновой кислоты С с последовательностью нуклеиновой кислоты D. Если это не оговорено особо, все используемые здесь величины % идентичности последовательностей нуклеиновой кислоты получают, как описано в предыдущем абзаце с использованием компьютерной программы ALIGN-2.
В других вариантах изобретения полинуклеотидными вариантами CD79b являются молекулы нуклеиновой кислоты, которые кодируют полипептид CD79b и которые обладают способностью гибридизоваться, предпочтительно в жестких условиях гибридизации и промывки, с нуклеотидными последовательностями, кодирующими описанный здесь полноразмерный полипептид CD79b. Вариантами полипептида CD79b могут быть полипептиды, кодируемые полинуклеотидным вариантом CD79b.
Термин «полноразмерная кодирующая область», если он относится к нуклеиновой кислоте, кодирующей полипептид CD79b, означает нуклеотидную последовательность, кодирующую полноразмерный полипептид CD79b согласно изобретению (который локализуется между старт- и стоп-кодонами включительно, как это часто иллюстрируется в графическом материале). Термин «полноразмерная кодирующая область», если он относится к нуклеиновой кислоте, депонированной в ATCC, означает часть кДНК, кодирующую полипептид CD79b и встроенную в вектор, депонированный в ATCC (который локализуется между старт- и стоп-кодонами включительно, как это часто иллюстрируется в графическом материале (где старт- и стоп-кодоны показаны жирным шрифтом и подчеркнуты)).
Термин «выделенный», если он относится к различным описанным здесь полипептидам CD79b, означает полипептид, который был идентифицирован и выделен и/или очищен от компонентов его природного окружения. Контаминирующими компонентами его природного окружения являются материалы, негативно влияющие на терапевтическую эффективность данного полипептида, и такими компонентами могут быть ферменты, гормоны и другие белковые или небелковые растворенные вещества. В предпочтительных вариантах изобретения указанный полипептид может быть очищен (1) до степени, достаточной для введения, по меньшей мере, 15 остатков у N-концевой или внутренней части аминокислотной последовательности, с использованием секвенатора, снабженного центрифужным сосудом, или (2) до гомогенности, что может быть подтверждено с помощью электрофореза в ДСН-ПААГ в восстанавливающих или в невосстанавливающих условиях с окрашиванием кумасси синим или, предпочтительно, серебром. Термин «выделенный полипептид» включает полипептид in situ в рекомбинантных клетках, если отсутствует, по меньшей мере, один компонент этого полипептида CD79b, присутствующий в его природном окружении. Однако, обычно, выделенный полипептид может быть получен, по меньшей мере, в одной стадии очистки.
«Выделенная» нуклеиновая кислота, кодирующая полипептид CD79b, или другая нуклеиновая кислота, кодирующая полипептид, представляет собой молекулу нуклеиновой кислоты, которая была идентифицирована и отделена по меньшей мере от одной примесной молекулы нуклеиновой кислоты, с которой она обычно ассоциируется в природном источнике нуклеиновой кислоты, кодирующей полипептид. Выделенная молекула нуклеиновой кислоты, кодирующая полипептид, имеет форму или структуру, отличающиеся от формы или структуры природной молекулы. Следовательно, выделенные молекулы нуклеиновой кислоты, кодирующие полипептид, отличаются от конкретной молекулы нуклеиновой кислоты, кодирующей полипептид и присутствующей в природных клетках. Однако выделенная молекула нуклеиновой кислоты, кодирующая полипептид, включает молекулы нуклеиновой кислоты, кодирующие полипептид и содержащиеся в клетках, которые обычно экспрессируют полипептид, где, например, молекула нуклеиновой кислоты присутствует в хромосоме в положении, отличающемся от положения этой нуклеиновой кислоты в природных клетках.
Термин «регуляторные последовательности» означает последовательности ДНК, необходимые для экспрессии функционально присоединенной кодирующей последовательности в конкретном организме-хозяине. Регуляторными последовательностями, подходящими для прокариотов, являются, например, промотор, необязательно операторная последовательность и сайт связывания с рибосомой. Эукариотические клетки, как известно, используют промоторы, сигналы полиаденилирования и энхансеры.
Нуклеиновая кислота «функционально присоединена», если она находится в функциональной взаимосвязи с другой молекулой нуклеиновой кислоты. Так, например, ДНК для препоследовательности или секреторной лидерной последовательности является функционально присоединенной к ДНК полипептида, если она экспрессируется как пребелок, который участвует в секреции полипептида; промотор или энхансер функционально присоединены к кодирующей последовательности, если они влияют на транскрипцию данной последовательности; а сайт связывания с рибосомой функционально присоединен к кодирующей последовательности, если он расположен в положении, благоприятствующем трансляции. Вообще говоря, термин «функционально присоединенный» означает, что последовательности ДНК, связанные друг с другом, являются смежными, а в случае секреторной лидерной последовательности они являются смежными и расположены в одной рамке считывания. Однако энхансеры необязательно должны быть смежными. Связывание осуществляется посредством лигирования в подходящих рестрикционных сайтах. Если такие сайты отсутствуют, то такие синтетические олигонуклеотидные адаптеры или линкеры используются в соответствии с общепринятой практикой.
«Жесткость условий реакции гибридизации» может быть легко определена средним специалистом в данной области, и обычно она вычисляется эмпирически в зависимости от длины зонда, температуры промывки и концентрации соли. В основном, чем длиннее зонды, тем выше должна быть температура гибридизации, и чем короче зонды, тем ниже должна быть температура. Гибридизация обычно зависит от способности денатурированной ДНК к повторному отжигу, если комплементарные цепи присутствуют в среде, температура которой ниже их температуры плавления. Чем выше степень желаемой гомологии между зондом и гибридизуемой последовательностью, тем выше должна быть относительная температура. Из этого следует, что более высокие относительные температуры создают более жесткие условия реакции, а более низкие температуры создают менее жесткие условия реакции. Более подробное описание и объяснение условий жесткости реакций гибридизации можно найти в руководстве Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
«Условия жесткости» или «условия высокой жесткости», определенные в настоящем изобретении, могут быть установлены как условия, которые включают (1) промывку при низкой ионной силе и высокой температуре, например, промывку 0,015 M хлоридом натрия/0,0015 M цитратом натрия/0,1% додецилсульфатом натрия при 50°С; (2) использование в процессе гибридизации денатурирующего агента, такого как формамид, например, 50% (об./об.) формамид с 0,1% альбумином бычьей сыворотки/0,1% фиколла/0,1% поливинилпирролидона/50 мM натрийфосфатным буфером, pH 6,5, с 750 мM хлорида натрия, 75 мM цитрата натрия при 42°С; или (3) гибридизацию в течение ночи в растворе, содержащем 50% формамид, 5×SSC (0,75 M NaCl, 0,075 M цитрата натрия), 50 мM фосфата натрия (pH 6,8), 0,1% пирофосфата натрия, 5× раствора Денхардта, обработанную ультразвуком ДНК спермы лосося (50 мкг/мл), 0,1% ДСН и 10% сульфат декстрана при 42°С с 10-минутной промывкой при 42°С в 0,2×SSC (хлорид натрия/цитрат натрия), с последующей 10-минутной промывкой в условиях высокой жесткости, состоящей из 0,1×SSC, содержащего EDTA при 55°С.
«Условия умеренной жесткости» могут быть определены, как описано в руководстве Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, и включают использование менее жестких условий промывки и гибридизации (таких как, например, температура, ионная сила и % ДСН), чем условия, описанные выше. Примером условий умеренной жесткости является инкубирование в течение ночи при 37°С в растворе, содержащем 20% формамид, 5×SSC (150 мM NaCl, 15 мM тринатрийцитрата), 50 мM фосфата натрия (pH 7,6), 5× раствор Денхардта, 10% сульфат декстрана и 20 мг/мл денатурированной фрагментированной ДНК спермы лосося, с последующей промывкой фильтров в 1×SSC примерно при 37-50°С. Если необходимо адаптировть данные условия к соответствующим параметрам, таким как длина зонда и т.п., то температура, ионная сила и т.п. могут быть скорректированы способами, известными специалистам.
Используемый здесь термин «меченный эпитопом» означает химерный полипептид, содержащий полипептид CD79b или анти-CD79b антитело, присоединенное к «полипептиду-метке». Полипептид-метка должна иметь определенное число остатков, достаточное для создания эпитопа, против которого может быть направлено данное антитело, и должна быть достаточно короткой, то есть такой, чтобы она не влияла на активность полипептида, к которому она присоединена. Кроме того, предпочтительно, чтобы такой полипептид-метка был достаточно уникальным, то есть таким, чтобы антитело не обладало значительной перекрестной реактивностью с другими эпииопами. Подходящие полипептиды-метки обычно имеют по меньшей мере шесть аминокислотных остатков, а в основном примерно 8-50 аминокислотных остатков (предпочтительно примерно 10-20 аминокислотных остатков).
Используемые здесь термины «активный» или «активность» относятся к форме(ам) полипептида CD79b, который сохраняет биологическую и/или иммунологическую активность природного или нативного CD79b, где термин «биологическая активность» означает биологическую функцию (ингибирующую или стимулирующую), сообщаемую нативным или природным CD79b, за исключением способности индуцировать продуцирование антитела против антигенного эпитопа, находящегося на нативном или природном CD79b, а термин «иммунологическая активность» означает способность индуцировать продуцирование антитела против антигенного эпитопа, находящегося на нативном или природном CD79b.
Термин «антагонист» используется здесь в самом широком смысле и включает любую молекулу, которая частично или полностью блокирует, ингибирует или нейтрализует биологическую активность нативного полипептида CD79b. Аналогичным образом, термин «агонист» используется здесь в самом широком смысле и включает любую молекулу, которая частично или полностью имитирует биологическую активность нативного полипептида CD79b. Подходящими молекулами агонистов или антагонистов, в частности, являются антитела-агонисты или антагонисты или фрагменты антител, фрагменты или варианты аминокислотных последовательностей нативных полипептидов, пептидов, антисмысловых олигонуклеотидов, небольших органических молекул CD79b и т.п. Методы идентификации агонистов или антагонистов полипептида CD79b могут включать контактирование полипептида CD79b с молекулой-агонистом или антагонистом, используемым в качестве кандидата, и определение детектируемого изменения одной или нескольких биологических активностей, обычно ассоциированных с полипептидом CD79b.
Термин «очищенный» относится к молекуле, присутствующей в образце в концентрации по меньшей мере 95 масс.% или по меньшей мере 98 масс.% образца, в котором она содержится.
«Выделенная» молекула нуклеиновой кислоты представляет собой молекулу нуклеиновой кислоты, отделенную по меньшей мере от одной другой молекулы нуклеиновой кислоты, с которой она обычно ассоциируется в природном окружении. Выделенная молекула нуклеиновой кислоты также включает молекулу нуклеиновой кислоты, содержащуюся в клетках, которые обычно экспрессируют данную молекулу нуклеиновой кислоты, но при этом указанная молекула нуклеиновой кислоты присутствует вне хромосомы или положении хромосомы, отличающемся от ее природного положения в хромосоме.
Используемый здесь термин “вектор” означает молекулу нуклеиновой кислоты, способную переносить другую нуклеиновую кислоту, к которой она присоединена. Одним типом векторов является “плазмида”, представляющая собой кольцевую двухцепочечную ДНК-петлю, с которой могут быть лигированы дополнительные ДНК-сегменты. Другим типом вектора является фаговый вектор. Еще одним типом вектора является вирусный вектор, в котором дополнительные ДНК-сегменты могут быть лигированы с вирусным геномом. Некоторые векторы способны автономно реплицироваться в клетке-хозяине, в которую они были введены (например, бактериальные векторы, имеющие бактериальный ориджин репликации, и эписомные векторы млекопитающих). Другие векторы (например, неэписомные векторы млекопитающих) могут интегрироваться в геном клетки-хозяина после их введения в указанную клетку-хозяина, в результате чего они могут реплицироваться вместе с геномом хозяина. Кроме того, некоторые векторы способны регулировать экспрессию генов, к которым они были функционально присоединены. Такие векторы называются здесь “рекомбинантными экспрессионными векторами” (или просто “рекомбинантными векторами”). В общих чертах, экспрессионные векторы, обычно применяемые в методах рекомбинантных ДНК, часто имеют форму плазмид. В настоящем описании термины “плазмида” и “вектор” могут быть взаимозаменяемыми, поскольку плазмида является наиболее распространенной формой вектора.
Используемые здесь термины “полинуклеотид” или “нуклеиновая кислота” являются взаимозаменяемыми и означают полимеры любой длины, состоящие из нуклеотидов, и такими полимерами являются ДНК и РНК. Нуклеотидами могут быть дезоксирибонуклеотиды, рибонуклеотиды, модифицированные нуклеотиды или основания и/или их аналоги, или любой субстрат, который может быть включен в полимер посредством ДНК- или РНК-полимеразы, либо посредством реакции синтеза. Полинуклеотид может содержать модифицированные нуклеотиды, такие как метилированные нуклеотиды и их аналоги. Если это необходимо, то модификация нуклеотидной структуры может быть осуществлена до или после сборки полимера. Нуклеотидные последовательности могут прерываться ненуклеотидными компонентами. Полинуклеотид может быть дополнительно модифицирован после синтеза, например, путем его конъюгирования с меткой. Модификациями других типов являются, например, “кэпы”; замена одного или нескольких природных нуклеотидов их аналогами; межнуклеотидные модификации, такие как, например, модификации путем введения незаряженных связей (например, метилфосфонатов, фосфотриэфиров, фосфоамидатов, карбаматов и т.п.) и заряженных связей (например, фосфотиоатов, фосфодитиоатов и т.п.); модификации, содержащие боковые группы, такие как, например, белки (например, нуклеазы, токсины, антитела, сигнальные пептиды, поли-L-лизин и т.п.); модификации, содержащие интеркалирующие агенты (например, акридин, псорален и т.п.); модификации, содержащие хелатообразующие агенты (например, металлы, радиоактивные металлы, бор, металлы-окислители и т.п.); модификации, содержащие алкилирующие агенты; модификации, содержащие модифицированные связи (например, альфа-аномерные нуклеиновые кислоты и т.п.), а также немодифицированные формы полинуклеотида(ов). Кроме того, любые гидроксильные группы, обычно присутствующие в сахарах, могут быть заменены, например, фосфонатными группами и фосфатными группами; защищены стандартными защитными группами; или активированы с образованием дополнительных связей с дополнительными нуклеотидами; либо они могут быть конъюгированы с твердыми или полутвердыми носителями. 5’- и 3’-концевые ОН могут быть фосфорилированы или замещены аминами или органическими “кэпирующими” группами, состоящими из 1-20 атомов углерода. Другие гидроксилы могут быть также дериватизированы стандартными защитными группами. Полинуклеотиды могут также содержать аналогичные формы сахаров, таких как рибоза или дезоксирибоза, известных специалистам, включая, например, 2’-О-метил-рибозу, 2’-О-аллилрибозу; 2’-фтор- или 2’-азидорибозу; карбоциклические аналоги сахаров; альфа-аномерные сахара; эпимерные сахара, такие как арабиноза, ксилоза или ликсоза; сахар пиранозу, сахар фуранозу; седогептулозу; ациклические аналоги и неоснόвные нуклеозидные аналоги, такие как метилрибозид. Одна или несколько фосфодиэфирных связей могут быть заменены альтернативными линкерными группами. Такими альтернативными линкерными группами являются, но не ограничиваются ими, варианты, в которых фосфат заменен Р(О)S (“тиоат”), Р(S)S (“дитиоат”), (О)NR2 (“амидат”), Р(О)R, Р(О)ОR’, СО или СН2 (“формацеталь”), где каждый из R или R’ независимо представляет собой Н или замещенный или незамещенный алкил (С1-20), необязательно содержащий эфирную связь (-О-), арил, алкенил, циклоалкил, циклоалкенил или аралдил. Не все связи в полинуклеотиде должны быть идентичными. Вышеприведенное описание относится ко всем используемым здесь полинуклеотидам, включая РНК и ДНК.
Используемый здесь термин “олигонуклеотид”, в общих чертах, означает короткие, в основном одноцепочечные, обычно синтетические полинуклеотиды, длина которых составляет, главным образом, но необязательно, менее чем примерно 200 нуклеотидов. Термины “олигонуклеотид” и “полинуклеотид” не являются взаимоисключающими. Вышепривиденное описание полинуклеотидов может в равной степени и полностью относиться к олигонуклеотидам.
Используемые здесь термины “рак” и “раковый” относятся к физиологическому состоянию млекопитающих, которое обычно характеризуется нерегулируемым ростом клеток. Примерами раковых заболеваний являются, но не ограничиваются ими, рак гемопоэтической системы или рак крови, такой как лимфома, лейкоз, миелома или лимфоидные злокачественные заболевания, а также рак селезенки, рак лимфоузлов, карцинома, бластома и саркома. Более конкретными примерами таких раковых заболеваний являются В-клеточный рак, включая, например, высокозлокачественную, среднезлокачественную и низкозлокачественную лимфому (включая В-клеточные лимфомы, такие как, например, В-клеточная лимфома лимфоидной ткани слизистой и неходжкинская лимфома (НХЛ), лимфома клеток коры головного мозга, лимфома Беркитта, мелкоклеточная лимфоцитарная лимфома, лимфома маргинальной зоны, диффузная крупноклеточная лимфома, фолликулярная лимфома, ходжкинская лимфома и Т-клеточные лимфомы) и лейкоз (включая вторичный лейкоз, хронический лимфоцитарный лейкоз (ХЛЛ), такой как В-клеточный лейкоз (CD5+-В-лимфоциты), миелоидный лейкоз, такой как острый миелоидный лейкоз, хронический миелоидный лейкоз, лимфоидный лейкоз, такой как острый лимфобластный лейкоз (ОЛЛ) и миелодисплазия), и другие гематологические и/или В-клеточные или Т-клеточные раковые опухоли. В настоящее изобретение также входят раковые заболевания других гемопоэтических клеток, включая полиморфоядерные лейкоциты, такие как базофилы, эозинофилы, нейтрофилы и моноциты, дендритные клетки, тромбоциты, эритроциты и природные клетки-киллеры. В настоящее изобретение также входят раковые В-клеточные пролиферативные расстройства, выбранные из нижеследующих заболеваний, таких как лимфома, неходжкинская лимфома (НХЛ), агрессивная НХЛ, рецидивирующая агрессивная НХЛ, рецидивирующая бессимптомная НХЛ, не поддающаяся лечению НХЛ, не поддающаяся лечению бессимптомная НХЛ, хронический лимфоцитарный лейкоз (ХЛЛ), мелкоклеточная лимфоцитарная лимфома, лейкоз, ретикулоэндотелиоз (РЭ), острый лимфоцитарный лейкоз (ОЛЛ) и лимфома клеток коры головного мозга. Участками образования В-клеточного рака являются следующие участки, например, В-клеточная лимфома маргинальной зоны развивается в В-клетках памяти в маргинальной зоне, фолликулярная лимфома и диффузная крупноклеточная В-клеточная лимфома развивается в центроцитах в светлой зоне зародышевых центров; хронический лимфоцитарный лейкоз и мелкоклеточный лимфоцитарный лейкоз развивается в клетках В1 (CD5+); лимфома клеток коры головного мозга развивается в «необученных» В-клетках в зоне коры головного мозга, а лимфома Беркитта развивается в центробластах в темной зоне зародышевых центров. Тканями, которые включают гемопоэтические клетки и которые называются здесь «тканями гемопоэтичеких клеток», являются тимус и костный мозг, а также периферические лимфоидные ткани, такие как селезенка и лимфоузлы; лимфоидные ткани, ассоциированные со слизистой, такие как лимфоидные ткани кишечника, миндалины, Пейеровы бляшки и аппендикс, и лимфоидные ткани, ассоциированные с другими участками слизистой, например, выстилка бронхов. Другими конкретными примерами таких раковых заболеваний являются плоскоклеточный рак, мелкоклеточный рак легких, немелкоклеточный рак легких, аденокарцинома легких, плоскоклеточная карцинома легких, рак брюшины, гепатоцеллюлярный рак, рак желудочно-кишечного тракта, рак поджелудочной железы, глиома, рак шейки матки, рак яичника, рак печени, рак мочевого пузыря, гепатома, рак молочной железы, рак толстой кишки, рак прямой и ободочной кишки, карцинома эндометрия или матки, карцинома слюнных желез, рак почек, рак печени, рак предстательной железы, рак вульвы, рак щитовидной железы, карцинома печени, лейкоз и другие лимфопролиферативные расстройства, и различные типы рака головы и шеи.
Используемый здесь термин «В-клеточная злокачественная опухоль» охватывает неходжкинскую лимфому (НХЛ), включая низкозлокачественную/фолликулярную НХЛ, мелкоклеточную лимфоцитарную (МЛ) НХЛ, среднезлокачественную/фолликулярную НХЛ, среднезлокачественную диффузную НХЛ, высокозлокачественную иммунобластную НХЛ, высокозлокачественную лимфобластную НХЛ, высокозлокачественную мелкоклеточную недифференцированную НХЛ, генерализованную НХЛ, лимфому клеток коры головного мозга, лимфому, ассоциированную со СПИДом и макроглобулинемию Вальденстрема; неходжкинскую лимфому (НХЛ), лимфоцитарную предоминантную болезнь Ходжкина (ЛПБХ), мелкоклеточную лимфоцитарную лимфому (МЛЛ), хронический лимфоцитарный лейкоз (ХЛЛ), включая рецидивирующую бессимптомную НХЛ и бессимптомную НХЛ, не поддающуюся лечению ритуксимабом; лейкоз, включая острый лимфобластный лейкоз (ОЛЛ), хронический лимфоцитарный лейкоз (ХЛЛ), ретикулоэндотелиоз, хронический миелобластный лейкоз; лимфому клеток коры головного мозга и другие гематологические злокачественные опухоли. Такие злокачественные заболевания могут быть подвергнуты лечению антителами против маркеров В-клеточной поверхности, таких как CD79b. Такие заболевания рассматриваются здесь как заболевания, которые могут быть подвергнуты лечению путем введения антитела против маркера В-клеточной поверхности, такого как CD79b, где указанное лечение включает введение неконъюгированного («оголенного») антитела или антитела, конъюгированного с цитотоксическим средством, описанным в настоящей заявке. Такие заболевания также рассматриваются здесь как заболевания, которые могут быть подвергнуты лечению методами комбинированной терапии, включающей введение анти-CD79b антитела или конъюгата «анти-CD79b антитело–лекарственное средство» согласно изобретению в комбинации с введением другого антитела или другого конъюгата «антитело–лекарственное средство», или другого цитотоксического средства, с лучевой терапией или другим курсом терапии, проводимым одновременно или последовательно. В репрезентативном способе лечения согласно изобретению, анти-CD79b антитело согласно изобретению вводят в комбинации с анти-СD20 антителом, иммуноглобулином или его СD20-связывающим фрагментом, и такое лечение может быть проведено одновременно или последовательно. Анти-CD20 антителом может быть «оголенное» антитело или конъюгат «антитело–лекарственное средство». В варианте комбинированной терапии анти-CD79b антителом является антитело согласно изобретению, а анти-CD20 антителом является Rituxan® (ритуксимаб).
Используемый здесь термин “неходжкинская лимфома” или «НХЛ» означает рак лимфатической системы, за исключением лимфомы Ходжкина. В общих чертах, лимфомы Ходжкина и неходжкинские лимфомы могут отличаться тем, что в лимфоме Ходжкина присутствуют клетки Рида-Штернберга, а в неходжкинской лимфоме эти клетки отсутствуют. Примерами неходжкинских лимфом, охватываемых используемым здесь термином, являются все лимфомы, которые могут быть идентифицированы специалистом в данной области (например, онкологом или патологом) в соответствии с известными схемами классификации, такими как Пересмотренная Евро-Американская схема классификации лимфом (REAL), описанная в “Цветном атласе клинической гематологии” (3-е издание) (Color Atlas of Clinical Hematology (3rd edition), A. Victor Hoffbrand and John E.Pettit (eds.)(Harcourt Publishers Ltd., 2000). См., в частности, списки, представленные на фиг.11.57, 11.58 и 11.59. Более конкретными примерами таких лимфом являются, но не ограничиваются ими, рецидивирующая или не поддающаяся лечению НХЛ; пограничная низкозлокачественная НХЛ первой линии; НХЛ на стадии III/IV; НХЛ, резистентная к химиотерапии; лимфобластный лейкоз и/или лимфома, содержащая В-клетки-предшественники; мелкоклеточная лимфоцитарная лимфома; В-клеточный хронический лимфоцитарный лейкоз и/или пролимфоцитарный лейкоз и/или мелкоклеточная лимфоцитарная лимфома; В-клеточная пролимфоцитарная лимфома; иммуноцитома и/или лимфоплазматическая лимфома; лимфоплазмацитарная лимфома; В-клеточная лимфома маргинальной зоны; лимфома маргинальной зоны селезенки; лимфома экстранодальной маргинальной зоны - MALT; нодальная лимфома маргинальной зоны; ретикулоэндотелиоз; плазмацитома и/или плазмаклеточная миелома; низкозлокачественная/фолликулярная лимфома; среднезлокачественная/фолликулярная НХЛ; лимфома коры головного мозга; фолликулярно-центроклеточная лимфома (фолликулярная); среднезлокачественная диффузная НХЛ; диффузная крупноклеточная В-клеточная лимфома; агрессивная НХЛ (включая агрессивную пограничную и агрессивную рецидивирующую НХЛ); НХЛ, рецидивирующая после трансплантации аутологичных стволовых клеток, или НХЛ, резистентная к такой трансплантации; первичная медиастинальная крупноклеточная В-клеточная лимфома; первичная эффузионная лимфома; высокозлокачественная иммунобластная НХЛ; высокозлокачественная лимфобластная НХЛ; высокозлокачественная мелкоклеточная недифференцированная НХЛ; генерализованная НХЛ; лимфома Беркитта; гранулоцитарный крупноклеточный лейкоз клеток-предшественников (периферических); грибовидный микоз и/или синдром Сезари; лимфома кожи (кожная лимфома); анапластическая крупноклеточная лимфома и ангиоцентрическая лимфома.
Термин «расстройство» означает любое состояние, которое восприимчиво к лечению веществом/молекулой или способом согласно изобретению. Такими расстройствами являются хронические и острые расстройства или заболевания, включая патологические состояния, которые создают у данного млекопитающего предрасположенность к рассматриваемому расстройству. Неограничивающими примерами описанных здесь расстройств, подвергаемых лечению, являются раковые заболевания, такие как злокачественные и доброкачественные опухоли; не являющиеся лейкозом, и лимфоидные злокачественные опухоли; поражения нейронов, глиальных клеток, астроцитов, гипоталамуса и другие поражения эндокринной системы, макрофагов, эпителия, стромы и бластоцеля; воспалительные и иммунные растройства и другие расстройства, ассоциированные с ангиогенезом. Кроме того, такими расстройствами также являются раковые заболевания, такие как В-клеточные пролиферативные расстройства и/или В-клеточные опухоли, например, лимфома, неходжкинская лимфома (НХЛ), агрессивная НХЛ, рецидивирующая агрессивная НХЛ, рецидивирующая бессимптомная НХЛ, не поддающаяся лечению НХЛ, не поддающаяся лечению бессимптомная НХЛ, хронический лимфоцитарный лейкоз (ХЛЛ), мелкоклеточная лимфоцитарная лимфома, лейкоз, ретикулоэндотелиоз (РЭ), острый лимфоцитарный лейкоз (ОЛЛ) и лимфома клеток коры головного мозга.
Термины “клеточно-пролиферативное расстройство” и “пролиферативное расстройство” означают расстройства, ассоциированные с определенной степенью аномальной пролиферации клеток. В одном из вариантов изобретения указанным клеточно-пролиферативным расстройством является рак.
Используемый здесь термин “опухоль” означает все неопластические клетки, подвергающиеся росту и пролиферации, независимо от того, являются ли они доброкачественными или злокачественными, и все предраковые и раковые клетки и ткани.
Используемый здесь термин “аутоиммунное заболевание” означает заболевание или расстройство, вызываемое реакцией, продуцируемой организмом против своих собственных тканей или органов, либо ко-сегрегацию или манифестацию этих расстройств или ассоциированное с ними состояние. При многих таких аутоиммунных и воспалительных расстройствах может присутствовать определенное число клинических лабораторных маркеров, включая, но не ограничиваясь ими, гипергаммаглобулинемия, высокие уровни аутоантител, осаждение комплекса «антиген–антитело» в тканях, благоприятный эффект лечения кортикостероидами или иммунодепрессантами и агрегаты лимфоидных клеток в пораженных тканях. Не ограничиваясь какой-либо конкретной теорией относительно В-клеточного аутоиммунного заболевания, можно сказать, что при человеческих аутоиммунных заболеваниях В-клетки демонстрируют свое патогенное действие по множеству механизмов, включая продуцирование аутоантител, образование иммунных комплексов, активацию дендритных клеток и Т-клеток, синтез цитокинов, прямое высвобождение хемокинов и появление очага эктопического неолимфогенеза. Каждый из этих механизмов в той или иной степени может участвовать в развитии аутоиммунных заболеваний.
«Аутоиммунным заболеванием» может быть орган-специфическое заболевание (то есть иммунный ответ конкретно направлен на систему органов, такую как эндокринная система, гемопоэтическая система, кожа, сердечно-легочная система, желудочно-кишечный тракт и печень, а также почечная система, щитовидная железа, уши, нервно-мышечная система, центральная нервная система и т.п.) или системное заболевание, которое может поражать системы многих органов (например, системная красная волчанка (СКВ), ревматоидный артрит, полимиозит и т.п.). Предпочтительно такими заболеваниями являются аутоиммунные ревматологические расстройства (такие как, например, ревматоидный артрит, синдром Шегрена, склеродермия, волчанка, такая как СКВ и волчаночный нефрит, полимиозит/дерматомиозит, криоглобулинемия, синдром антифосфолипидных антител и псориатический артрит), аутоиммунные заболевания желудочно-кишечного тракта и болезни печени (такие как, например, воспалительные заболевания кишечника (например, язвенный колит и болезнь Крона), аутоиммунный гастрит и пернициозная анемия, аутоиммунный гепатит, первичный биллиарный цирроз, первичный склерозирующий холангит и глютеновая болезнь), васкулит (такой как, например, ANCA-негативный васкулит и ANCA-ассоциированный васкулит, включая васкулит Черга-Штраусса, гранулематоз Вегенера и микроскопический полиангиит), аутоиммунные нервные расстройства (такие как, например, рассеянный склероз, синдром пляшущих глаз, тяжелая миастения, нейромиелит зрительного нерва, болезнь Паркинсона, болезнь Альцгеймера и аутоиммунная полиневропатия), болезни почек (такие как, например, гломуролонефрит, синдром Гудпасчера и болезнь Бергера), аутоиммунные кожные болезни (такие как, например, псориаз, крапивница, сыпи, вульгарная пузырчатка, буллезный пемфигоид и кожная красная волчанка), гематологические расстройства (такие как, например, тромбоцитопеническая пурпура, тромбоцитарная тромбоцитопеническая пурпура, пурпура, возникающая после переливания крови, и аутоиммунная гемолитическая анемия), атеросклероз, увеит, аутоиммунные заболевания слуховых путей (такие как, например, заболевание внутреннего уха и потеря слуха), болезнь Бехчета, синдром Рейно, заболевание, ассоциированное с трансплантацией органов, и аутоиммунные заболевания эндокринной системы (такие как, например, аутоиммунные заболевания, ассоциированные с диабетом, такие как инсулинзависимый сахарный диабет (ИЗСД), болезнь Аддисона и аутоиммунное заболевание щитовидной железы (например, болезнь Грейвса и тиреоидит)). Из указанных заболеваний более предпочтительными являются, например, ревматоидный артрит, язвенный колит, ANCA-ассоциированный васкулит, волчанка, рассеянный склероз, синдром Шегрена, болезнь Грейвса, ИЗСД, пернициозная анемия, тиреоидит и гломерулонефрит.
Конкретными примерами других аутоиммунных заболеваний, указанных в настоящей заявке, которые в некоторых случаях охватывают перечисленные выше заболевания, являются, но не ограничиваются ими, артрит (острый и хронический артрит, ревматоидный артрит, включая ювенильный ревматоидный артрит и его стадии, такие как ревматоидный синовит, подагра или подагрический артрит, острый иммунный артрит, хронический воспалительный артрит, дегенеративный артрит, артрит, индуцированный коллагеном типа II, инфекционный артрит, артрит Лайма, пролиферативный артрит, псориатический артрит, болезнь Стилла, артрит позвонков, остеоартрит, проградиентный хронический артрит, деформирующий артрит, хронический первичный полиартрит, реактивный артрит, климактерический артрит, артрит, вызываемый истощением эстрогена, и анкилозирующий спондилит/ревматоидный спондилит), аутоиммунное лимфопролиферативное заболевание, воспалительные гиперпролиферативные заболевания кожи, псориаз, такой как бляшковый псориаз, каплевидный псориаз, пустулезный псориаз и псориаз ногтей; атопии, включая атопические заболевания, такие как сенная лихорадка и синдром Джоба; дерматит, включая контактный дерматит, хронический контактный дерматит, эксфолиативный дерматит, аллергический дерматит, аллергический контактный дерматит, крапивницу, герпетиформный дерматит, монетовидный дерматит, себорейный дерматит, неспецифический дерматит, первичный простой контактный дерматит и атопический дерматит; сцепленный с Х-хромосомой гипер-IgМ-синдром, аллергические внутриглазные воспалительные заболевания, крапивница, такая как хроническая аллергическая крапивница и хроническая идиопатическая крапивница, включая хроническую аутоиммунную крапивницу, миозит, полимиозит/дерматомиозит, ювенильный дерматомиозит, токсический эпидермальный некролиз, склеродермия (включая системную склеродермию), склероз, такой как системный склероз, рассеянный склероз (РС), такой как РС, сопровождающийся нарушением функции спинного мозга и органов зрения, первичный прогрессирующий РС (ППРС) и рецидивирующий-ремитирующий РС (РРРС), прогрессирующий системный склероз, атеросклероз, артериосклероз, рассеянный (множественный) склероз, атаксический склероз, нейромиелит зрительного нерва (НЗН), воспалительное заболевание кишечника (ВЗК)(например, болезнь Крона, аутоиммунные желудочно-кишечные расстройства, воспаления желудочно-кишечного тракта, колиты, такие как язвенный колит, неспецифический язвенный колит, микроскопический колит, коллагенозный колит, полипозный колит, некрозирующий энтероколит и трансмуральный колит, и аутоиммунное воспалительное заболевание кишечника); воспаление кишечника, гангренозная пиодермия, узелковая эритема, первичный склерозирующий холангит, респираторный дистресс-синдром, включая респираторный дистесс-синдром взрослых (РДСВ) или острый респираторный дистресс-синдром, менингит, воспаление всего увеального тракта или его части, ирит, хороидит, аутоиммунное гематологическое расстройство, реакция «трансплантат против хозяина», ангиоэдема, такая как наследственная ангиоэдема, поражение черепного нерва, как при менингите, герпес беременных, пемфигоид беременных, зуд в области мошонки, аутоиммунное преждевременное угасание функции яичника, внезапная потеря слуха, вызываемая аутоиммунным состоянием, IgЕ-опосредуемые заболевания, такие как анафилаксия и аллергический и атопический ринит, энцефалит, такой как энцефалит Расмуссена и энцефалит с поражением конечностей и/или ствола головного мозга, увеит, такой как передний увеит, острый передний увеит, грануломатозный увеит, негрануломатозный увеит, факоантигенный увеит, задний увеит или аутоиммунный увеит, гломерулонефрит (ГН) с нефротическим синдромом или без нефротического синдрома, такой как хронический или острый гломерулонефрит, такой как первичный ГН, иммуноопосредованный ГН, мембранозный ГН (мембранозная нефропатия), идиопатический мембранозный ГН или идиопатическая мембранозная нефропатия, мембранозный или мембранозно-пролиферативный ГН (МПГН), включая гломерулонефрит типа I и типа II, и быстро прогрессирующий ГН (БПГН), пролиферативный нефрит, аутоиммунная плюригландулярная эндокринная недостаточность, баланит, включая плазмаклеточный огибающий баланит, баланопостит, кольцевая центробежная эритема, пепельный дерматоз, многоформная эритема, кольцевидная гранулема, блестящий лишай, склеротический атрофический лишай, простой хронический лишай, шиповидный лишай, плоский лишай, ламеллярный ихтиоз, эпидермолитический гиперкератоз, предраковый кератоз, гангренозная пиодермия, аллергические состояния и ответы, пищевые аллергии, аллергии на лекарственные средства, аллергии на насекомых, редкие аллергические расстройства, такие как мастоцитоз, аллергические реакции, экзема, включая аллергическую или атопическую экзему, астеатопическую экзему, дисгидротическую экзему и пузырчатую ладонно-подошвенную экзему; астма, такая как бронхиальная астма и аутоиммунная астма; состояния, вызываемые инфильтрацией Т-клеток и хронические воспалительные ответы, иммунные реакции против чужеродных антигенов, таких как антигены группы крови А-В-О плода, продуцируемые при беременности, хроническое воспалительное заболевание легких, аутоиммунный миокардит, недостаточная адгезия лейкоцитов; волчанка, включая волчаночный нефрит, волчаночный энцефалит, детскую волчанку, непочечную волчанку, внепочечную волчанку, дискоидную волчанку, дискоидную красную волчанку и волчаночную алопецию; системная красная волчанка (СКВ), такая как кожная СКВ или подострая кожная СКВ, волчаночный синдром новорожденных (ВСР) и диссеминированная красная волчанка; юношеский сахарный диабет (типа I), включая детский инсулинзависимый сахарный диабет (ИЗСД), сахарный диабет взрослых (диабет типа II), аутоиммунный диабет, идиопатический несахарный диабет, диабетическая ретинопатия, диабетическая нефропатия, диабетический колит, диабетическое поражение крупных артерий; иммунные реакции, ассоциированные с острой гиперчувствительностью замедленного типа, опосредуемой цитокинами и Т-лимфоцитами, туберкулез, саркоидоз, гранулематоз, включая лимфоматоидный гранулематоз, агранулоцитоз; васкулитиды (включая васкулит крупных кровеносных сосудов, такой как ревматическая полимиалгия и гигантоклеточный артериит (Такаясу), васкулит средних кровеносных сосудов, такой как болезнь Кавазаки и узелковый полиартериит/узелковый периартериит, иммуноваскулит, васкулит ЦНС, кожный васкулит, аллергический васкулит, некрозирующий васкулит, такой как фибриноидный некрозирующий васкулит и системный некрозирующий васкулит, АNCA-негативный васкулит, АNCA-ассоциированный васкулит, такой как синдром Черга-Штраусса (СЧШ), гранулематоз Вегенера, и микроскопический полиангиит), височный артериит, апластическая анемия, аутоиммунная апластическая анемия, позитивная анемия Кумбса, анемия Даймонда-Блекфана, гемолитическая анемия или имунная гемолитическая анемия, включая аутоиммунную гемолитическую анемию (АИГА), злокачественная анемия (пернициозная анемия), болезнь Аддисона, истинная эритроцитарная анемия или аплазия (ИЭА), дефицит фактора VIII, гемофилия А, аутоиммунная нейтропения, цитопения, такая как панцитопения, лейкопения, заболевания, приводящие к диапедезу лейкоцитов, воспалительные расстройства ЦНС, болезнь Альцгеймера, болезнь Паркинсона, синдром поражения многих органов, такой как вторичный синдром, ассоциированный с сепсисом, травмой или геморрагией; заболевания, опосредуемые образованием комплекса “антиген-антитело”, болезнь гломерулярных базальных мембран, катализируемая реакцией антитело-антиген, антифосфолипидный синдром, нейрит двигательного нерва, аллергический нейрит, болезнь/синдром Бехчета, синдром Кастелмана, синдром Гудпасчера, синдром Рейно, синдром Сьегрена, синдром Стивенса-Джонсона, пемфигоид или пузырчатка, такой как буллезный пемфигоид, рубцующийся пемфигоид (слизистой оболочки), кожный пемфигоид, пузырчатка вульгарная, паранеопластическая пузырчатка, пузырчатка листовидная, пемфигоид слизистых оболочек-мембранозный пемфигоид и пузырчатка эритематозная, приобретенный буллезный эпидермолиз, воспаление глаз, предпочтительно аллергическое воспаление глаз, такое как аллергический конъюнктивит, буллезное заболевание, ассоциированное с линейным IgА, воспаление конъюнктивы, индуцированное аутоиммунным заболеванием, аутоиммунные полиэндокринопатии, болезнь или синдром Райтера, ожоговая травма, вызванная аутоиммунным заболеванием, преэклампсия, болезнь иммунных комплексов, такая как нефрит иммунных комплексов, антитело-опосредуемый нефрит, нейровоспалительные расстройства, полиневропатии, хроническая невропатия, такая как IgМ-полиневропатия или IgМ-опосредованная невропатия, тромбоцитопения (например, развивающаяся у пациента с инфарктом миокарда), включая тромботическую тромбоцитопеническую пурпуру (ТТП), посттрансфузионную пурпуру (ПТП), индуцированную гепарином тромбоцитопению, и аутоиммунную или иммуно-опосредованную тромбоцитопению, включая, например, идиопатическую тромбоцитопеническую пурпуру (ИТП), включая хроническую или острую ИТП; склерит, такой как идиопатический кератосклерит, эписклерит, аутоиммунное заболевание яичек и яичника, включая аутоиммунный орхит и оофорит, первичный гипотиреоидит, гипопаратиреоидит, аутоиммунные эндокринные заболевания, включая тиреоидит, такой как аутоиммунный тиреоидит, болезнь Хашимото, хронический тиреоидит (тиреоидит Хашимото), или подострый тиреоидит, аутоиммунное заболевание щитовидной железы, идиопатический гипотиреоидит, болезнь Грейвса, глазная болезнь Грейвса (офтальмопатия или офтальмопатия, ассоциированная с поражением щитовидной железы), плюригландулярные синдромы, такие как аутоиммунные плюригландулярные синдромы, например, типа I (или синдромы плюригландулярной эндокринопатии), паранеопластические синдромы, включая неврологические паранеопластические синдромы, такие как миастенический синдром Ламберта-Итона или синдром Итона-Ламберта, синдром “негнущегося человека”, энцефаломиелит, такой как аллергический энцефаломиелит (или encephalomyelitis allergica) и экспериментальный аллергический энцефаломиелит (ЭАЭ), тяжелая миастения, такая как тяжелая миастения, ассоциированная с тимомой, дегенерация мозжечка, невромиотония, опсоклонус или синдром “пляшущих глаз” (СПГ) и невропатия органов чувств, мультифокальная невропатия двигательной системы, синдром Шихана, аутоиммунный гепатит, хронический гепатит, волчаночный гепатит, гигантоклеточный гепатит, хронический активный гепатит или аутоиммунный хронический активный гепатит, пневмонит, такой как лимфоидный интерстициальный пневмонит (ЛИП), облитерирующий бронхиолит (не передающийся, в отличие от NSIP); синдром Гийена-Барре, болезнь Бергера (IgА-нефропатия), идиопатическая IgА-нефропатия, линейный IgА-дерматоз, острый фебрильный нейтрофильный дерматоз, субкорнеальный пустулезный дерматоз, преходящий акантолитический дерматоз, цирроз, такой как первичный билиарный цирроз и пневмоцирроз, синдром аутоиммунной энтеропатии, заболевание кишечника или целиакия, кишечная спру (глютеновая энтеропатия), не поддающаяся лечению спру, идиопатическая спру, криоглобулинемия, такая как смешанная криоглобулинемия, амилотрофический боковой склероз (АБС; болезнь Луи Герига), ишемическая болезнь сердца; аутоиммунное заболевание уха, такое как аутоиммунное заболевание внутреннего уха (АЗВУ); аутоиммунная потеря слуха; полихондрит, такой как не поддающийся лечению или рецидивирующий полихондрит; легочный альвеолярный протеиноз, кератит, такой как синдром Когана/несифилитический интерстициальный кератит, паралич Белла, болезнь/синдром Свита, аутоиммунная розацея, боли, ассоциированные с опоясывающим лишаем, амилоидоз, нераковый лимфоцитоз, первичный лимфоцитоз, включая моноклональный В-клеточный лимфоцитоз (например, доброкачественную моноклональную гаммопатию и моноклональную гаммопатию неясной этиологии, MGUS); периферическая невропатия, паранеопластический синдром; “каналопатии”, такие как эпилепсия, мигрень, аритмия, мышечные расстройства, глухота, слепота, периодический паралич и “каналопатии” ЦНС, аутизм, воспалительная миопатия и очаговый или сегментарный, либо очаговый сегментарный гломерулосклероз (ОСГС), эндокринная офтальмопатия, увеоретинит, хореоретинит, аутоиммунное заболевание печени, фибромиалгия, множественная эндокринная недостаточность, синдром Шмидта, адреналит, атрофия желудка, пресенильная деменция, демиелинизирующие заболевания, такие как аутоиммунные демиелинизирующие заболевания и хроническая воспалительная демиелинизирующая полиневропатия, синдром Дресслера, гнездная алопеция, общая алопеция, синдром CREST (кальциноз, феномен Рейно, нарушение моторики пищевода, склеродактилия и телеангиэктазия), аутоиммунное бесплодие у мужчин и женщин, например, вызываемое антителами против сперматозоидов, смешанное заболевание соединительных тканей, болезнь Чагаса, ревматическая лихорадка, привычный выкидыш, болезнь легких у фермеров, многоформная эритема, посткардиотомный синдром, синдром Кушинга, болезнь легких любителей птиц, аллергический гранулематозный ангиит, доброкачественный лимфоцитарный ангиит, синдром Альпорта, альвеолит, такой как аллергический альвеолит и фиброзный альвеолит, интерстициальная болезнь легких, трансфузионная болезнь, лепра, малярия, паразитарные болезни, такие как лейшманиоз, кипаносомоз, шистосомоз, аскариоз, аспергиллез, синдром Сэмптера, синдром Каплана, лихорадка денге, эндокардит, эндомиокардиальный фиброз, диффузный интерстициальный легочный фиброз, интерстициальный легочный фиброз, фиброзный медиастинит, легочный фиброз, идиопатический фиброз легких, кистозный фиброз, эндофталамит, эритема возвышенная стойкая, эритробластоз плода, эозинофильный фасцит, синдром Шульмана, синдром Фелти, фляриоз, циклит, такой как хронический циклит, гетерохронический циклит, иридоциклит (острый или хронический) или циклит Фукса, пурпура Геноха-Шенлейна, инфекция, вызываемая вирусом иммунодефицита человека (ВИЧ), тяжелый комбинированный иммунодефицит (ТКИД), синдром приобретенного иммунодефицита (СПИД), инфекции, вызываемые эховирусом; сепсис (системный синдром, ассоциированный с воспалительным ответом)); эндотоксемия; панкреатит; тироксикоз; инфекции, вызываемые парвовирусом; инфекции, вызываемые вирусом коревой краснухи; синдром, развивающийся после вакцинации; наследственная инфекция, вызываемая вирусом коревой краснухи; инфекции, вызываемые вирусом Эпштейна-Барра; паротит, синдром Эванса, аутоиммунная гонадная недостаточность, хорея Сиденгама, пост-стрептококковый нефрит, облитерирующий тромбоангиит, тиротоксикоз, сухотка спинного мозга, хориодит, гигантоклеточная полимиалгия, хронический аллергический пневмонит, конъюнктивит, такой как весенний аллергический конъюнктивит, сухой кератоконъюнктивит, эпидермический кератоконъюнктивит, синдром идиопатического нефрита, нефропатия, характеризующаяся минимальными изменениями почечной ткани, доброкачественные наследственные и вызываемые ишемией реперфузионные нарушения, реперфузионные повреждения при трансплантации органов, аутоиммунное заболевание сетчатки, воспаление суставов, бронхит, хроническое обструктивное заболевание дыхательных путей/легких, силикоз, афты, афтозный стоматит, артериосклеротические расстройства (недостаточность цереброваскулярной функции), такие как артериосклеротическая энцефалопатия и артериосклеротическая ретинопатия, аспермиогенез, аутоиммунный гемолиз, болезнь Бека, криоглобулинемия, контрактура Дюпюитрена, факоанафилактическая эндофтальмия, аллергический энтерит, нодозная лепроматозная эритема, идиопатический лицевой паралич, синдром хронической усталости, ревматическая лихорадка, синдром Хаммена-Рича; нейросенсорная потеря слуха, пароксизмальная гемоглобинурия, гипогонадизм, регионарный илеит, лейкопения, инфекционный мононуклеоз, поперечный миелит, первичная идиопатическая миксидема, нефроз, симпатическая офтальмия (симпатический офтальмит), офтальмит новорожденных, нейрит зрительного нерва, гранулематозный орхит, панкреатит, острый полирадикулит, гангренозная пиодермия, тиреоидит Кервена, приобретенная атрофия спинного мозга, незлокачественная тимома, лимфофолликулярный тимит, витилиго, синдром токсического шока, отравление пищевыми продуктами, состояния, вызываемые инфильтрацией Т-клеток, недостаточная адгезия лейкоцитов, иммунные ответы, ассоциированные с острой гиперчувствительностью и с гиперчувствительностью замедленного типа, опосредуемой цитокинами и Т-лимфоцитами, заболевания, ассоциированные с диапедезом лейкоцитов, синдром поражения многих органов, заболевания, опосредуемые образованием комплекса “антиген-антитело”, болезнь гломерулярных базальных мембран, катализируемая реакцией “антиген-антитело”, аутоиммунная полиэндокринопатия, оофорит, первичная микседема, аутоиммунный атрофический гастрит, ревматические заболевания, смешанное заболевание соединительных тканей, нефротический синдром, инсулит, полиэндокринная недостаточность, аутоиммунные плюригландулярные синдромы, включая плюригландулярный синдром типа I, идиопатический гипопаратиреоидит взрослых (ИГВ), кардиомиопатия, такая как застойная (дилатационная) кардиомиопатия, такая как застойная кардиомиопатия, приобретенный буллезный эпидермолиз (ПБЭ), гемохроматоз, миокардит, нефротический синдром, первичный склерозирующий холангит, гнойный или негнойный синусит, острый или хронический синусит; решетчатый синусит, фронтит, верхнечелюстной синусит или сфеноидит; аллергический синусит, эозинофильные расстройства, такие как эозинофилия, легочная инфильтрирующая эозинофилия, синдром эозинофилии-миалгии, синдром Лефлера, хроническая эозинофильная пневмония, тропическая легочная эозинофилия, бронхопневмонический аспергиллез, аспергиллема или гранулемы, содержащие эозинофилы; анафилаксия, спондилоартропатии, серонегативные спондилоартриты, полиэндокринное аутоиммунное заболевание, склерозирующий холангит, склерит, эписклерит, хронический слизисто-кожный кандидоз, синдром Брутона, преходящая гипогаммаглобулинемия у детей, синдром Вискотта-Алдрича, синдром атаксии-телеангиэктазии, ангиэктазия, аутоиммунные расстройства, ассоциированные с коллагеновой болезнью, ревматизм, такой как хронический артроревматизм, лимфаденит, реакция на снижение кровяного давления, сосудистая дисфункция, повреждение ткани, сердечно-сосудистая ишемия, гипералгезия, почечная ишемия, ишемия головного мозга и заболевание, сопровождающееся васкуляризацией, аллергические расстройства, ассоциированные с гиперчувствительностью, гломерулонефрит, реперфузионное повреждение, ишемическое реперфузионное повреждение, реперфузионное повреждение миокарда или других тканей, лимфоматозный трахеобронхит, воспалительные дерматозы, дерматозы с компонентами острого воспаления, недостаточность многих органов, буллезные заболевания, некроз коркового вещества почки, острый гнойный менингит или другие воспалительные расстройства центральной нервной системы, воспалительные заболевания глаз и глазницы; синдромы, ассоциированные с трансфузией гранулоцитов; токсичность, индуцированная цитокинами, нарколепсия, острое серозное воспаление, хроническое трудноизлечимое воспаление, пиелит, гиперплазия внутренней оболочки артерии, пептическая язва, вальвувит и эндометриоз. Такие заболевания рассматриваются здесь как заболевания, которые могут быть подвергнуты лечению путем введения антитела, которое связывается с маркером В-клеточной поверхности, таким как CD79b, и такое лечение включает введение неконъюгированного («оголенного») антитела или антитела, конъюгированного с цитотоксическим средством, описанным в настоящей заявке. Такие заболевания также рассматриваются здесь как заболевания, которые могут быть подвергнуты лечению путем проведения комбинированной терапии, включающей введение анти-CD79b антитела или конъюгата «анти-CD79b антитело–лекарственное средство» согласно изобретению в комбинации с другим антителом или конъюгатом «антитело–лекарственное средство», с другим цитотоксическим средством, а также с лучевой терапией или другим способом лечения, проводимого одновременно или последовательно.
Термины «лечение», «терапия» или «ослабление симптомов» означают терапевтическое лечение и профилактические или превентивные меры, которые направлены на предупреждение или замедление (ослабление) нежелательного физиологического изменения или расстройства у индивидуума. Индивидуумом, нуждающимся в лечении, является индивидуум, у которого уже имеется указанное расстройство, а также индивидуум, у которого имеется предрасположенность к развитию такого расстройства, или индивидуум, который нуждается в превентивных мерах по предупреждению такого расстройства. Лечение рака у индивидуума или млекопитающего, в опухолях которых экспрессируется полипептид CD79b, считается успешным, если после введения терапевтического количества анти-CD79b антител способами согласно изобретению у данного пациента наблюдается заметное и/или измеримое снижение числа раковых клеток или их отсутствие; снижение размера опухоли; ингибирование (то есть замедление до некоторой степени, а предпочтительно прекращение) инфильтрации раковых клеток в периферические органы, включая распространение раковых клеток в мягкие ткани и кость; ингибирование (то есть замедление до некоторой степени, а предпочтительно прекращение) метастазирования опухоли; ингибирование до некоторой степени роста опухоли; и/или ослабление до некоторой степени одного или нескольких симптомов, ассоциированных с конкретным раковым заболеванием; снижение заболеваемости и смертности, и улучшение качества жизни этих индивидуумов. Анти-CD79b антитело, в зависимости степени его способности предупреждать рост раковых клеток и/или уничтожать уже имеющиеся раковые клетки, может быть цитостатическим и/или цитотоксическим. Ослабление таких признаков или симптомов может также ощущаться самим пациентом.
Вышеуказанные параметры для оценки эффективности лечения и положительной динамики заболевания могут быть легко определены с помощью рутинных процедур, известных врачу. Что касается лечения рака, то эффективность лечения может быть оценена, например, путем определения времени, прошедшего до прогрессирования заболевания (ТТР), и/или определения скорости ответа (RR). Метастазы могут быть выявлены с помощью анализов на стадии развития опухолей и путем сканирования кости, а также с помощью анализов на уровни кальция и ферментов для определения распространения опухоли в кость. Может быть также проведено сканирование методами компьютерной томографии (КТ) в целях выявления распространения опухоли в область таза и лимфоузлов. Для выявления метастазов опухоли в легкие и печень, соответственно, может быть сделана рентгенограмма грудной клетки и проведено измерение уровней ферментов в печени известными методами. Другими рутинными методами мониторинга заболевания являются трансректальная ультразвуковая эхография (ТУЭ) и трансректальная биопсия (ТБ).
Что касается рака мочевого пузыря, который является более четко локализованным раковым заболеванием, то способы определения прогрессирования данного заболевания включают цитологический анализ мочи под цистоскопом, мониторинг присутствия крови в моче, визуализацию уротелиального тракта путем проведения эхографии или внутривенной пиелографии, компьютерной томографии (КТ) и визуализации методом магнитного резонанса (МР). Присутствие периферических метастазов может быть оценено с помощью КТ брюшной полости, по рентгенограмме грудной клетки или радионуклидной визуализации скелета.
«Постоянное» введение, в отличие от однократного введения, означает введение средства (средств) в непрерывном режиме, что позволяет поддерживать постоянное терапевтическое действие (активность) в течение длительного периода времени. «Периодическое» введение означает введение, которое не является непрерывным, а проводится циклами.
Термин «индивидуум» означает позвоночное. В некоторых вариантах изобретения указанным позвоночным является млекопитающее. Млекопитающими являются, но не ограничиваются ими, сельскохозяйственные животные (такие как коровы), животные, участвующие в спортивных состязаниях, животные-компаньоны (такие как кошки, собаки и лошади), приматы, мыши и крысы. В некоторых вариантах изобретения указанным млекопитающим является человек.
«Млекопитающее», которое может быть подвергнуто лечению или ослаблению симптомов рака, означает любое животное, классифицированное как млекопитающее, включая человека, домашних животных, сельскохозяйственных животных, животных, содержащихся в зоопарках, животных, участвующих в спортивных состязаниях, или животных-компаньонов, таких как собаки, кошки, крупный рогатый скот, лошадей, овец, свиней, коз, кроликов и т.п. Предпочтительным млекопитающим является человек.
Термин «введение в комбинации с одним или несколькими другими терапевтическими средствами» включает одновременное (конкурентное) и последовательное введение в любом порядке.
Используемый здесь термин «носители» включает фармацевтически приемлемые носители, наполнители или стабилизаторы, являющиеся нетоксичными для клеток, в которые их вводят, или для млекопитающих, которым вводят эти носители, наполнители или стабилизаторы в используемых дозах и концентрациях. В большинстве случаев физиологически приемлемым носителем является водный рН-забуференный раствор. Примерами физиологически приемлемых носителей являются буферы, такие как фосфат, цитрат и другие органические кислоты; антиоксиданты, включая аскорбиновую кислоту; полипептид с низкой молекулярной массой (менее чем примерно 10 остатков); белки, такие как сывороточный альбумин, желатин или иммуноглобулины; гидрофильные полимеры, такие как поливинилпирролидон; аминокислоты, такие как глицин, глутамин, аспарагин, аргинин или лизин; моносахариды, дисахариды и другие углеводы, включая глюкозу, маннозу или декстрины; хелатообразующие агенты, такие как EDTA; спирты ряда сахаров, такие как маннит или сорбит; солеобразующие противоионы, такие как натрий; и/или неионогенные поверхностно-активные вещества, такие как TWEEN®, полиэтиленгликоль (ПЭГ) и PLURONICS®.
Термин «твердая фаза» или «твердый носитель» означает безводную матрицу, на которую может быть нанесено или к которой может быть присоединено антитело согласно изобретению. Примерами твердых фаз, рассматриваемых в настоящей заявке, являются твердые фазы, полученные частично или полностью из стекла (например, стекла с регулируемым размером пор), полисахаридов (например, агарозы), полиакриламидов, полистирола, поливинилового спирта и силиконов. В некоторых вариантах изобретения, в зависимости от контекста описания, твердая фаза может представлять собой лунку аналитического планшета, а в других вариантах изобретения такой твердой фазой является колонка для очистки (например, колонка для аффинной хроматографии). Этот термин также включает неоднородную твердую фазу, состоящую из дискретных частиц, например, фазу, описанную в патенте США № 4275149.
«Липосома» представляет собой небольшую везикулу, состоящую из липидов различных типов, фосфолипидов и/или поверхностно-активного вещества, которые могут быть использованы для доставки лекарственного средства (такого как анти-CD79b антитело) млекопитающему. Компоненты липосомы обычно расположены так, что они образуют бислой, аналогичный липидной структуре биологических мембран.
«Небольшая» молекула или «небольшая» органическая молекула определяется здесь как молекула, имеющая молекулярную массу примерно ниже 500 Дальтон.
Термин «индивидуум», «особь» или «пациент» означает позвоночное. В некоторых вариантах изобретения указанным позвоночным является млекопитающее. Млекопитающими являются, но не ограничиваются ими, сельскохозяйственные животные (такие как коровы), животные, участвующие в спортивных состязаниях, животные-компаньоны (такие как кошки, собаки и лошади), приматы, мыши и крысы. В некоторых вариантах изобретения указанным млекопитающим является человек.
Термин «фармацевтическая композиция» означает препарат, который, при его приготовлении в данной форме, обеспечивает эффективное биологическое действие активного ингредиента и не содержит других компонентов, которые могут быть чрезмерно токсичными для индивидуума, которому вводят указанный препарат. Такой препарат может быть стерильным.
«Стерильный» препарат является асептическим, то есть он не содержит живых микроорганизмов и их спор.
Используемый здесь термин «эффективное количество» антитела означает количество, достаточное для достижения конкретных целей. «Эффективное количество», в зависимости от конкретной цели, может быть определено эмпирически и рутинным способом.
Термин “терапевтически эффективное количество” означает количество антитела или другого лекарственного средства, эффективного для «лечения» заболевания или расстройства у индивидуума или млекопитающего. В случае рака такое терапевтически эффективное количество лекарственного средства может снижать число раковых клеток; уменьшать размер опухоли; ингибировать (то есть замедлять до некоторой степени, а предпочтительно прекращать) инфильтрацию раковых клеток в периферические органы; ингибировать (то есть замедлять до некоторой степени, а предпочтительно прекращать) развитие метастазов опухоли; ингибировать до некоторой степени рост опухоли; и/или ослаблять до некоторой степени один или несколько симптомов, ассоциированных с раком. См. определение термина «лечение». Лекарственное средство до некоторой степени может предотвращать рост раковых клеток и/или уничтожать раковые клетки, и такое лекарственное средство может иметь цитостатическое и/или цитотоксическое действие. Термин «профилактически эффективное количество» означает количество, которое, при его введении в нужной дозе или в течение необходимого периода времени, является эффективным для достижения нужного профилактического результата. Поскольку профилактическая доза вводится индивидууму до начала развития заболевания или на ранней стадии его развития, то обычно, но необязательно, профилактически эффективное количество должно быть меньше терапевтически эффективного количества.
«Рост-ингибирующее количество» анти-CD79b антитела представляет собой количество, способное ингибировать рост клеток, а в частности опухоли, например, раковых клеток, либо in vitro, либо in vivo. «Рост-ингибирующее количество» анти-CD79b антитела, используемое в целях ингибирования роста опухолевых клеток, может быть определено эмпирически и рутинным способом.
«Цитотоксическое количество» анти-CD79b антитела представляет собой количество, способное вызывать деструкцию клеток, а в частности опухоли, например, раковых клеток, либо in vitro, либо in vivo. «Цитотоксическое количество» анти-CD79b антитела, используемое в целях ингибирования роста опухолевых клеток, может быть определено эмпирически и рутинным способом.
«CD79b-экспрессирующей клеткой» является клетка, которая экспрессирует эндогенный или трансфицированный полипептид CD79b, либо на клеточной поверхности, либо в секретируемой форме. «Раковая опухоль, экспрессирующая CD79b» представляет собой раковую опухоль, содержащую клетки, которые имеют на своей поверхности полипептид CD79b или продуцируют и секретируют полипептид CD79b. «Раковая опухоль, экспрессирующая CD79b» продуцирует, но необязательно, достаточные уровни полипептида CD79b на клеточной поверхности, что позволяет анти-CD79b антителу связываться с этим полипептидом и оказывать терапевтическое действие на раковое заболевание. В другом варианте изобретения «раковая опухоль, экспрессирующая CD79b» продуцирует и секретирует, но необязательно, достаточные уровни полипептида CD79b, что позволяет анти-CD79b антителу-антагонисту связываться с этим полипептидом и оказывать терапевтическое действие на раковое заболевание. В последнем случае указанным антагонистом может быть антисмысловой олигонуклеотид, который снижает, ослабляет, ингибирует или предупреждает продуцирование и секрецию секретируемого полипептида CD79b опухолевыми клетками. Раковой опухолью, которая «сверхэкспрессирует» полипептид CD79b, является опухоль, имеющая значительно более высокие уровни полипептида CD79b на клеточной поверхности, или продуцирует и секретирует такие более высокие уровни по сравнению с нераковыми клетками тканей того же типа. Такая сверхэкспрессия может быть вызвана амплификацией гена или повышением уровня транскрипции или трансляции. Сверхэкспрессия полипептида CD79b может быть определена с помощью детектирующего или прогностического анализа путем оценки повышения уровней белка CD79b, присутствующего на поверхности клетки, или секретируемого клеткой (например, с помощью иммуногистохимического анализа с использованием анти-CD79b антител, продуцируемых против выделенного полипептида CD79b, который может быть получен методами рекомбинантных ДНК из выделенной нуклеиновой кислоты, кодирующей полипептид CD79b; FACS-анализа и т.п.). Альтернативно или дополнительно, уровни нуклеиновой кислоты или мРНК, кодирующей полипептид CD79b, в клетках могут быть измерены посредством флуоресцентной гибридизации in situ с использованием нуклеиновокислотного зонда, соответствующего CD79b-кодирующей нуклеиновой кислоте или ее комплементу (FISH; см. заявку WO98/45479, опубликованную в октябре 1998 г.), с помощью саузерн-блот-анализа, нозерн-блот-анализа или методами на основе полимеразной цепной реакции (ПЦР), такой как количественная ПЦР в реальной времени (ОТ-ПЦР). Может быть также проведен анализ на сверхэкспрессию полипептида CD79b путем измерения уровня «слущивания» антигена в биологическую жидкость, такую как сыворотка, например, с помощью анализов на основе антител (см. также патент США № 4933294, выданный 12 июня 1990 г.; заявку WO91/05264, опубликованную 18 апреля 1991 г.; патент США № 5401638, выданный 28 марта 1995 г.; и Sias et al., J. Immunol. Methods 132:73-80 (1990)). Помимо вышеописанных анализов, специалистами в данной области могут быть проведены различные анализы in vivo. Так, например, клетки в организме пациента могут быть подвергнуты контактированию с антителом, которое помечено, но необязательно, детектируемой меткой, например, радиоактивным изотопом, а связывание антитела с клеткой данного пациента может быть оценено, например, путем внешнего сканирования на радиоактивность или путем анализа биоптата, взятого у пациента, которому было введено это антитело.
Используемый здесь термин «иммуноадгезин» означает антитело-подобные молекулы, которые обладают специфичностью связывания гетерологичного белка («адгезина») в комбинации с эффекторными функциями константных доменов иммуноглобулина. По своей структуре иммуноадгезины содержат гибрид аминокислотной последовательности, обладающей нужной специфичностью связывания, но не являющейся антиген-распознающей последовательностью и антигенсвязывающим сайтом антитела (то есть является «гетерологичным»), и последовательности константного домена иммуноглобулина. Адгезиновая часть молекулы иммуноадгезина обычно представляет собой непрерывную аминокислотную последовательность, содержащую по меньшей мере сайт связывания с рецептором или лигандом. Последовательность константного домена иммуноглобулина в иммуноадгезине может происходить от любого иммуноглобулина, такого как иммуноглобулин подтипов IgG-1, IgG-2, IgG-3 или IgG-4, IgA (включая IgA-1 и IgA-2), IgE, IgD или IgM.
Используемый здесь термин «метка» означает детектируемое соединение или композицию, которые непосредственно или опосредованно конъюгированы с антителом, так, чтобы они образовывали «меченое» антитело. Такая метка, сама по себе, может быть детектируемой (например, метки-радиоизотопы или флуоресцентные метки), или, в случае ферментативной метки, она может катализировать химическую модификацию соединения-субстрата или композицию, которая является детектируемой.
Используемый здесь термин “цитотоксический агент” означает вещество, которое ингибирует или предотвращает функционирование клеток и/или вызывает деструкцию клеток. Этот термин включает радиоактивные изотопы (например, 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32Р и радиоактивные изотопы Lu), химиотерапевтические агенты, например, метотрексат, адриамицин, винкаалкалоиды (винкристин, винбластин, этопозид), доксорубицин, мелфалан, митомицин C, хлорамбуцил, даунорубицин или другие интеркалирующие агенты, ферменты и их фрагменты, такие как нуклеолитические ферменты, антибиотики и токсины, такие как низкомолекулярные токсины или ферментативно активные токсины, происходящие от бактерий, грибов, растений или животных, включая их фрагменты и/или варианты, и различные противоопухолевые и противораковые агенты, описанные ниже. Другие цитотоксические агенты описаны ниже. Опухолецидное средство вызывает деструкцию опухолевых клеток.
«Токсин» представляет собой любое вещество, способное оказывать ингибирующее действие на рост или пролиферацию клетки.
«Химиотерапевтическое средство» представляет собой химическое соединение, которое, независимо от механизма его действия, может быть использовано для лечения рака. Классами химиотерапевтических средств являются, но не ограничиваются ими, алкилирующие агенты, антиметаболиты, алкалоиды веретена ядовитых растений, цитотоксические/противоопухолевые антибиотики, ингибиторы топоизомеразы, антитела, фотосенсибилизирующие агенты и ингибиторы киназы. Химиотерапевтическими средствами являются соединения, используемые в «терапии направленного действия» и в стандартной химиотерапии. Примерами химиотерапевтических средств являются эрлотиниб (TARCEVA®; Genentech/OSI Pharm.), доцетаксел (TAXOTERE®, Sanofi-Aventis), 5-FU (фторурацил, 5-фторурацил, CAS No. 51-21-8), гемцитабин (GEMZAR®, Lilly), PD-0325901 (CAS No. 391210-10-9, Pfizer), цисплатин (цис-диамин, дихлорплатина(II), CAS No. 15663-27-1), карбоплатин (CAS No. 41575-94-4), паклитаксел (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.), трастузумаб (HERCEPTIN®, Genentech), темозоломид (4-метил-5-оксо-2,3,4,6,8-пентазабицикло-[4.3.0]-нона-2,7,9-триен-9-карбоксамид, CAS No. 85622-93-1, TEMODAR®, TEMODAL®, Schering Plough), тамоксифен ((Z)-2-[4-(1,2-дифенилбут-1-енил)фенокси]-N,N-диметил-этанамин, NOLVADEX®, ISTUBAL®, VALODEX®), и доксорубицин (ADRIAMYCIN®), Akti-1/2, HPPD и рапамицин.
Другими примерами химиотерапевтических средств являются оксалиплатин (ЕLOXATIN®, Sanofi), бортезомиб (VELCADE®, Millennium Pharm.), сутент (SUNITINIB®, SU11248, Pfizer), летрозол (FEMARA®, Novartis), мезилат иматиниба (GLEEVEC®, Novartis), XL-518 (ингибитор Mek, Exelixis, WO 2007/044515), ARRY-886 (ингибитор Mek, AZD6244, Array BioPharma, Astra Zeneca), SF-1126 (ингибитор PI3K, Semafore Pharmaceuticals), BEZ-235 (ингибитор PI3K, Novartis), XL-147 (ингибитор PI3K, Exelixis), PTK787/ZK 222584 (Novartis), фульвестрант (FASLODEX®, AstraZeneca), лейковорин (фолиновая кислота), рапамицин (sirolimus, RAPAMUNE®, Wyeth), лапатиниб (TYKERB®, GSK572016, Glaxo Smith Kline), лонафарниб (SARASAR™, SCH 66336, Schering Plough), сорафиниб (NEXAVAR®, BAY43-9006, Bayer Labs), гефитиниб (IRESSA®, AstraZeneca), иринотекан (CAMPTOSAR®, CPT-11, Pfizer), типифарниб (ZARNESTRA™, Johnson & Johnson), ABRAXANE™ (не содержащий кремофора), сконструированные на основе альбумина композиции наночастиц паклитаксела (American Pharmaceutical Partners, Schaumberg, Il), вандетаниб (rINN, ZD6474, ZACTIMA®, AstraZeneca), хлорамбуцил, AG1478, AG1571 (SU 5271; Sugen), темсиролимус (TORISEL®, Wyeth), пазопаниб (GlaxoSmithKline), канфосфамид (TELCYTA®, Telik), тиотепа и цислофосфамид (CYTOXAN®, NEOSAR®); алкилсульфонаты, такие как бусульфан, импросульфан и пипосульфан; азиридины, такие как бензодопа, карбоквон, метуредопа и уредопа; этиленимины и метиламеламины, включая альтретамин, триэтиленмеламин, триэтиленфосфорамид, триэтилентиофосфорамид и триметиломеламин; ацетогенины (в частности, буллатацин и буллатацинон); камптотецин (включая синтетический аналог топотекан); бриостатин; каллистатин; СС-1065 (включая его адозелезиновые, карзелезиновые и бизелезиновые синтетические аналоги); криптофицины (в частности, криптофицин 1 и криптофицин 8); доластатин; дуокармицин (включая его синтетические аналоги, KW-2189 и СВ1-ТМ1); элеутеробин; панкратистатин; саркодиктиин; спонгистатин; азотные аналоги горчичного газа, такие как хлорамбуцил, хлорнафазин, хлорофосфамид, экстрамустин, ифосфамид, мехлоретамин, гидрохлорид оксида мехлоретамина, мелфалан, новембицин, фенестерин, преднимустин, трофосфамид, урациловый аналог горчичного газа; нитрозомочевины, такие как кармустин, хлорозотоцин, фотемустин, ломустин, нимустин и ранимнустин; антибиотики, такие как энедииновые антибиотики (например, калихеамицин, а в частности калихеамицин гамма II и калихеамицин омега II (см., например, Agnew, Chem. Intl. Ed. Engl., (1994) 33: 183-186); динемицин, включая динемицин А; бифосфонаты, такие как клодронат; эсперамицин, а также неокарзиностатиновый хромофор и родственные хромопротеиновые энедииновые антибиотики-хромофоры), аклациномизины, актиномицин, антрамицин, азасерин, блеомицины, кактиномицины, карабицин, карминомицин, карзинофилин, хромомицины, дактиномицин, даунорубицин, деторубицин, 6-диазо-5-оксо-L-норлейцин, морфолинодоксорубицин, цианоморфолинодоксорубицин, 2-пирролино-доксорубицин и дезоксидоксорубицин), эпирубицин, эзорубицин, идарубицин, марцелломицин, митомицины, такие как митомицин С, микофеноловая кислота, ногаламицин, оливомицины, пепломицин, порфиромицин, пуромицин, келамицин, родорубицин, стрептонигрин, стрептозоцин, туберцидин, убенимекс, зиностатин и зорубицин; антиметаболиты, такие как метотрексат и 5-фторурацил (5-FU); аналоги фолиевой кислоты, такие как деноптерин, метотрексат, птероптерин и триметрексат; пуриновые аналоги, такие как флударабин, 6-меркаптопурин, тиамиприн и тиогуанин; пиримидиновые аналоги, такие как анцитабин, азацитидин, 6-азауридин, кармофур, цитарабин, дидезоксиуридин, доксифлуридин, эноцитабин и флоксуридин; андрогены, такие как калустерон, пропионат дромостанолона, эпитиостанол, мепитиостан и тестолактон; антиадренергические средства, такие как аминоглютетимид, митотан и трилостан; средство, восполняющее недостаток фолиевой кислоты, такое как фролиновая кислота; ацеглатон; гликозид альдофосфамида; аминолевулиновая кислота; энилурацил; амсакрин; бестрабуцил; бизантрен; эдатраксат; дефофамин; демекольцин; диазиквон; эльфорнитин; ацетат эллиптиния; эпотилон; этоглюцид; нитрат галлия; гидроксимочевина; лентинан; лонидаинин; майтанзиноиды, такие как майтанзин и анзамитоцины; митогуазон; митоксантрон; мопиданмол; нитраэрин; пентостатин; фенамет; пирарубицин; лозоксантрон; подофилиновая кислота; 2-этилгидразид; прокарбазин; полисахаридный комплекс PSK® (JHS Natural Products, Eugene, OR); разоксан; ризоксин; сизофиран; спирогерманий; тенаузоновая кислота; триазиквон; 2,2’,2”-трихлортриэтиламин; трихотецены (в частности, токсин Т-2, верракурин А, роридин А и ангуидин); уретан; виндезин; дакарбазин; манномустин; митобронитол; митолактол; пипоброман; гацитозин; арабинозид (“Ara-C”); циклофосфамид; тиотепа; 6-тиогуанин; меркаптопурин; метотрексат; аналоги платины, такие как цисплатин и карбоплатин; винбластин, этопозид (VP-16); ифосфамид; митоксантрон; винкристин; винорелбин (NAVELBINE®); новантрон; тенипозид; эдатрексат; дауномицин; аминоптерин; капецитабин (XELODA®, Roche); ибандронат; СРТ-11; ингибитор топоизомеразы RFS 2000; дифторметилорнитин (ДМФО); ретиноиды, такие как ретиноевая кислота; и фармацевтически приемлемые соли, кислоты и производные всех вышеуказанных соединений.
В определение термина «химиотерапевтическое средство» также входят: (i) антигормональные средства, регулирующие или ингибирующие действие гормонов на опухоли, такие как антиэстрогены и селективные модуляторы рецептора эстрогена (SERM), включая, например, тамоксифен (включая NOLVADEX®, цитрат тамоксифена), ралоксифен, дролоксифен, 4-гидрокситамоксифен, триоксифен, кеоксифен, LY117018, онапристон и FARESTON® (цитрат торемифена); (ii) ингибиторы ароматазы, которые ингибируют фермент ароматазу и регулируют продуцирование эстрогенов в коре надпочечника, такие как, например, 4(5)-имидазолы, аминоглутетимид, MEGASE® (ацетат мегестрола), AROMASIN® (эксеместан, Pfizer), форместанин, фадрозол, RIVISOR® (ворозол), FEMARA® (летрозол, Novartis) и ARIMIDEX® (анастрозол, AstraZeneca); (iii) антиандрогены, такие как флутамид, нилутамид, бикалутамид, лейпролид и гозерелин; а также троксацитабин (нуклеозидный цитозиновый аналог 1,3-диоксолана); (iv) ингибиторы протеинкиназы, такие как ингибиторы МЕК (WO 2007/044515); (v) ингибиторы липид-киназы; (vi) антисмысловые олигонуклеотиды, а в частности олигонуклеотиды, ингибирующие экспрессию генов путей передачи сигнала, участвующих в пролиферации нежелательных клеток, таких как, например, PKC-альфа, Ralf и H-Ras, такие как облимерсен (GENASENSE®, Genta Inc.); (vii); рибозимы, такие как ингибиторы экспрессии VEGF (например, ANGIOZYME®) и ингибиторы экспрессии HER2; (viii) вакцины, такие как вакцины для генотерапии, например, вакцина ALLOVECTIN®, вакцина LEUVECTIN® и вакцина VAXID®; rIL-2 PROLEUKIN®; ингибиторы топоизомеразы 1, такие как LURTOTECAN®; rmRH ABARELIX®; (iх) антиангиогенные агенты, такие как бевацизумаб (AVASTIN®, Genentech); и фармацевтически приемлемые соли, кислоты и производные всех вышеперечисленных соединений.
В определение термина «химиотерапевтическое средство» также входят терапевтические антитела, такие как алемтузумаб (Campath), бевацизумаб (AVASTIN®, Genentech); цетуксимаб (ERBITUX®, Imclone); панитумумаб (VECTIBIX®, Amgen), ритуксимаб (RITUXAN®, Genentech/Biogen Idec), пертузумаб (OMNITARG™, 2C4, Genentech), трастузумаб (HERCEPTIN®, Genentech), тозитумомаб (Bexxar, Corixia), и конъюгат «антитело–лекарственное средство», гемтузумаб озогамицин (MYLOTARG®, Wyeth).
Используемый здесь термин “рост-ингибирующее средство” означает соединение или композицию, ингибирующие рост клеток, а в частности раковых клеток, экспрессирующих CD79b, либо in vitro, либо in vivo. Таким образом, средством, ингибирующим рост клеток, может быть средство, значительно снижающее процент клеток, экспрессирующих CD79b, в фазе S. Примерами средств, ингибирующих рост клеток, являются средства, блокирующие прохождение клеточного цикла (в другой фазе, кроме фазы S), такие как средства, индуцирующие блокирование фазы G1 и фазы М. Классическими средствами, блокирующими фазу М, являются винкаалкалоиды (винкристин и винбластин), таксаны и ингибиторы топоизомеразы II, такие как доксорубицин, эпирубицин, даунорубицин, этопозид и блеомицин. Средствами, блокирующими фазу G1, а также блокирующими переход в фазу S, являются, например, ДНК-алкилирующие агенты, такие как тамоксифен, преднизон, дакарбазин, мехлоретамин, цисплатин, метотрексат, 5-фторурацил и ara-C. Дополнительную информацию можно найти в публикации The Molecular Basis of Cancer, Mendelsohn & Israel, eds., Chapter 1, entitled “Cell cycle regulation, oncogenes and antineoplastic drugs”, Murakami et al. (WB Saunders: Philadelphia, 1995), а в частности, на стр.13. Таксаны (паклитаксел и доцетаксел) представляют собой противораковые лекарственные средства, получаемые из дерева тис. Доцетаксел (Таксотер®, Rhone-Poulenc Rorer), получаемый из Европейского тиса, представляет собой полусинтетический аналог паклитаксела (Таксола®, Bristol-Myers Squibb). Паклитаксел и доцетаксел индуцируют сборку микротрубочек из тубулиновых димеров и стабилизируют микротрубочки путем предупреждения деполимеризации, что приводит к ингибированию митоза клеток.
“Доксорубицин” представляет собой антрациклиновый антибиотик. Доксорубицин имеет полное химическое название (8S-цис)-10-[(3-амино-2,3,6-тридезокси-α-L-ликсо-гексапиранозил)окси]-7,8,9,10-тетрагидро-6,8,11-тригидрокси-8-(гидроксиацетил)-1-метокси-5,12-нафтацендион.
Термин “цитокин” является общим термином, относящимся к белкам, которые высвобождаются одной клеточной популяцией и которые действуют на другие клетки как межклеточные медиаторы. Примерами таких цитокинов являются лимфокины, монокины и стандартные полипептидные гормоны. Помимо вышеуказанных определений, понятие “цитокины” также включает гормоны роста, такие как человеческий гормон роста, N-метионильный человеческий гормон роста и бычий гормон роста; паратиреоидный гормон; тироксин; инсулин; проинсулин; релаксин; прорелаксин; гликопротеиновые гормоны, такие как фолликулостимулирующий гормон (FSH), тиреоид-стимулирующий гормон (TSH) и лютеинизирующий гормон (LH); фактор роста гепатоцитов, фактор роста фибробластов; пролактин; плацентарный лактоген; фактор некроза опухоли-α и -β; мюллеровский ингибирующий фактор; пептид, ассоциированный с мышиным гонадотропином; ингибин; активин; васкулярный эндотелиальный фактор роста; интегрин; тромбопоэтин (ТРО); факторы роста нервных тканей, такие как NGF-β; тромбоцитарный фактор роста; трансформирующие факторы роста (TGF), такие как TGF-α и TGF-β; инсулиноподобный фактор роста-I и -II; эритропоэтин (EPO); факторы, индуцирующие остеогенез; интерфероны, такие как интерферон-α, -β и -γ; колониестимулирующие факторы (CSF), такие как макрофагальный CSF (M-CSF); гранулоцитарный-макрофагальный CSF (GM-CSF); и гранулоцитарный CSF (G-CSF); интерлейкины (IL), такие как IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12; фактор некроза опухоли, такой как TNF-α или TNF-β; и другие полипептидные факторы, включая LIF и лиганд кit (KL). Используемый здесь термин “цитокин” включает белки, происходящие от природных источников или от рекомбинантной клеточной культуры, и биологически активные эквиваленты цитокинов с нативной последовательностью.
Используемый здесь термин “вкладыш в упаковку” означает инструкции, которые обычно вложены в предназначенные для продажи упаковки терапевтических продуктов и в которых имеется информация, касающаяся показаний, способа применения, дозы, способа введения, противопоказаний и/или предупреждений относительно применения таких терапевтических продуктов.
Термин «внутриклеточный метаболит» означает соединение, образующееся в результате метаболического процесса или метаболической реакции конъюгата «антитело–лекарственное средство» (ADC) внутри клетки. Такими метаболическими процессами или реакциями может быть ферментативная реакция, такая как протеолитическое расщепление пептидного линкера ADC, или гидролиз функциональной группы, такой как гидразон, сложный эфир или амид. Внутриклеточными метаболитами являются, но не ограничиваются ими, антитела и свободное лекарственное средство, которые подвергаются внутриклеточному расщеплению после поступления в клетку, диффузии или поглощения в клетке, или транспорта в клетку.
Термины «расщепляемый внутри клеток» и «внутриклеточное расщепление» относятся к процессу метаболизма или реакции конъюгата «антитело–лекарственное средство» (ADC) внутри клетки, где под действием таких процессов или реакций происходит разрыв ковалентной связи, то есть линкера, между молекулой лекарственного средства (D) и антителом (Ab), что приводит к образованию свободного лекарственного средства, диссоциируемого из антитела внутри клеток. Таким образом, отщепляемыми группами ADC являются внутриклеточные метаболиты.
Термин “биологическая доступность” означает системную биологическую доступность (то есть уровни лекарственного средства в крови/плазме) для данного количества лекарственного средства, вводимого пациенту. “Биологическая доступность” является абсолютным термином, который определяет такие параметры, как время действия (скорость) и общее количество (уровень) лекарственного средства, которое высвобождается из введенной лекарственной формы и поступает в общий кровоток.
Термин «цитотоксическая активность» означает цитотоксическое, цитостатическое или рост-ингибирующее действие ADC или внутриклеточного метаболита ADC. Цитотоксическая активность может быть выражена как величина IC50, которая представляет собой концентрацию (молярную или по массе на единицу объема), при которой выживает 50% клеток.
Используемый здесь термин «алкил» означает насыщенный прямой или разветвленный одновалентный углеводородный радикал, состоящий из 1-12 атомов углерода (С1-С12), где указанный алкильный радикал может быть, но необязательно, независимо замещен одним или несколькими заместителями, описанными ниже. В другом варианте изобретения алкильный радикал имеет 1-8 атомов углерода (C1-C8) или 1-6 атомов углерода (C1-C6). Примерами алкильных групп являются, но не ограничиваются ими, метил (Ме, -СН3), этил (Et, -СН2СН3), 1-пропил (n-Pr, н-пропил, -СН2СН2СН3), 2-пропил (i-Pr, изопропил, СН2(СН3)2), 1-бутил (n-Bu, н-бутил, -СН2СН2СН2СН3), 2-метил-1-пропил (i-Bu, изобутил, -СН2СН(СН3)2), 2-бутил (s-Bu, втор-бутил, -СН(СН3)СН2СН3), 2-метил-2-пропил (t-Bu, трет-бутил, -С(СН3)3), 1-пентил (н-пентил, -СН2СН2СН2СН2СН3), 2-пентил (-СН(СН3)СН2СН2СН3), 3-пентил (-СН(СН2СН3)2), 2-метил-2-бутил (-С(СН3)2СН2СН3), 3-метил-2-бутил (-СН(СН3)СН(СН3)2), 3-метил-1-бутил (-СН2СН2СН(СН3)2), 2-метил-1-бутил (-СН2СН(СН3)СН2СН3), 1-гексил (-СН2СН2СН2СН2СН2СН3), 2-гексил (-СН(СН3)СН2СН2СН2СН3), 3-гексил (-СН(СН2СН3)(СН2СН2СН3)), 2-метил-2-пентил (-С(СН3)2СН2СН2СН3), 3-метил-2-пентил (-СН(СН3)СН(СН3)СН2СН3), 4-метил-2-пентил (-СН(СН3)СН2СН(СН3)2), 3-метил-3-пентил (-С(СН3)(СН2СН3)2), 2-метил-3-пентил (-СН(СН2СН3)СН(СН3)2), 2,3-диметил-2-бутил (-С(СН3)2СН(СН3)2), 3,3-диметил-2-бутил (-СН(СН3)С(СН3)3), 1-гептил, 1-октил и т.п.
Термин «алкенил» означает прямой или разветвленный одновалентный углеводородный радикал, состоящий из 2-8 атомов углерода (C2-C8) по меньшей мере с одной ненасыщенной связью, то есть с углерод-углеродной связью и с sp2-двойной связью, где алкенильный радикал может быть, но необязательно, независимо замещен одним или несколькими заместителями, описанными в настоящей заявке, и включает радикалы, имеющие «цис»- и «транс»-ориентации, или альтернативно "E"- и "Z"-ориентации. Примерами являются, но не ограничиваются ими, этиленил или винил (-CH=CH2), аллил (-CH2CH=CH2) и т.п.
Термин «алкинил» означает прямой или разветвленный одновалентный углеводородный радикал, состоящий из 2-8 атомов углерода (C2-C8) по меньшей мере с одной ненасыщенной связью, то есть с углерод-углеродной связью и с sp-тройной связью, где алкинильный радикал может быть, но необязательно, независимо замещен одним или несколькими заместителями, описанными в настоящей заявке. Примерами являются, но не ограничиваются ими, этинил (-C≡CH), пропинил (пропаргил, -CH2C≡CH) и т.п.
Термины «карбоцикл», «карбоциклил», «карбоциклическое кольцо» и «циклоалкил» означают одновалентное неароматическое насыщенное или частично ненасыщенное кольцо, имеющее 3-12 атомов углерода (C3-C12) в качестве моноциклического кольца или 7-12 атомов углерода в качестве бициклического кольца. Бициклические карбоциклы, имеющие 7-12 атомов, могут быть расположены, например, в виде бицикло-[4,5]-, -[5,5]-, -[5,6]- или -[6,6]-системы, а бициклические карбоциклы, имеющие 9 или 10 атомов углерода на кольце, могут быть расположены, например, в виде бицикло-[5,6]- или -[6,6]-системы, либо в виде мостиковых систем, таких как бицикло[2.2.1]гептан, бицикло[2.2.2]октан и бицикло[3.2.2]нонан. Примерами моноциклических карбоциклов являются, но не ограничиваются ими, циклопропил, циклобутил, циклопентил, 1-циклопент-1-енил, 1-циклопент-2-енил, 1-циклопент-3-енил, циклогексил, 1-циклогекс-1-енил, 1-циклогекс-2-енил, 1-циклогекс-3-енил, циклогексадиенил, циклогептил, циклооктил, циклононил, циклодецил, циклоундецил, циклододецил и т.п.
Термин «арил» означает одновалентный ароматический углеводородный радикал, состоящий из 6-20 атомов углерода (С6-С20) и образующийся в результате удаления одного атома водорода у одного атома углерода исходной ароматической системы. Некоторые арильные группы в репрезентативных структурах обозначены как “Ar”. Типичными арилами являются бициклические радикалы, содержащие ароматическое кольцо, конденсированное с насыщенным, частично насыщенным или ароматическим карбоциклическим кольцом. Типичными арильными группами являются, но не ограничиваются ими, радикалы, происходящие от бензола (фенила), замещенного бензола, нафталина, антрацена, бифенила, инденила, инданила, 1,2-дигидронафталина, 1,2,3,4-тетрагидронафталина и т.п. Арильные группы независимо замещены, но необязательно, одним или несколькими заместителями, описанными в настоящей заявке.
Термины «гетероцикл», «гетероциклил» и «гетероциклическое кольцо» являются взаимозаменяемыми и означают насыщенный или частично ненасыщенный (то есть имеющий одну или две двойных и/или тройных связи на кольце) карбоциклический радикал, имеющий от 3 до 20 атомов на кольце, где по меньшей мере один атом на кольце представляет собой гетероатом, выбранный из атомов азота, кислорода, фосфора и серы, а остальными атомами на кольце являются атомы С, где один или несколько атомов на кольце независмо замещены, но необязательно, одним или несколькими заместителями, описанными ниже. Гетероцикл может представлять собой моноцикл, имеющий от 3 до 7 членов на кольце (2-6 атомов углерода и 1-4 гетероатома, выбранных из N, О, Р и S), или бицикл, имеющий от 7 до 10 членов на кольце (4-9 атомов углерода и 1-6 гетероатомов, выбранных из N, О, Р и S), например, бицикло [4,5]-, [5,5]-, [5,6]- или [6,6]-систему. Гетероциклы описаны у Paquette, Leo A.; “Principles of Modern Heterocyclic Chemistry” (W.A. Benjamin, New York, 1968), а в частности, в главах 1, 3, 4, 6, 7 и 9; в “The Chemistry of Heterocyclic Compounds, A series of Monographs” (John Wiley & Sons, New York, 1950 to present), а в частности, в томах 13, 14, 16, 19 и 28; и в J. Am. Chem. Soc. (1960) 82:5566. Термин «гетероциклил» также включает радикалы, а именно гетероциклические радикалы, конденсированные с насыщенным, с частично ненасыщенным или ароматическим карбоциклическим или гетероциклическим кольцом. Примерами гетероциклических колец являются, например, но не ограничиваются ими, пирролидинил, тетрагидрофуранил, дигидрофуранил, тетрагидротиенил, тетрагидропиранил, дигидропиранил, тетрагидротиопиранил, пиперидино, морфолино, тиоморфолино, тиоксалил, пиперазинил, гомопиперазинил, азетидинил, оксетанил, тиетанил, гомопиперидинил, оксепанил, тиепанил, оксазепинил, диазепинил, тиазепинил, 2-пирролинил, 3-пирролинил, индолинил, 2H-пиранил, 4H-пиранил, диоксанил, 1,3-диоксоланил, пиразолинил, дитианил, дитиоланил, дигидропиранил, дигидротиенил, дигидрофуранил, пиразолидинилимидазолинил, имидазолидинил, 3-азабицикло[3.1.0]гексанил, 3-азабициклo[4.1.0]гептанил, азабицикло[2.2.2]гексанил, 3H-индолил, хинолизинил и N-пиридилмочевины. В объем данного определения также входят спиро-молекулы. Примерами гетероциклических групп, в которых 2 атома углерода на кольце замещены оксо (=О) группами, являются пиримидинонил и 1,1-диоксо-тиоморфолинил. Описанные здесь гетероциклические группы независимо замещены, но необязательно, одним или несколькими заместителями, описанными в настоящей заявке.
Термин «гетероарил» означает одновалентный ароматический радикал, состоящий из 5-, 6- или 7-членных колец, и включает конденсированные циклические системы (по меньшей мере одна из которых является ароматической), состоящие из 5-20 атомов, содержащих один или несколько гетероатомов, независимо выбранных из атомов азота, кислорода и серы. Примерами гетероарильных групп являются пиридинил (включая, например, 2-гидроксипиридинил), имидазолил, имидазопиридинил, пиримидинил (включая, например, 4-гидроксипиримидинил), пиразолил, триазолил, пиразинил, тетразолил, фурил, тиенил, изоксазолил, тиазолил, оксазолил, изотиазолил, пирролил, хинолинил, изохинолинил, индолил, бензимидазолил, бензофуранил, циннолинил, индазолил, индолизинил, фталазинил, пиридазинил, триазинил, изоиндолил, птеридинил, пуринил, оксадиазолил, триазолил, тиадиазолил, тиадиазолил, фуразанил, бензофуразанил, бензотиофенил, бензотиазолил, бензоксазолил, хиназолинил, хиноксалинил, нафтиридинил и фуропиридинил. Гетероарильные группы независимо замещены, но необязательно, одним или несколькими заместителями, описанными в настоящей заявке.
Гетероциклические или гетероарильные группы могут быть связаны, где это возможно, через атом углерода (связаны с атомом углерода) или через атом азота (связаны с атомом азота). Неограничивающими примерами связанных через углерод гетероциклов или гетероарилов являются гетероциклы или гетероарилы, связанные в положении 2, 3, 4, 5 или 6 пиридина, в положении 3, 4, 5 или 6 пиридазина, в положении 2, 4, 5 или 6 пиримидина, в положении 2, 3, 5 или 6 пиразина, в положении 2, 3, 4 или 5 фурана, тетрагидрофурана, тиофурана, тиофена, пиррола или тетрагидропиррола, в положении 2, 4 или 5 оксазола, имидазола или тиазола, в положении 3, 4 или 5 изоксазола, пиразола или изотиазола, в положении 2 или 3 азиридина, в положении 2, 3 или 4 азетидина, в положении 2, 3, 4, 5, 6, 7 или 8 хинолина или в положении 1, 3, 4, 5, 6, 7 или 8 изохинолина.
Неограничивающими примерами связанных через азот гетероциклов или гетероарилов являются гетероциклы или гетероарилы, связанные в положении 1 азиридина, азетидина, пиррола, пирролидина, 2-пирролина, 3-пирролина, имидазола, имидазолидина, 2-имидазолина, 3-имидазолина, пиразола, пиразолина, 2-пиразолина, 3-пиразолина, пиперидина, пиперазина, индола, индолина, 1Н-индазола; в положении 2 изоиндола или изоиндолина, в положении 4 морфолина и в положении 9 карбазола или β-карболина.
“Алкилен” представляет собой насыщенный, разветвленный, одноцепочечный или циклический углеводородный радикал, состоящий из 1-18 атомов углерода и имеющий два одновалентных радикальных центра, образованных в результате удаления двух атомов водорода у двух одинаковых или различных атомов углерода исходного алкана. Типичными алкиленовыми радикалами являются, но не ограничиваются ими, метилен (-СН2-), 1,2-этил (-СН2СН2-), 1,3-пропил (-СН2СН2СН2-), 1,4-бутил (-СН2СН2СН2СН2-) и т.п.
«С1-С10алкилен» представляет собой прямую насыщенную углеводородную группу формулы –(СН2)1-10-. Примерами С1-С10алкиленов являются метилен, этилен, пропилен, бутилен, пентилен, гексилен, гептилен, октилен, нонилен и декален.
“Алкенилен” представляет собой ненасыщенный, разветвленный, одноцепочечный или циклический углеводородный радикал, состоящий из 2-18 атомов углерода и имеющий два одновалентных радикальных центра, образованных в результате удаления двух атомов водорода у двух одинаковых или различных атомов углерода исходного алкена. Типичными алкениленовыми радикалами являются, но не ограничиваются ими, 1,2-этилен (-СН=СН-).
“Алкинилен” представляет собой ненасыщенный, разветвленный, одноцепочечный или циклический углеводородный радикал, состоящий из 2-18 атомов углерода и имеющий два одновалентных радикальных центра, образованных в результате удаления двух атомов водорода у двух одинаковых или различных атомов углерода исходного алкина. Типичными алкиниленовыми радикалами являются, но не ограничиваются ими, ацетилен (-С≡С-), пропаргил (-СН2С≡С-) и 4-пентинил (-СН2СН2СН2С≡СН-).
«Арилен» представляет собой арильную группу, которая имеет две ковалентных связи и может присутствовать в орто-, мета- или пара-конфигурациях, как показано на нижеследующих структурах:
где фенильная группа может бть незамещенной, либо она может быть замещена 1-4 группами, включая, но не ограничиваясь ими, -C1-C8-алкил, -O-(C1-C8-алкил), -арил, -C(O)R’, -OC(O)R’, -C(O)OR’, -C(O)NH2 , -C(O)NHR’, -C(O)N(R’)2 -NHC(O)R’, -S(O)2R’, -S(O)R’, -OH, галоген, -N3 , -NH2, -NH(R’), -N(R’)2 и -CN; где каждый из R’ независимо выбран из H, -C1-C8-алкила и арила.
«Арилалкил» представляет собой ациклический алкильный радикал, в котором один из атомов водорода, связанных с атомом углерода, обычно концевой атом углерода или sp3-атом углерода, заменен арильным радикалом. Типичными арилалкильными группами являются, но не ограничиваются ими, бензил, 2-фенилэтан-1-ил, 2-фенилэтен-1-ил, нафтилметил, 2-нафтилэтан-1-ил, 2-нафтилэтен-1-ил, нафтобензил, 2-нафтофенилэтан-1-ил и т.п. Арилалкильная группа содержит от 6 до 20 атомов углерода; так, например, алкильная часть, включая алканильную, алкенильную или алкинильную части арилалкильной группы, имеет 1-6 атомов углерода, а арильная часть имеет 5-14 атомов углерода.
«Гетероарилалкил» представляет собой ациклический алкильный радикал, в котором один из атомов водорода, связанных с атомом углерода, обычно концевой атом углерода или sp3-атом углерода, заменен гетероарильным радикалом. Типичными гетероарилалкильными группами являются, но не ограничиваются ими, 2-бензимидазолилметил, 2-фурилэтил и т.п. Гетероарилалкильная группа имеет от 6 до 20 атомов углерода; так, например, алкильная часть, включая алканильную, алкенильную или алкинильную части гетероарилалкильной группы, имеет 1-6 атомов углерода, а гетероарильная часть имеет 5-14 атомов углерода и 1-3 гетероатома, выбранных из N, О, Р и S. Гетероарильная часть гетероарилалкильной группы может представлять собой моноцикл, имеющий от 3 до 7 членов на кольце (2-6 атомов углерода), или бицикл, имеющий от 7 до 10 членов на кольце (4-9 атомов углерода и 1-3 гетероатома, выбранных из N, О, Р и S), например, бицикло-[4,5]-, -[5,5]-, -[5,6]- или -[6,6]-систему.
Используемый в данной заявке термин «пролекарство» означает предшественник или производное соединения согласно изобретению, которые, по сравнению с родительским соединением или лекарственным средством, являются менее цитотоксичными по отношению к опухолевым клеткам и способны ферментативно или гидролитически активироваться или превращаться в более активную зрелую форму. См., например, Wilman, “Prodrugs in Cancer Chemotherapy” Biochemical Society Transactions, 14, pp.375-382, 615th Meeting Belfast (1986) и Stella et al. “Prodrugs: A Chemical Approach to Targeted Drug Delivery”, Directed Drug Delivery, Borchardt et al., (ed.), pp.247-267, Humana Press (1985). Пролекарствами согласно изобретению являются, но не ограничиваются ими, фосфатсодержащие пролекарства; тиофосфатсодержащие пролекарства; сульфатсодержащие пролекарства; пептидсодержащие пролекарства; пролекарства, модифицированные D-аминокислотой; гликозилированные пролекарства; β-лактамсодержащие пролекарства; пролекарства, содержащие необязательно замещенный феноксиацетамид; или пролекарства, содержащие необязательно замещенный фенилацетамид; 5-фторцитозиновые и другие 5-фторуридиновые пролекарства, которые могут быть превращены в более активное цитотоксическое свободное лекарственное средство. Примерами цитотоксических лекарственных средств, которые могут быть дериватизированы с получением пролекарственной формы для ее использования в настоящем изобретении, являются, но не ограничиваются ими, соединения согласно изобретению и химиотерапевтические средства, описанные выше.
Термин «метаболит» означает продукт, продуцируемый в результате метаболизма конкретного соединения или его соли в организме. Метаболиты соединения могут быть идентифицировны рутинными методами, известными специалистам, а их активность может быть определена с помощью анализов, описанных в настоящей заявке. Такие продукты могут образовываться, например, в результате окисления, восстановления, гидролиза, амидирования, дезамидирования, этерификации, деэтерификации, ферментативного расщепления вводимого соединения и т.п. В соответствии с этим, настоящее изобретение охватывает метаболиты соединений согласно изобретению, включая соединения, продуцируемые способом, включающим контактирование соединения согласно изобретению с организмом млекопитающего в течение периода времени, достаточного для образования продукта метаболизма.
«Липосома» представляет собой небольшую везикулу, состоящую из липидов различных типов, фосфолипидов и/или поверхностно-активного вещества, которые могут быть использованы для доставки лекарственного средства млекопитающему. Компоненты липосомы обычно расположены так, что они образуют бислой, аналогичный липидному бислою в биологических мембранах.
Термин «линкер» означает химическую группу, содержащую ковалентную связь или цепь атомов, которые ковалентно связывают антитело с молекулой лекарственного средства. В различных вариантах изобретения линкером является двухвалентный радикал, такой как алкилдиил, арилдиил, гетероарилдиил, такие группы, как -(СR2)nО(СR2)n-, повторяющиеся звенья алкилокси (например, полиэтиленокси, ПЭГ, полиметиленокси) и алкиламино (например, полиэтиленамино, JeffamineТМ), и двухосновный сложный эфир и амиды, включая сукцинат, сукцинамид, дигликолят, малонат и капроамид.
Термин “хиральный” относится к молекулам, которые не совмещаются с их зеркально отображенным аналогом, а термин “ахиральный” относится к молекулам, которые совмещаются с их зеркально отображенным аналогом.
Термин “стереоизомеры” означает соединения, которые имеют идентичную химическую структуру, но отличаются пространственным расположением атомов или групп.
Термин “диастереомер” означает стереоизомер с двумя или несколькими хиральными центрами, молекулы которого не являются зеркальным отображением друг друга. Диастереомеры имеют различные физические свойства, например, температуры плавления, точки кипения, спектральные свойства и реакционную способность. Смеси диастереомеров могут быть разделены высокоразрешающими аналитическими методами, такими как электрофорез и хроматография.
Термин “энантиомеры” означает два стереоизомера соединения, зеркальные отображения которых не совмещаются друг с другом.
Определения и обозначения используемых здесь стереохимических терминов в общих чертах приводятся у S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; и Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Многие органические соединения существуют в оптически активных формах, то есть они способны вращать плоскость плоскополяризованного света. В описании оптически активного соединения префиксы D и L или R и S используются для обозначения абсолютной конфигурации молекулы относительно его (их) хирального(ых) центра(ов). Префиксы d и l или (+) и (-) используются для обозначения знака вращения плоскополяризованного света данным соединением, а (-) или l означает, что данное соединение является левовращающим. Соединение с префиксом (+) или d является правовращающим. Для данной химической структуры эти стереоизомеры являются идентичными, за исключением того, что они являются зеркальным отображением друг друга. Специфический стереоизомер может также называться энантиомером, а смесь таких изомеров часто называется энантиомерной смесью. Смесь 50:50 энантиомеров называется рацемической смесью или рацематом, который может образовываться в том случае, если в химической реакции или в химическом процессе отсутствует стереоселективность или стереоспецифичность. Термины “рацемическая смесь” и “рацемат” означают эквимолярную смесь двух энантиомерных молекул, не обладающих оптической активностью.
Термин «таутомер» или «таутомерная форма» означает структурные изомеры с различными энергиями, которые могут превращаться друг в друга из-за низкого энергетического барьера. Так, например, протонными таутомерами (также известными как прототропные таутомеры) являются таутомеры, которые превращаются друг в друга под действием миграции протона, такой как кето-енольная и имин-енаминовая изомеризация. Валентность таутомеров определяется взаимными превращениями в результате реорганизации некоторых связанных электронов.
Используемый здесь термин “фармацевтически приемлемая соль” означает фармацевтически приемлемые органические или неорганические соли соединения согласно изобретению. Примерами таких солей являются, но не ограничиваются ими, сульфат, цитрат, ацетат, оксалат, хлорид, бромид, йодид, нитрат, бисульфат, фосфат, кислый фосфат, изоникотинат, лактат, салицилат, кислый цитрат, тартрат, олеат, таннат, пантотенат, битартрат, аскорбат, сукцинат, малеат, гентизинат, фумарат, глюконат, глюкуронат, сахарат, формиат, бензоат, глутамат, метансульфонат «мезилат», этансульфонат, бензолсульфонат, п-толуолсульфонат и памоат (т.е. 1,1’-метилен-бис-(2-гидрокси-3-нафтоат)). Термин “фармацевтически приемлемая соль” может включать и другую молекулу, такую как ион ацетата, ион сукцината или другой противоион. Такой противоион может представлять собой любую органическую или неорганическую молекулу, которая стабилизирует заряд на исходном соединении. Кроме того, фармацевтически приемлемая соль может иметь в своей структуре более чем один заряженный атом. В случае если множество заряженных атомов является частью фармацевтически приемлемой соли, то такая соль может иметь множество противоионов. Следовательно, фармацевтически приемлемая соль может иметь один или несколько заряженных атомов и/или один или несколько противоионов.
Если соединением согласно изобретению является основание, то нужная фармацевтически приемлемая соль может быть получена любым подходящим методом, известным специалистам, например, путем обработки свободного основания неорганической кислотой, такой как соляная кислота, бромистоводородная кислота, серная кислота, азотная кислота, метансульфоновая кислота, фосфорная кислота и т.п., или органической кислотой, такой как уксусная кислота, трифторуксусная кислота, малеиновая кислота, янтарная кислота, миндальная кислота, фумаровая кислота, малоновая кислота, пировиноградная кислота, щавелевая кислота, гликолевая кислота, салициловая кислота, пиранозидиловая кислота, такая как глюкуроновая кислота или галактуроновая кислота; альфа-гидроксикислота, такая как лимонная кислота или винная кислота, аминокислота, такая как аспарагиновая кислота или глутаминовая кислота, ароматическая кислота, такая как бензойная кислота или коричная кислота, сульфоновая кислота, такая как п-толуолсульфоновая кислота или этансульфоновая кислота или т.п.
Если соединением согласно изобретению явлется кислота, то нужная фармацевтически приемлемая соль может быть получена любым подходящим методом, например, путем обработки свободной кислоты неорганическим или органическим основанием, таким как амин (первичный, вторичный или третичный), гидроксид щелочного металла или гидроксид щелочноземельного металла, или т.п. Репрезентативными примерами подходящих солей являются, но не ограничиваются ими, органические соли, происходящие от аминокислот, таких как глицин и аргинин, аммиака, первичных, вторичных и третичных аминов, и циклических аминов, таких как пиперидин, морфолин и пиперазин, и неорганические соли, происходящие от натрия, кальция, калия, магния, марганца, железа, меди, цинкa, алюминия и лития.
Термин «фармацевтически приемлемый» означает, что вещество или композиция должны быть химически и/или токсикологически совместимыми с другими ингредиентами, составляющими данную композицию, и/или с организмом млекопитающего, которому вводят данную композицию.
Термин «сольват» означает ассоциацию или комплекс одной или нескольких молекул растворителя и соединения согласно изобретению. Примерами растворителей, которые образуют сольваты, являются, но не ограничиваются ими, вода, изопропанол, этанол, метанол, ДМСО, этилацетат, уксусная кислота и этаноламин. Термин «гидрат» означает комплекс, в котором молекулой растворителя является вода.
Термин «защитная группа» означает заместитель, который обычно используется для блокирования или защиты конкретной функциональой группы, реагирующей с другой функциональной группой на соединении. Так, например, «аминозащитная группа» представляет собой заместитель, присоединенный к аминогруппе, который блокирует или защищает функциональную аминогруппу в данном соединении. Подходящими аминозащитными группами являются ацетил, трифторацетил, трет-бутоксикарбонил (BOC), бензилоксикарбонил (CBZ) и 9-флуоренилметиленоксикарбонил (Fmoc). Аналогичным образом, «гидроксизащитная группа» означает заместитель гидроксигруппы, который блокирует или защищает функциональную гидроксигруппу. Подходящими защитными группами являются ацетил и силил. «Карбоксизащитная группа» означает заместитель карбоксигруппы, который блокирует или защищает функциональную карбоксигруппу. Стандартными карбоксизащитными группами являются фенилсульфонилэтил, цианоэтил, 2-(триметилсилил)этил, 2-(триметилсилил)этоксиметил, 2-(п-толуолсульфонил)этил, 2-(п-нитрофенилсульфенил)этил, 2-(дифенилфосфино)этил, нитроэтил и т.п. Общее описание защитных групп и их применение можно найти в публикации T. W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, New York, 1991.
Термин “уходящая группа” означает функциональную группу, которая может быть замещена другой функциональной группой. Некоторые уходящие группы хорошо известны специалистам и примерами этих групп являются, но не ограничиваются ими, галогенид (например, хлорид, бромид, йодид), метансульфонил (мезил), п-толуолсульфонил (тозил), трифторметилсульфонил (трифлат) и трифторметилсульфонат.
Обозначения
Линкерные компоненты:
MC = 6-малеимидокапроил
Val-Cit или “vc” = валин-цитруллин (репрезентативный дипептид в линкере, отщепляемом протеазой)
Цитруллин = 2-амино-5-уреидопентановая кислота
РАВ = п-аминобензилоксикарбонил (пример «самоудаляющегося» линкерного компонента)
Me-Val-Cit = N-метил-валин-цитруллин (где пептидная связь линкера была модифицирована в целях предотвращения его расщепления катепсином B)
MC(PEG)6-OH = малеимидокапроил-полиэтиленгликоль (может быть присоединен к цистеинам антител)
Цитотоксические лекарственные средства:
MMAE = монометилауристатин E (молекулярная масса (MW) 718)
MMAF = вариант ауристатина E (MMAE) с фенилаланином у C-конца лекарственного средства (MW 731,5)
MMAF-DMAEA = MMAF с DMAEA (диметиламиноэтиламин), связанным амидной связью с С-концевым фенилаланином (MW 801,5)
MMAF-TEG = MMAF с тетраэтиленгликолем, связанным с фенилаланином сложноэфирной связью
MMAF-NtBu = N-трет-бутил, связанный с C-концом MMAF амидной связью
DM1 = N(2')-деацетил-N(2')-(3-меркапто-1-оксопропил)-майтанзин
DM3 = N(2')-деацетил-N2-(4-меркапто-1-оксопентил)-майтанзин
DM4 = N(2')-деацетил-N2-(4-меркапто-4-метил-1-оксопентил)-майтанзин
Другие используемые здесь сокращения имеют следующие значения: АЕ означает ауристатин Е, Вос означает N-(трет-бутоксикарбонил), cit означает цитруллин, dap означает долапроин, DCC означает 1,3-дициклогексилкарбодиимид, DCM (ДХМ) означает дихлорметан, DEA означает диэтиламин, DEAD означает диэтилазодикарбоксилат, DEPC означает диэтилфосфорилцианидат, DIAD означает диизопропилазодикарбоксилат, DIEA означает N,N-диизопропилэтиламин, dil означает долаизолейцин, DMA означает диметилацетамид, DMAP означает 4-диметиламинопиридин, DME означает диметиловый эфир этиленгликоля (или 1,2-диметоксиэтан), DMF (ДМФ) означает N,N-диметилформамид, DMSO (ДМСО) означает диметилсульфоксид, doe означает долафенин, dov означает N,N-диметилвалин, DTNB означает 5,5’-дитиобис(2-нитробензойную кислоту), DTPA означает диэтилентриаминопентауксусную кислоту, DTT означает дитиотреитол, EDCl означает гидрохлорид 1-(3-диметиламинопропил)-3-этилкарбодиимида, EEDQ означает 2-этокси-1-этоксикарбонил-1,2-дигидрохинолин, ES-MS означает масс-спектрометрию электрораспылением, EtOAc означает этилацетат, Fmoc означает N-(9-флуоренилметоксикарбонил), gly означает глицин, HATU означает гексафторфосфат О-(7-азабензотриазол-1-ил)-N,N,N’,N’-тетраметилурония, HOBt означает 1-гидроксибензотриазол, HPLC (ЖХВД) означает жидкостную хроматографию высокого давления, ile означает изолейцин, lys означает лизин, MeCN (СН3CN) означает ацетонитрил, MeOH означает метанол, Mtr означает 4-анизилдифенилметил (или 4-метокситритил), nor (нор) означает (1S,2R)-(+)-норэфедрин, PBS означает забуференный фосфатом физиологический раствор (рН 7,4), PEG (ПЭГ) означает полиэтиленгликоль, Ph означает фенил, Pnp означает п-нитрофенил, МС означает 6-малеимидокапроил, phe означает L-фениламин, РуBrop означает гексафторфосфат бром-трис-пирролидинофосфония, SEC означает эксклюзионную хроматографию, Su означает сукцинимид, TFA означает трифторуксусную кислоту, TLC (ТСХ) означает тонкослойную хроматографию, UV (УФ) означает ультрафиолетовое излучение, а val означает валин.
«Свободная аминокислота цистеин» означает цистеиновый аминокислотный остаток, который был введен в родительское антитело, имеет тиоловую функциональную группу (-SH) и не образует пару в виде внутримолекулярного или межмолекулярного дисульфидного мостика.
Термин “величина тиоловой реактивности” означает количественную характеристику реакционной способности свободных цистеиновых аминокислотных остатков. Величина тиоловой реактивности представляет собой процентное содержание свободных цистеиновых аминокислотных остатков в сконструированном на основе цистеина антителе, которое реагирует с реагентом, взаимодействущем с тиолом, при этом максимальную величину такой реактивности принимают равной 1. Так, например, свободная цистеиновая аминокислота в сконструированном на основе цистеина антителе, которое реагирует со взаимодействущим с тиолом реагентом, таким как биотин-малеимидный реагент, со 100% выходом с образованием меченного биотином антитела, имеет величину тиоловой реактивности, составляющую 1,0. Другая цистеиновая аминокислота, введенная в то же самое или другое родительское антитело, которое реагирует со взаимодействущим с тиолом реагентом, с 80% выходом, имеет величину тиоловй реактивности, составляющую 0,8. Другая цистеиновая аминокислота, введенная в то же самое или другое родительское антитело, которое совсем не реагирует со взаимодействущим с тиолом реагентом, имеет величину тиоловой реактивности, составляющую 0. Определение величины тиоловой реактивности конкретного цистеина может быть осуществлено с помощью ELISA-анализа, масс-спектроскопии, жидкостной хроматографии, ауторадиографии или других количественных аналитических тестов.
“Родительское антитело” представляет собой антитело, содержащее аминокислотную последовательность, в которой один или несколько аминокислотных остатков заменены одним или несколькими цистеиновыми остатками. Родительское антитело может содержать нативную последовательность или последовательность дикого типа. Родительское антитело может иметь уже существующие модификации аминокислотной последовательности (такие как добавления, делеции и/или замены), по сравнению с другими нативными антителами, антителами дикого типа или модифицированными формами антитела. Родительское антитело может быть направлено против представляющего интерес антигена-мишени, например, важного с биологической точки зрения полипептида. Также рассматриваются антитела против неполипептидных антигенов (таких как опухолеассоциированные гликолипидные антигены; см., патент США № 5091178).
III. Композиции и способы согласно изобретению
Настоящее изобретение относится к анти-CD79b антителам или к их функциональным фрагментам, а также к способу их применения для лечения гемопоэтических опухолей.
В одном из своих аспектов настоящее изобретение относится к антителу, которое связывается, предпочтительно специфически, с любым из вышеописанных или нижеописанных полипептидов. Таким антителом является, но необязательно, моноклональное антитело, фрагмент антитела, включая Fab-, Fab'-, F(ab')2- и Fv-фрагмент, диантитело, однодоменное антитело, химерное антитело, гуманизированное антитело, одноцепочечное антитело или антитело, которое конкурентно ингибирует связывание антитела против полипептида CD79b с его соответствующим антигенным эпитопом. Антитела согласно изобретению могут быть, но необязательно, конъюгированы с рост-ингибирующим агентом или с цитотоксическим средством, таким как токсин, включая, например, ауристатин, майтанзиноид, производное долостатина или калихеамицин, антибиотик, радиоактивный изотоп, нуклеолитический фермент или т.п. Антитела согласно изобретению могут быть, но необязательно, продуцированы в клетках СНО или в бактериальных клетках, а предпочтительно индуцируют гибель клеток, с которыми они связываются. Антитела согласно изобретению, используемые в целях детектирования, могут быть детектируемо помечены, присоединены к твердому носителю или т.п.
В одном из своих аспектов настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность одновалентного антитела против CD79b (например, аффинность антитела, используемого в качестве Fab-фрагмента против CD79b) по существу аналогична аффинности одновалентного мышиного антитела (например, аффинности мышиного антитела, используемого в качестве Fab-фрагмента против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента против CD79b), содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность одновалентного антитела против CD79b (например, аффинность антитела, используемого в качестве Fab-фрагмента против CD79b), например, по меньшей мере в 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55 или 60 раз ниже аффинности одновалентного мышиного антитела (например, аффинности мышиного антитела, используемого в качестве Fab-фрагмента против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента против CD79b), содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность одновалентного антитела против CD79b (например, аффинность антитела, используемого в качестве Fab-фрагмента против CD79b), например, по меньшей мере в 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 раз выше аффинности одновалентного мышиного антитела (например, аффинности мышиного антитела, используемого в качестве Fab-фрагмента против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента против CD79b), содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В одном из своих аспектов настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность указанного анти-CD79b антитела в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) по существу аналогична аффинности мышиного антитела (например, аффинности антитела, используемого в качестве IgG против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента против CD79b) в его двухвалентной форме, содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b), например, по меньшей мере в 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55 или 60 раз ниже аффинности мышиного антитела (например, аффинности антитела, используемого в качестве IgG против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве Fab-фрагмента против CD79b) в его двухвалентной форме, содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b), например, по меньшей мере в 1, 2, 3, 4, 5, 6, 7, 8, 9 или 10 раз выше аффинности мышиного антитела (например, аффинности мышиного антитела, используемого в качестве IgG против CD79b), или химерного антитела (например, аффинности химерного антитела, используемого в качестве IgG-фрагмента против CD79b) в его двухвалентной форме, содержащего последовательность вариабельного домена легкой и тяжелой цепи, или состоящего или по существу состоящего из указанной последовательности, представленной на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14).
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,4 нM. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,4 нM ± 0,04.
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,3 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,32 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,36 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,4 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,44 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,48 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,5 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,3 нM-0,5 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,32-0,48 нM. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,36-0,44 нM.
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,2 нM. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,2 нM ± 0,02.
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,1 нM или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,12 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,14 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,16 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,18 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,2 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,22 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,24 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,26 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,28 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,30 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,1-0,3 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,12-0,28 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,14-0,26 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,16-0,24 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,18-0,22 нМ.
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,5 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,5 нМ ± 0,1.
В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,4 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,5 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,6 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,7 нМ или выше. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,3-0,7 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,4-0,6 нМ. В другом своем аспекте настоящее изобретение относится к гуманизированному анти-CD79b антителу, где аффинность антитела против CD79b в его двухвалентной форме (например, аффинность антитела, используемого в качестве IgG против CD79b) составляет 0,5-0,55 нМ.
В одном из аспектов изобретения аффинность одновалентного мышиного антитела против CD79b по существу аналогична аффинности связывания Fab-фрагмента, содержащего последовательности вариабельных доменов SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B). В другом аспекте изобретения аффинность одновалентного мышиного антитела против CD79b по существу аналогична аффинности связывания Fab-фрагмента, содержащего последовательности вариабельных доменов антитела, полученного из гибридомы, депонированной в ATCC под № HB11413 20 июля 1993 г., или химерного антитела, содержащего вариабельные домены антитела, полученного из гибридом, депонированных в ATCC под № HB11413 20 июля 1993 г.
Как хорошо известно специалистам, аффинность связывания лиганда с рецептором может быть определена с помощью любого из различных анализов и выражена в виде ряда количественных величин. В соответствии с этим, в одном из вариантов изобретения аффинность связывания выражена в величинах Kd и определяет природную аффинность связывания (например, с минимизированными эффектами авидности). Вообще говоря и предпочтительно, аффинность связывания антитела измеряют in vitro, независимо от того, присутствует ли оно во внеклеточной или в клеточно-ассоциированной среде. Как подробно описано в настоящей заявке, кратное различие в аффинности связывания может быть количественно оценено как отношение величины аффинности одновалентного связывания гуманизированного антитела (например, в Fab-форме) и величины аффинности одновалентного связывания эталонного/сравниваемого антитела (например, в Fab-форме) (например, мышиного антитела, имеющего последовательности донорной гипервариабельной области), где величины аффинности связывания определяют в аналогичных условиях проведения анализа. Таким образом, в одном из вариантов изобретения кратное различие в аффинности связывания определяют как отношение величин Kd гуманизированного антитела в Fab-форме и указанного эталонного/сравниваемого Fab-антитела. Так, например, в одном из вариантов изобретения, если антитело согласно изобретению (A) имеет аффинность, которая «в 3 раза ниже» аффинности эталонного антитела (M), то, если величина Kd для A равна 3x, величина Kd для M должна составлять 1x, и отношение «Kd для A:Kd для M» должно составлять 3:1. И наоборот, в одном из вариантов изобретения, если антитело согласно изобретению (С) имеет аффинность, которая «в 3 раза выше» аффинности эталонного антитела (R), то, если величина Kd для С равна 1x, величина Kd для R должна составлять 3x, и отношение «Kd для С:Kd для R» должно составлять 1:3. Для определения аффинности связывания может быть применен ряд различных анализов, известных специалистам, включая анализы, описанные в настоящей заявке, такие как, например, анализ Biacore, радиоиммунноанализ (РИА) и ELISA.
В одном из своих аспектов настоящее изобретение относится к антителу, связывающемуся с CD79b, где указанное антитело содержит:
(a) по меньшей мере одну, две, три, четыре, пять или шесть HVR, выбранных из группы, состоящей из:
(i) HVR-L1, содержащей последовательность A1-A15, где A1-A15 представляет собой KASQSVDYDGDSFLN (SEQ ID NO: 131);
(ii) HVR-L2, содержащей последовательность B1-B7, где B1-B7 представляет собой AASNLES (SEQ ID NO: 132);
(iii) HVR-L3, содержащей последовательность C1-C9, где C1-C9 представляет собой QQSNEDPLT (SEQ ID NO: 133);
(iv) HVR-H1, содержащей последовательность D1-D10, где D1-D10 представляет собой GYTFSSYWIE (SEQ ID NO: 134);
(v) HVR-H2, содержащей последовательность E1-E18, где E1-E18 представляет собой GEILPGGGDTNYNEIFKG (SEQ ID NO: 135); и
(vi) HVR-H3, содержащей последовательность F1-F10, где F1-F10 представляет собой TRRVPVYFDY (SEQ ID NO: 136).
В одном из вариантов изобретения HVR-L1 антитела согласно изобретению содержит последовательность SEQ ID NO: 131. В одном из вариантов изобретения HVR-L2 антитела согласно изобретению содержит последовательность SEQ ID NO: 132. В одном из вариантов изобретения HVR-L3 антитела согласно изобретению содержит последовательность SEQ ID NO: 133. В одном из вариантов изобретения HVR-Н1 антитела согласно изобретению содержит последовательность SEQ ID NO: 134. В одном из вариантов изобретения HVR-Н2 антитела согласно изобретению содержит последовательность SEQ ID NO: 135. В одном из вариантов изобретения HVR-Н3 антитела согласно изобретению содержит последовательность SEQ ID NO: 136. В одном из вариантов изобретения антитело согласно изобретению, содержащее эти последовательности (в комбинации, описанной в настоящей заявке), является гуманизированным или человеческим.
В одном из своих аспектов настоящее изобретение относится к антителу, связывающемуся с CD79b, где указанное антитело содержит:
(a) по меньшей мере одну, две, три, четыре, пять или шесть HVR, выбранных из группы, состоящей из:
(i) HVR-L1, содержащей последовательность A1-A15, где A1-A15 представляет собой KASQSVDYDGDSFLN (SEQ ID NO: 131);
(ii) HVR-L2, содержащей последовательность B1-B7, где B1-B7 представляет собой AASNLES (SEQ ID NO: 132);
(iii) HVR-L3, содержащей последовательность C1-C9, где C1-C9 представляет собой QQSNEDPLT (SEQ ID NO: 133);
(iv) HVR-H1, содержащей последовательность D1-D10, где D1-D10 представляет собой GYTFSSYWIE (SEQ ID NO: 134);
(v) HVR-H2, содержащей последовательность E1-E18, где E1-E18 представляет собой GEILPGGGDTNYNEIFKG (SEQ ID NO: 135); и
(vi) HVR-H3, содержащей последовательность F1-F10, где F1-F10 представляет собой TRRVPVYFDY (SEQ ID NO: 136); и
(b) по меньшей мере один вариант HVR, где указанный вариант последовательности HVR имеет модификацию по меньшей мере одного остатка последовательности, представленной в SEQ ID NO: 131, 132, 133, 134, 135 или 136. В одном из вариантов изобретения HVR-L1 антитела согласно изобретению содержит последовательность SEQ ID NO: 131. В одном из вариантов изобретения HVR-L2 антитела согласно изобретению содержит последовательность SEQ ID NO: 132. В одном из вариантов изобретения HVR-L3 антитела согласно изобретению содержит последовательность SEQ ID NO: 133. В одном из вариантов изобретения HVR-Н1 антитела согласно изобретению содержит последовательность SEQ ID NO: 134. В одном из вариантов изобретения HVR-Н2 антитела согласно изобретению содержит последовательность SEQ ID NO: 135. В одном из вариантов изобретения HVR-Н3 антитела согласно изобретению содержит последовательность SEQ ID NO: 136. В одном из вариантов изобретения антитело согласно изобретению, содержащее эти последовательности (в комбинации, описанной в настоящей заявке), является гуманизированным или человеческим.
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему одну, две, три, четыре, пять или шесть HVR, где каждая HVR содержит последовательность, состоит или по существу состоит из последовательности, выбранной из группы, состоящей из SEQ ID NO: 131, 132, 133, 134, 135 и 136, и где SEQ ID NO: 131 соответствует HVR-L1, SEQ ID NO: 132 соответствует HVR-L2, SEQ ID NO: 133 соответствует HVR-L3, SEQ ID NO: 134 соответствует HVR-H1, SEQ ID NO: 135 соответствует HVR-H2, а SEQ ID NO: 136 соответствует HVR-H3. В одном из вариантов изобретения антитело согласно изобретению содержит HVR-L1, HVR-L2, HVR-L3, HVR-H1, HVR-H2 и HVR-H3, где каждая из них в указанном порядке содержит SEQ ID NO: 131, 132, 133, 134, 135 и 136.
Варианты HVR в антителе согласно изобретению могут иметь модификации одного или нескольких остатков в HVR. В одном из вариантов изобретения вариант HVR-L1 содержит одну замену в следующих положениях: A4 (K), A9 (E или S) и A10 (A или S). В одном из вариантов изобретения вариант HVR-L2 содержит 1-5 (1, 2, 3, 4 или 5) замен в любом одном положении или в комбинации следующих положений: B2 (S или G), B3 (R или G), B4 (K, R, Y, I, H или Q), B5 (R), B6 (G, K, A, R, S или L) и B7 (R, N, T или G). В одном из вариантов изобретения вариант HVR-L3 содержит 1-4 (1, 2, 3 или 4) замены в любом одном положении или в комбинации следующих положений: C1 (N или D), C2 (N или P), C3 (D или R), C5 (S, K, A, Q, D, L или G), C6 (A, E или N), C7 (A), C8 (R) и C9 (N). В одном из вариантов изобретения вариант HVR-H1 содержит 1-7 (1, 2, 3, 4, 5, 6 или 7) замен в любом одном положении или в комбинации следующих положений: D1 (P), D2 (F), D3 (P, S, Y, G или N), D4 (L или V), D5 (T, R, N, K, C, G или P), D6 (R, T, K или G), D8 (F), D9 (V или L) и D10 (S, Q, N или D). В одном из вариантов изобретения вариант HVR-H3 содержит 1-3 (1, 2 или 3) замены в любом одном положении или в комбинации следующих положений: F4 (R или I), F6 (I или F), F7 (K, C, R, V или F), F8 (L) и F9 (S). Буква(ы) в скобках после каждого положения означает(ют) репрезентативную замену аминокислоты; и как будет очевидно специалисту в данной области, исходя из контекста настоящего описания, допустимость замены других аминокислот может быть оценена рутинными методами, известными специалистам и/или описанными в настоящей заявке. В одном из вариантов изобретения A9 в варианте HVR-L1 представляет собой E. В одном из вариантов изобретения F6 в варианте HVR-H3 представляет собой I. В одном из вариантов изобретения F7 в варианте HVR-H3 представляет собой R. В одном из вариантов изобретения F8 в варианте HVR-H3 представляет собой L. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-H3, где F6 представляет собой I, F7 представляет собой R, а F8 представляет собой L. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L1, где A9 представляет собой E, и вариант HVR-H3, где F6 представляет собой I, F7 представляет собой R, а F8 представляет собой L. В одном из вариантов изобретения A9 в варианте HVR-L1 представляет собой S. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L1, где A9 представляет собой S, и вариант HVR-H3, где F6 представляет собой I, F7 представляет собой R, а F8 представляет собой L.
В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L1, где A4 представляет собой K. В некоторых вариантах изобретения указанный вариант HVR-L1 содержит HVR-L2, HVR-L3, HVR-H1, HVR-H2 и НVR-H3, где каждый из них в указанном порядке содержит последовательность SEQ ID NO: 132, 133, 134, 135 и 136. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L1, также содержит HVR-L1, где A9 представляет собой E или S, и/или A10 представляет собой A или S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L1, также содержит вариант HVR-L3, где C6 представляет собой E или N, и/или C7 представляет собой A. В некоторых вариантах изобретения указанные антитела также содержат консенсусную последовательность каркасной области человеческой тяжелой цепи подгруппы III. В одном из вариантов этих антител консенсусная каркасная последовательность содержит замену в положении 71, 73 и/или 78. В некоторых вариантах этих антител положение 71 представляет собой A, 73 – T, и/или 78 - А. В одном из вариантов этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В некоторых вариантах этих антител консенсусная последовательность каркасной области человеческой каркасной легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах указанных антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L, и/или положение 47 представляет собой F. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, положение 67 представляет собой A, положение 69 представляет собой F, положение 71 представляет собой A, положение 73 представляет собой T, положение 75 представляет собой S, положение 78 представляет собой A, и/или положение 80 представляет собой M. В некоторых вариантах этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой каркасной легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (в консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или положение 47 представляет собой F.
В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L2, где B3 представляет собой R, B4 представляет собой K, B6 представляет собой G, а B7 представляет собой R. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L2, где B3 представляет собой R, B4 представляет собой Y, B6 представляет собой K, а B7 представляет собой R. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L2, где B3 представляет собой R, B4 представляет собой K, а B6 представляет собой G. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L2, также содержит HVR-L1, HVR-L3, HVR-H1, HVR-H2 и HVR-H3, где каждый из них по порядку содержит последовательность, представленную в SEQ ID NO: 131, 133, 134, 135 и 136. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L2, также содержит вариант HVR-L1, где A9 представляет собой E или S и/или A10 представляет собой A или S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L2, также содержит вариант HVR-L3, где C6 представляет собой E или N и/или C7 представляет собой A. В некоторых вариантах изобретения указанные антитела также содержат консенсусную последовательность каркасной области человеческой тяжелой цепи подгруппы III. В одном из вариантов этих антител консенсусная последовательность каркасной области содержит замену в положении 71, 73 и/или 78. В некоторых вариантах этих антител положение 71 представляет собой A, 73 представляет собой T и/или 78 представляет собой A. В одном из вариантов этих антител,указанные антитела также содержат консенсусноую последовательность каркасной области человеческой легкой цепи к1. В некоторых вариантах этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В одном из вариантов этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, 67 представляет собой A, 69 представляет собой F, 71 представляет собой A, 73 представляет собой T, 75 представляет собой S, 78 представляет собой A и/или 80 представляет собой M. В некоторых вариантах этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F.
В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L3, где С5 представляет собой К. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-L3, где С5 представляет собой S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L3, также содержит HVR-L1, HVR-L2, HVR-H1, HVR-H2 и HVR-H3, где каждый из них по порядку содержит последовательность, представленную в SEQ ID NO: 131, 132, 134, 135 и 136. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L3, также содержит вариант HVR-L1, где A9 представляет собой E или S и/или A10 представляет собой A или S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-L3, также содержит вариант HVR-L3, где C6 представляет собой E или N и/или C7 представляет собой A. В некоторых вариантах изобретения указанные антитела также содержат консенсусную последовательность каркасной области человеческой тяжелой цепи подгруппы III. В одном из вариантов этих антител консенсусная последовательность каркасной области содержит замену в положении 71, 73 и/или 78. В некоторых вариантах этих антител положение 71 представляет собой A, 73 представляет собой T и/или 78 представляет собой A. В одном из вариантов этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В некоторых вариантах этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, 67 представляет собой A, 69 представляет собой F, 71 представляет собой A, 73 представляет собой T, 75 представляет собой S, 78 представляет собой A и/или 80 представляет собой M. В некоторых вариантах этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F.
В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-H1, где D3 представляет собой P, D5 представляет собой T, D6 представляет собой R и D10 представляет собой N. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-H1, где D3 представляет собой P, D5 представляет собой N, D6 представляет собой R и D10 представляет собой N. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н1, также содержит HVR-L1, HVR-L2, HVR-L3, HVR-H2 и HVR-H3, где каждый из них по порядку содержит последовательность, представленную в SEQ ID NO: 131, 132, 133, 135 и 136. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н1, также содержит вариант HVR-L1, где A9 представляет собой E или S и/или A10 представляет собой A или S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н1, также содержит вариант HVR-L3, где C6 представляет собой E или N и/или C7 представляет собой A. В некоторых вариантах изобретения указанные антитела также содержат консенсусную последовательность каркасной области человеческой тяжелой цепи подгруппы III. В одном из вариантов этих антител консенсусная последовательность каркасной области содержит замену в положении 71, 73 и/или 78. В некоторых вариантах этих антител положение 71 представляет собой A, 73 представляет собой T и/или 78 представляет собой A. В одном из вариантов этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В некоторых вариантах этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, 67 представляет собой A, 69 представляет собой F, 71 представляет собой A, 73 представляет собой T, 75 представляет собой S, 78 представляет собой A и/или 80 представляет собой M. В некоторых вариантах этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F.
В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-H3, где F6 представляет собой I и F8 представляет собой L. В одном из вариантов изобретения антитело согласно изобретению содержит вариант HVR-H3, где F6 представляет собой I, F7 представляет собой R, а F8 представляет собой L. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н3, также содержит HVR-L1, HVR-L2, HVR-L3, HVR-H1 и HVR-H1, где каждый из них по порядку содержит последовательность, представленную в SEQ ID NO: 131, 132, 133, 134 и 135. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н3, также содержит вариант HVR-L1, где A9 представляет собой E или S и/или A10 представляет собой A или S. В некоторых вариантах изобретения антитело, содержащее указанный вариант HVR-Н3, также содержит вариант HVR-L3, где C6 представляет собой E или N и/или C7 представляет собой A. В некоторых вариантах изобретения указанные антитела также содержат консенсусную последовательность каркасной области человеческой тяжелой цепи подгруппы III. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 71, 73 и/или 78. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгуппы III) 71 представляет собой A, 73 представляет собой T и/или 78 представляет собой A. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73 и/или 78. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, 67 представляет собой A, 69 представляет собой F, 71 представляет собой A, 73 представляет собой T и/или 78 представляет собой A. В одном из вариантов этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В некоторых вариантах этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой тяжелой цепи подгруппы III) 48 представляет собой I, 67 представляет собой A, 69 представляет собой F, 71 представляет собой A, 73 представляет собой T, 75 представляет собой S, 78 представляет собой A и/или 80 представляет собой M. В некоторых вариантах этих антител указанные антитела также содержат консенсусную последовательность каркасной области человеческой легкой цепи к1. В одном из вариантов этих антител консенсусная последовательность каркасной области человеческой легкой цепи к1 содержит замену в положении 4 и/или 47. В некоторых вариантах этих антител положение (консенсусной последовательности каркасной области человеческой легкой цепи к1) 4 представляет собой L и/или 47 представляет собой F.
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему одну, две, три, четыре, пять или все последовательности HVR, представленные на фигуре 9 (SEQ ID NO: 17-21) и/или на фигуре 10 (SEQ ID NO: 22-106).
Используемое терапевтическое средство при его введении хозяину предпочтительно вызывает слабый иммунный ответ или вообще не вызывает иммунного ответа у указанного хозяина. В одном из своих вариантов настоящее изобретение относится к указанному средству. Так, например, в одном из своих вариантов, настоящее изобретение относится к гуманизированному антителу, которое вырабатывает и/или предположительно вырабатывает гуморальный ответ у человека против мышиного антитела (HAMA) на значительно более низком уровне по сравнению с антителом, содержащим последовательность SEQ ID NO: 10 и 14 у индивидуума-хозяина. В другом примере настоящее изобретение относится к гуманизированному антителу, которое вырабатывает и/или предположительно вырабатывает ответ у млекопитающего или у млекопитающего, не являющегося человеком, против мышиного антитела (HAMA). В одном из примеров антитело согласно изобретению вырабатывает ответ против мышиного антитела на клинически приемлемом уровне или на более низком уровне.
Гуманизированное антитело согласно изобретению может содержать одну или несколько человеческих и/или человеческих консенсусных последовательностей негипервариабельной области (например, каркасной области) в вариабельном домене тяжелой и/или легкой цепи. В некоторых вариантах изобретения в человеческих и/или в человеческих консенсусных последовательностях негипервариабельной области присутствуют одна или несколько дополнительных модификаций. В одном из вариантов изобретения вариабельный домен тяжелой цепи антитела согласно изобретению содержит человеческую консенсусную каркасную последовательность, которая в одном из вариантов изобретения представляет собой консенсусную каркасную последовательность подгруппы III. В одном из вариантов изобретения антитело согласно изобретению содержит вариант консенсусной каркасной последовательности подгруппы III, модифицированной в одном положении аминокислотного остатка. Так, например, в одном из вариантов изобретения вариант консенсусной каркасной последовательности подгруппы III может содержать замену в одном или нескольких положениях, выбранных из положений 71, 73 и/или 78. В одном из вариантов изобретения такой заменой является R71A, N73T и/или L78A, в любой их комбинации. Так, например, в одном из вариантов изобретения вариант каркасной консенсусной последовательности тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73 и/или 78. В одном из вариантов изобретения указанной заменой является V48I, F67A, I69F, R71A, N73T и/или L78A. Так, например, в одном из вариантов изобретения вариант каркасной консенсусной последовательности тяжелой цепи подгруппы III содержит замену в положении 48, 67, 69, 71, 73, 75, 78 и/или 80. В одном из вариантов изобретения указанной заменой является V48I, F67A, I69F, R71A, N73T, K75S, L78A и/или L80M. В одном из вариантов изобретения вариабельный домен легкой цепи антитела согласно изобретению содержит человеческую консенсусную каркасную последовательность, которая в одном из вариантов изобретения представляет собой консенсусную каркасную последовательность к1. В одном из вариантов изобретения антитело согласно изобретению содержит вариант консенсусной каркасной последовательности к1, модифицированной по меньшей мере в одном положении аминокислоты. Так, например, в одном из вариантов изобретения вариант консенсусной каркасной последовательности к1 может содержать замену в положении 4. В одном из вариантов изобретения указанной заменой является M4L. Так, например, в одном из вариантов изобретения вариант консенсусной каркасной последовательности к1 может содержить замену в положении 4 и/или 47. В одном из вариантов изобретения указанной заменой является M4L и/или L47F.
Как известно специалистам, и как более подробно описано ниже, положение аминокислоты/пограничная аминокислота, определяющая гипервариабельную область антитела, может варьироваться в зависимости от окружения данной аминокислоты и от различных ее характеристик, известных специалистам (как описано ниже). Некоторые положения в вариабельном домене могут рассматриваться как гибридные гипервариабельные положения, то есть эти положения могут, предположительно, находиться в гипервариабельной области в соответствии с одним набором критериев, а могут находиться за пределами гипервариабельной области в соответствии с другим набором критериев. Одно или несколько таких положений могут также присутствовать в удлиненных гипервариабельных областях (как более подробно определено ниже). Настоящее изобретение относится к антителам, содержащим модификации в этих гибридных гипервариабельных положениях. В одном из вариантов изобретения такими гипервариабельными положениями являются одно или несколько положений 26-30, 33-35B, 47-49, 57-65, 93, 94 и 101-102 в вариабельном домене тяжелой цепи. В одном из вариантов изобретения такими гибридными гипервариабельными положениями являются одно или несколько положений 24-29, 35-36, 46-49, 56 и 97 в вариабельном домене легкой цепи. В одном из вариантов изобретения антитело согласно изобретению содержит вариант человеческой консенсусной каркасной последовательности подгруппы человеческих антител, модифицированный в одном или нескольких гибридных гипервариабельных положениях.
В одном из аспектов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий вариант консенсусной каркасной последовательности человеческой подгруппы III, модифицированный в одном или нескольких положениях 26-30, 33-35, 48-49, 58, 60-63, 93 и 101. В одном из вариантов изобретения антитело содержит замену G26P. В одном из вариантов изобретения антитело содержит замену F27Y. В одном из вариантов изобретения антитело содержит замену T28P, S, Y, G или N. В одном из вариантов изобретения антитело содержит замену F29L или F29V. В одном из вариантов изобретения антитело содержит замену S30T, R, N, K, C, G или P. В одном из вариантов изобретения, антитело содержит замену A33W или A33F. В одном из вариантов изобретения антитело содержит замену M34I, V или L. В одном из вариантов изобретения антитело содержит замену S35E, Q, N или D. В одном из вариантов изобретения антитело содержит замену V48I. В одном из вариантов изобретения антитело содержит замену S49G. В одном из вариантов изобретения антитело содержит замену Y58N. В одном из вариантов изобретения антитело содержит замену A60N. В одном из вариантов изобретения антитело содержит замену D61E. В одном из вариантов изобретения антитело содержит замену S62I. В одном из вариантов изобретения антитело содержит замену V63F. В одном из вариантов изобретения антитело содержит замену A93T. В одном из вариантов изобретения антитело содержит замену D101S.
В одном из аспектов изобретения антитело согласно изобретению сождержит вариабельный домен легкой цепи, включающий вариант консенсусной каркасной последовательности человеческой подгруппы I каппа, модифицированный в одном или нескольких положениях 24, 27-29, 56 и 97. В одном из вариантов изобретения антитело содержит замену R24K. В одном из вариантов изобретения антитело содержит замену Q27K. В одном из вариантов изобретения антитело содержит замену S28D или E. В одном из вариантов изобретения антитело содержит замену I29G, A или S. В одном из вариантов изобретения антитело содержит замену S56R, N, T или G. В одном из вариантов изобретения антитело содержит замену T97N.
В одном из аспектов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий вариант консенсусной каркасной последовательности человеческой подгруппы III, модифицированный в положениях 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 или во всех положениях 26-30, 33-35, 48-49, 58, 60-63, 93 и 101. В одном из вариантов изобретения такую модификацию выбирают из группы, состоящей из G26P, F27Y, T28P (S, Y, G или N), F29L (V), S30T (R, N, K, C, G или P), A33W (F), M34I (V или L), S35E (Q, N или D), V48I, S49G, Y58N, A60N, D61E, S62I, V63F, A93T и D101S. В некоторых вариантах изобретения антитело согласно изобретению сождержит вариант консенсусной каркасной последовательности подгруппы III, модифицированный в положениях 48, 67, 69, 71, 73, 75, 78 и/или 80. В одном из вариантов изобретения указанной заменой является V48I, F67A, I69F, R71A, N73T, K75S, L78A и/или L80M.
В одном из аспектов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий вариант консенсусной каркасной человеческой последовательности каппа подгруппы I, модифицированный в положениях 1, 2, 3, 4, 5 или во всех положениях 24, 27-29, 56 и 97. В одном из вариантов изобретения указанную модификацию выбирают из группы, состоящей из R24K, Q27K, S28D (E), I29G (A или S), S56R (N, T или G) и T97N. В некоторых вариантах изобретения антитело согласно изобретению содержит вариант консенсусной каркасной последовательности к1, модифицированный в положении 4 и/или 47. В одном из вариантов изобретения указанной заменой является M4L и/или L47F.
Антитело согласно изобретению может содержать любую подходящую человеческую или человеческую консенсусную каркасную последовательность легкой цепи, при условии, что такое антитело будет обладать нужными биологическими свойствами (например, желаемой аффинностью связывания). В одном из вариантов изобретения антитело согласно изобретению содержит по меньшей мере часть каркасной последовательности человеческой легкой цепи каппа (или всю указанную последовательность). В одном из вариантов изобретения антитело согласно изобретению содержит по меньшей мере часть каркасной консенсусной последовательности человеческой подгруппы I каппа (или всю указанную последовательность).
В одном из аспектов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой и/или легкой цепи, включающий каркасную последовательность, представленную в SEQ ID NO: 9 (фигуры 7A-B) и/или 13 (фигуры 8A-B).
В одном из аспектов изобретения антителом согласно изобретению является гуманизированное анти-CD79b антитело, конъюгированное с цитотоксическим средством. В одном из аспектов изобретения гуманизированное анти-CD79b антитело, конъюгированное с цитотоксическим средством, ингибирует прогрессирование опухоли в ксенотрансплантатах.
В одном из аспектов изобретения гуманизированное антитело и химерное антитело являются одновалентными. В одном из вариантов изобретения гуманизированное и химерное антитело содержат одну Fab-область, связанную с Fc-областью. В одном из вариантов изобретения эталонное химерное антитело содержит последовательности вариабельных доменов, представленные на фигурах 7A-B (SEQ ID NO: 10) и на фигурах 8A-B (SEQ ID NO: 14) и связанные с человеческой Fc-областью. В одном из вариантов изобретения человеческой Fc-областью является область IgG (например, IgG1, 2, 3 или 4).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 15 (SEQ ID NO: 164-166). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC, представленную на фигуре 15 (SEQ ID NO: 160-163). В одном из аспектов изобретения антитело содержит последовательность CH1 и/или Fc, представленную на фигуре 15 (SEQ ID NO: 167 и/или 168). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 15, SEQ ID NO: 164-166), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 15, SEQ ID NO: 160-163). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 15, SEQ ID NO: 164-166), и последовательность CH1 и/или Fc, представленную на фигуре 5 (SEQ ID NO: 167 и/или 168). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 15, SEQ ID NO: 164-166), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 15, SEQ ID NO: 160-163), и последовательность CH1 и/или Fc (фигура 15, SEQ ID NO: 167 и/или 168).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 15 (SEQ ID NO: 156-158). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC, представленную на фигуре 15 (SEQ ID NO: 152-155). В одном из вариантов изобретения указанное антитело содержит последовательность CL1, представленную на фигуре 15 (SEQ ID NO: 159). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 156-158), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 152-155), представленную на фигуре 15. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 156-158), и последовательность CL1 (SEQ ID NO: 159), представленную на фигуре 15. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 156-158), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 152-155), представленную на фигуре 15, и последовательность CL1, представленную на фигуре 15 (SEQ ID NO: 159).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 16 (SEQ ID NO: 183-185). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC, представленную на фигуре 16 (SEQ ID NO: 179-182). В одном из аспектов изобретения антитело содержит последовательность CH1 и/или Fc, представленную на фигуре 16 (SEQ ID NO: 186 и/или 187). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 16, SEQ ID NO: 183-185), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 16, SEQ ID NO: 179-182). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 16, SEQ ID NO: 183-185), и последовательность CH1 и/или Fc, представленную на фигуре 5 (SEQ ID NO: 186 и/или 187). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 16, SEQ ID NO: 183-185), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 16, SEQ ID NO: 179-182), и последовательность CH1 и/или Fc (фигура 16, SEQ ID NO: 186 и/или 187).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 16 (SEQ ID NO: 175-177). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC, представленную на фигуре 16 (SEQ ID NO: 171-174). В одном из вариантов изобретения указанное антитело содержит последовательность CL1, представленную на фигуре 16 (SEQ ID NO: 178). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 175-177), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 171-174), представленную на фигуре 16. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 175-177), и последовательность CL1 (SEQ ID NO: 178), представленную на фигуре 16. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 175-177), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 171-174), представленную на фигуре 16, и последовательность CL1, представленную на фигуре 16 (SEQ ID NO: 178).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 17 (SEQ ID NO: 202-204). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC, представленную на фигуре 17 (SEQ ID NO: 198-201). В одном из аспектов изобретения антитело содержит последовательность CH1 и/или Fc, представленную на фигуре 17 (SEQ ID NO: 205 и/или 206). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 17, SEQ ID NO: 202-204), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 17, SEQ ID NO: 198-201). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 17, SEQ ID NO: 202-204), и последовательность CH1 и/или Fc, представленную на фигуре 17 (SEQ ID NO: 205 и/или 206). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 17, SEQ ID NO: 202-204), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 17, SEQ ID NO: 198-201), и последовательность CH1 и/или Fc (фигура 17, SEQ ID NO: 205 и/или 206).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 17 (SEQ ID NO: 194-196). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC, представленную на фигуре 17 (SEQ ID NO: 190-193). В одном из вариантов изобретения указанное антитело содержит последовательность CL1, представленную на фигуре 17 (SEQ ID NO: 197). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 194-196), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 190-193), представленную на фигуре 17. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 194-196), и последовательность CL1 (SEQ ID NO: 197), представленную на фигуре 17. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 194-196), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 190-193), представленную на фигуре 17, и последовательность CL1, представленную на фигуре 17 (SEQ ID NO: 197).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC, представленную на фигуре 18 (SEQ ID NO: 221-223). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC, представленную на фигуре 18 (SEQ ID NO: 217-220). В одном из аспектов изобретения антитело содержит последовательность CH1 и/или Fc, представленную на фигуре 18 (SEQ ID NO: 224 и/или 225). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, содержащий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 18, SEQ ID NO: 221-223), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 18, SEQ ID NO: 217-220). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 18, SEQ ID NO: 221-223), и последовательность CH1 и/или Fc, представленную на фигуре 18 (SEQ ID NO: 224 и/или 225). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен тяжелой цепи, включающий последовательность HVR1-HC, HVR2-HC и/или HVR3-HC (фигура 18, SEQ ID NO: 221-223), и последовательность FR1-HC, FR2-HC, FR3-HC и/или FR4-HC (фигура 18, SEQ ID NO: 217-220), и последовательность CH1 и/или Fc (фигура 18, SEQ ID NO: 224 и/или 225).
В одном из своих аспектов настоящее изобретение относится к антителу, содержащему вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC, представленную на фигуре 18 (SEQ ID NO: 213-215). В одном из вариантов изобретения вариабельный домен содержит последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC, представленную на фигуре 18 (SEQ ID NO: 209-212). В одном из вариантов изобретения указанное антитело содержит последовательность CL1, представленную на фигуре 18 (SEQ ID NO: 216). В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 213-215), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 209-212), представленную на фигуре 18. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 213-215), и последовательность CL1 (SEQ ID NO: 216), представленную на фигуре 18. В одном из вариантов изобретения антитело согласно изобретению содержит вариабельный домен легкой цепи, включающий последовательность HVR1-LC, HVR2-LC и/или HVR3-LC (SEQ ID NO: 213-215), и последовательность FR1-LC, FR2-LC, FR3-LC и/или FR4-LC (SEQ ID NO: 209-212), представленную на фигуре 18, и последовательность CL1, представленную на фигуре 18 (SEQ ID NO: 216).
В одном из аспектов изобретения антителами согласно изобретению являются сконструированные на основе цистеина антитела, в которых одна или несколько аминокислот родительского антитела заменены свободной цистеиновой аминокислотой, как описано в заявке WO 2006/034488; и в заявке на патент США 2007/0092940 (которые во всей своей полноте вводятся в настоящее описание посредством ссылки). Таким образом может быть сконструирована любая форма анти-CD79b антитела, то есть мутированное антитело. Так, например, Fab-фрагмент родительского антитела может быть сконструирован так, чтобы он представлял собой сконструированный на основе цистеина Fab, обозначенный здесь «ThioFab». Аналогичным образом, может быть сконструировано родительское моноклональное антитело, представляющее собой «ThioMab». Следует отметить, что мутация в одном сайте приводит к включению одного цистеинового остатка в ThioFab, а мутация в двух сайтах приводит к включению двух цистеиновых остатков в ThioMab, что обусловлено димерной природой антитела IgG. Сконструированными на основе цистеина анти-CD79b антителами согласно изобретению являются моноклональные антитела, гуманизированные или химерные моноклональные антитела, и антигенсвязывающие фрагменты антител, гибридные полипептиды и аналоги, которые преимущественно связываются с клеточно-ассоциированными полипептидами CD79b. Сконструированное на основе цистеина антитело может альтернативно включать антитело, содержащее цистеин в описанных здесь положениях антитела или Fab, и такая конструкция может быть получена после конструирования последовательности и/или отбора антител, избегая необходимости модификации родительского антитела, где такое конструирование проводят путем создания антител методом фагового представления и отбора таких антител или посредством конструирования каркасных последовательностей и константных областей легкой и/или тяжелой цепи de novo. Сконструированное на основе цистеина антитело содержит одно или несколько свободных цистеиновых аминокислот, имеющих величину тиоловой реактивности в пределах 0,6–1,0; 0,7–1,0 или 0,8–1,0. Свободная цистеиновая аминокислота представляет собой цистеиновый остаток, который был введен в родительское антитело и не является частью дисульфидного мостика. Сконструированное на основе цистеина антитело может быть использовано для присоединения цитотоксических и/или визуализирующих соединений в сайте введенного цистеина посредством, например, малеимида или галогенацетила. Нуклеофильная реактивность тиоловых функциональных групп остатка Cys с малеимидной группой приблизительно в 1000 раз выше, чем реактивность любых других функциональных групп аминокислот в белке, таких как аминогруппа лизиновых остатков или N-концевая аминогруппа. Тиол-специфическая функциональная группа в йодацетильных и малеимидных реагентах может реагировать с аминогруппами, но при более высоком рН (>9,0), и такая реакция занимает больше времени (Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London).
В одном из аспектов изобретения сконструированное на основе цистеина анти-CD79b антитело согласно изобретению содержит цистеин, введенный в любое одно из нижеследующих положений, где положения в легкой цепи пронумерованы по Кабату (см. Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD), а положения в тяжелой цепи пронумерованы в соответствии с Европейской системой нумерации (включая Fc-область) (см. Kabat et al. (1991), см. выше), где константная область легкой цепи, представленная и подчеркнутая на фигурах 24A, 25A, 26A, 27A, 28, 48A и 49A, начинается с положения 109 (нумерация по Кабату), а константная область тяжелой цепи, представленная и подчеркнутая на фигурах 24B, 25B, 26B, 27B, 28B, 48B и 49B, начинается с положения 118 (в соответствии с Европейской системой нумерации (EU)). Таким положением может быть также положение в последовательной нумерации аминокислот полноразмерной легкой цепи или тяжелой цепи, представленной на фигурах 24-28, 48 и 49. В одном из вариантов изобретения анти-CD79b антитело содержит цистеин, введенный в LC-V205C (номер по Кабату: Val 205; порядковый номер 209 на фигуре 27A и 49A означает Cys, введенный в это положение). Цистеин, введенный в легкую цепь, показан жирным шрифтом и подчеркнут двойной чертой на фигурах 27A и 49A. В одном из вариантов изобретения анти-CD79b антитело содержит цистеин, введенный в HC-A118C (номер EU: Ala 118; номер по Кабату 114; порядковый номер 118 на фигуре 24B, 25B, 26B, 28B или 48B означает Cys, введенный в этом положении). Цистеин, введенный в тяжелую цепь, показан жирным шрифтом и подчеркнут двойной чертой на фигурах 24B, 25B, 26B, 28B или 48B. В одном из вариантов изобретения анти-CD79b антитело содержит цистеин, введенный в Fc-S400C (номер EU: Ser 400; номер по Кабату 396; порядковый номер 400 на фигурах 24B, 25B, 26B, 28B или 48B означает Cys, введенный в этом положении). В других вариантах изобретения цистеин, введенный в тяжелую цепь (включая Fc-область), присутствует в любом одном из следующих положений (в соответствии с нумерацией по Кабату, а в скобках в соответствии с нумерацией EU): 5, 23, 84, 112, 114 (номер по EU 118), 116 (номер по EU 120), 278 (номер по EU 282), 371 (номер по EU 375) или 396 (номер по EU 400). Таким образом, модификациями аминокислот в этих положениях для родительского гуманизированного анти-CD79b антитела согласно изобретению являются: V5C, A23C, A84C, S112C, A114C (номер по EU A118C), T116C (номер по EU T120C), V278C (номер по EU V282C), S371C (номер по EU S375C) или S396C (номер по EU S400C). Таким образом, модификациями аминокислот в этих положениях для родительского химерного анти-CD79b антитела согласно изобретению являются: Q5C, K23C, S84C, S112C, A114C (номер по EU A118C), T116C (номер по EU T120C), V278C (номер по EU V282C), S371C (номер по EU S375C) или S396C (номер по EU S400C). Таким образом, модификациями аминокислот в этих положениях для родительского антитела против CD79b собакоподобных обезьян (anti-cynoCD79b) согласно изобретению являются: Q5C, T23C, S84C, S112C, A114C (номер по EU A118C), T116C (номер по EU T120C), V278C (номер по EU V282C), S371C (номер по EU S375C) или S396C (номер по EU S400C). В других вариантах изобретения цистеином, введенным в легкую цепь, является цистеин в любом из следующих положений: (в соответствии с нумерацией по Кабату): 15, 110, 114, 121, 127, 168, 205. Таким образом, модификациями аминокислот в этих положениях для родительского гуманизированного анти-CD79b антитела согласно изобретению являются: V15C, V110C, S114C, S121C, S127C, S168C или V205C. Таким образом, модификациями аминокислот в этих положениях для родительского химерного анти-CD79b антитела согласно изобретению являются: L15C, V110C, S114C, S121C, S127C, S168C или V205C. Таким образом, модификациями аминокислот в этих положениях для родительского анти-cynoCD79b антитела согласно изобретению являются: L15C, V110C, S114C, S121C, S127C, S168C или V205C.
В одном из своих аспектов настоящее изобретение включает сконструированное на основе цистеина анти-CD79b антитело, содержащее одну или несколько свободных цистеиновых аминокислот, где указанное сконструированное на основе цистеина анти-CD79b антитело связывеется с полипептидом CD79b, и где указанное антитело получают способом, включающим замену одного или нескольких аминокислотных остатков родительского анти-CD79b антитела цистеином, где указанное родительское антитело содержит по меньшей мере одну последовательность HVR, выбранных из:
(a) HVR-L1, содержащей последовательность A1-A15, где A1-A15 представляет собой KASQSVDYDGDSFLN (SEQ ID NO: 131) или KASQSVDYEGDSFLN (SEQ ID NO: 137);
(b) HVR-L2, содержащей последовательность B1-B7, где B1-B7 представляет собой AASNLES (SEQ ID NO: 132);
(c) HVR-L3, содержащей последовательность C1-C9, где C1-C9 представляет собой QQSNEDPLT (SEQ ID NO: 133);
(d) HVR-H1, содержащей последовательность D1-D10, где D1-D10 представляет собой GYTFSSYWIE (SEQ ID NO: 134);
(e) HVR-H2, содержащей последовательность E1-E18, где E1-E18 представляет собой GEILPGGGDTNYNEIFKG (SEQ ID NO: 135); и
(f) HVR-H3, содержащей последовательность F1-F10, где F1-F10 представляет собой TRRVPVYFDY (SEQ ID NO: 136) или TRRVPIRLDY (SEQ ID NO: 138).
В некоторых своих аспектах настоящее изобретение относится к сконструированному на основе цистеина анти-CD79b антителу, содержащему аминокислотную последовательность, которая по меньшей мере примерно на 80% и, альтернативно, по меньшей мере примерно на 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% или 100% идентична аминокислотной последовательности сконструированного на основе цистеина антитела, имеющего полноразмерную последовательность, описанную в настоящей заявке, или аминокислотной последовательности сконструированного на основе цистеина антитела, не содержащего сигнального пептида и описанного в настоящей заявке.
В еще одном своем аспекте настоящее изобретение относится к выделенному сконструированному на основе цистеина анти-CD79b антителу, содержащему аминокислотную последовательность, которая кодируется нуклеотидной последовательностью, гибридизующейся с комплементом молекулы ДНК, кодирующей (a) сконструированное на основе цистеина антитело, имеющее полноразмерную аминокислотную последовательность, описанную в настоящей заявке, (b) аминокислотную последовательность сконструированного на основе цистеина антитела, не содержащую сигнального пептида и описанную в настоящей заявке, (c) внеклеточный домен трансмембранного белка сконструированного на основе цистеина антитела, содержащего или не содержащего сигнальный пептид, как описано в настоящей заявке, (d) аминокислотную последовательность, кодируемую любыми описанными здесь последовательностями нуклеиновой кислоты, или (e) любой другой конкретно определенный фрагмент полноразмерной аминокислотной последовательности сконструированного на основе цистеина антитела, описанного в настоящей заявке.
В своем конкретном аспекте настоящее изобретение относится к выделенному сконструированному на основе цистеина анти-CD79b антителу, не содержащему N-концевой сигнальной последовательности и/или инициирующего метионина и кодируемому нуклеотидной последовательностью, которая кодирует такую аминокислотную последовательность, описанную в настоящей заявке. В настоящей заявке также описаны способы получения таких антител, где указанные способы включают культивирование клеток-хозяев, содержащих вектор, включающий соответствующую кодирующую молекулу нуклеиновой кислоты, в условиях, подходящих для экспрессии указанного сконструированного на основе цистеина антитела, и выделение сконструированного на основе цистеина антитела из клеточной культуры.
В другом своем аспекте настоящее изобретение относится к выделенному сконструированному на основе цистеина анти-CD79b антителу, которое представляет собой антитело с делетированным трансмембранным доменом или с инактивированным трансмембранным доменом. В настоящей заявке также описаны способы получения таких антител, где указанные способы включают культивирование клеток-хозяев, содержащих вектор, включающий соответствующую кодирующую молекулу нуклеиновой кислоты, в условиях, подходящих для экспрессии указанного сконструированного на основе цистеина антитела, и выделение сконструированного на основе цистеина антитела из клеточной культуры.
В других своих аспектах настоящее изобретение относится к выделенным химерным и сконструированным на основе цистеина анти-CD79b антителам, содержащим любое из описанных здесь сконструированных на основе цистеина антител, связанных с гетерологичным полипептидом (не являющимся CD79b). Примеры таких химерных антител содержат любое из описанных здесь сконструированных на основе цистеина антител, связанных с гетерологичным полипептидом, таким как, например, последовательность эпитопной метки или Fc-область иммуноглобулина.
Сконструированным на основе цистеина анти-CD79b антителом может быть моноклональное антитело, фрагмент антитела, химерное антитело, гуманизированное антитело, одноцепочечное антитело или антитело, которое конкурентно ингибирует связывание антитела против полипептида CD79b с его соответствующим антигенным эпитопом. Антитела согласно изобретению могут быть, но необязательно, конъюгированы с рост-ингибирующим агентом или с цитотоксическим средством, таким как токсин, включая, например, ауристатин, майтанзиноид, производное долостатина или калихеамицин, антибиотик, радиоактивный изотоп, нуклеолитический фермент или т.п. Антитела согласно изобретению могут быть, но необязательно, продуцированы в клетках CHO или в бактериальных клетках, и предпочтительно ингибируют рост или пролиферацию клеток, с которыми они связаны, или индуцируют гибель таких клеток. Антитела согласно изобретению, используемые в диагностических целях, могут быть детектируемо помечены, присоединены к твердому носителю или т.п.
В других своих аспектах настоящее изобретение относится к векторам, содержащим ДНК, кодирующую любое из описанных здесь анти-CD79b антител и сконструированных на основе цистеина анти-CD79b антител. Настоящее изобретение также относится к клеткам-хозяевам, содержащим любой из таких векторов. Так, например, клетками-хозяевами могут быть клетки CHO, клетки E. coli или дрожжевые клетки. Настоящее изобретение также относится к способу получения любого из описанных здесь полипептидов, и такой способ включает культивирование клеток-хозяев в условиях, подходящих для экспрессии нужного полипептида, и выделение нужного полипептида из клеточной культуры.
Сконструированные на основе цистеина антитела могут быть использованы для лечения рака, и такими антителами являются антитела, специфичные к рецепторам клеточной поверхности и трансмембранным рецепторам, и к опухолеассоциированным антигенам (TAA). Такие антитела могут быть использованы в качестве «оголенных» антител (неконъюгированных с лекарственным средством или с молекулой-меткой) или конъюгатов «антитело-лекарственное средство» (ADC). Сконструированные на основе цистеина антитела согласно изобретению могут быть сайт-специфически и эффективно присоединены к реагенту, реагирующему с тиолом. Реагирующим с тиолом реагентом может быть многофункциональный линкерный реагент, реагент-метка для захвата, реагент-флуорофор и промежуточное соединение «лекарственное средство–линкер». Сконструированное на основе цистеина антитело может быть помечено детектируемой меткой, иммобилизовано на твердофазном носителе и/или конъюгировано с молекулой лекарственного средства. Реакционная способность тиоловой группы может быть сообщена любому антителу, где могут быть сделаны замены аминокислот реакционноспособными цистеиновыми аминокислотами в пределах легких цепей, выбранных из следующих областей аминокислотных последовательностей: L10-L20, L105-L115, L109-L119, L116-L126, L122-L132, L163-L173, L200-L210; и в пределах тяжелых цепей, выбранных из следующих областей аминокислотных последовательностей: H1-H10, H18-H28, H79-H89, H107-H117, H109-H119, H111-H121, и Fc-области в пределах, выбранных из H270-H280, H366-H376, H391-401, где нумерация положений аминокислот начинается с положения 1 по системе нумерации Кабата (Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD) и далее продолжается, как описано в WO2006034488, US 2007/0092940. Реакционная способность тиоловой группы может быть сообщена некоторым доменам антитела, таким как константный домен легкой цепи (CL) и константные домены тяжелой цепи, CH1, CH2 и CH3. Цистеиновые замены, дающие величину реакционной способности тиоловой группы 0,6 и выше, могут быть сделаны в константных доменах тяжелой цепи α, δ, ε, γ и μ интактных антител: IgA, IgD, IgE, IgG и IgM, соответственно, включая подклассы IgG: IgG1, IgG2, IgG3, IgG4, IgA и IgA2. Такие антитела и их применение описаны в WO2006/034488, US 2007/0092940.
Сконструированные на основе цистеина антитела согласно изобретению предпочтительно сохраняют антигенсвязывающую способность их родительских аналогов дикого типа. Таким образом, сконструированные на основе цистеина антитела обладают способностью связываться, предпочтительно специфически, с антигенами. Такими антигенами являются, например, опухолеассоциированые антигены (ТАА), белки рецепторов клеточной поверхности и другие молекулы клеточной поверхности, трансмембранные белки, сигнальные белки, факторы регуляции выживаемости клеток, факторы регуляции пролиферации клеток, молекулы, ассоциированные с развитием или дифференцировкой ткани (например, молекулы, которые, как известно или как предполагается, участвуют в таком развитии или в такой дифференцировке), лимфокины, цитокины, молекулы, участвующие в регуляции клеточного цикла, молекулы, участвующие в образовании сосудов, и молекулы, ассоциированные с ангиогенезом (например, молекулы, которые, как известно или как предполагается, участвуют в таком ангиогенезе). Опухолеассоциированным антигеном может быть фактор дифференцировки кластера (то есть белок CD, включая, но не ограничиваясь им, CD79b). Сконструированные на основе цистеина анти-CD79b антитела согласно изобретению сохраняют антигенсвязывающую способность родительских аналогов анти-CD79b антитела. Таким образом, сконструированные на основе цистеина анти-CD79b антитела согласно изобретению обладают способностью связываться, предпочтительно специфически, с антигенами CD79b, включая изоформы бета и/или альфа человеческого анти-CD79b антитела, если указанные антигены экспрессируются на поверхности клеток, включая, но не ограничиваясь ими, В-клетки.
В одном из аспектов изобретения антитела согласно изобретению могут быть конъюгированы с любой молекулой-меткой, которая может быть ковалентно связана с антителом посредством реакционноспособной молекулы, активированной группы или реакционноспособной тиоловой группы цистеина (Singh et al. (2002) Anal. Biochem. 304:147-15; Harlow E. and Lane, D. (1999) Using Antibodies: A Laboratory Manual, Cold Springs Harbor Laboratory Press, Cold Spring Harbor, NY; Lundblad R.L. (1991) Chemical Reagents for Protein Modification, 2nd ed. CRC Press, Boca Raton, FL). Присоединенная метка может обладать следующими функциями, а именно: (i) продуцировать детектируемый сигнал; (ii) взаимодействовать со второй меткой и тем самым модифицировать детектируемый сигнал, передаваемый первой или второй меткой, например, посредством FRET (переноса флуоресцентной резонансной энергии); (iii) стабилизировать взаимодействие или повышать аффинность связывания с антигеном или лигандом; (iv) влиять на подвижность, например, электрофоретическую подвижность или на клеточную проницаемость посредством заряда, гидрофобности, формы или других физических параметров; или (v) образовывать иммобилизованную молекулу и тем самым модулировать аффинность к лиганду, связывание антитела с антигеном или образование ионных комплексов.
Меченые антитела, сконструированные на основе цистеина, могут быть использованы в диагностических анализах, например, для детектирования экспрессии представляющего интерес антигена в конкретных клетках, тканях или в сыворотке. Для применения в диагностических целях указанное антитело обычно метят детектируемой молекулой. Существуют различные метки, которые могут быть по существу подразделены на группы по следующим категориям:
Радиоизотопы (радионуклиды), такие как 3Н, 11С, 14С, 18F, 32Р, 35S, 64Cu, 68Ga, 86Y, 99Tc, 111In, 123I, 124I, 125I, 131I, 133Xe, 177Lu, 211At или 213Bi. Меченные радиоизотопами антитела могут быть использованы в экспериментах по визуализации рецепторов-мишеней. Антитело может быть помечено реагентами-лигандами, которые связываются либо образуют хелатный комплекс или какой-либо другой комплекс с металлом-радиоизотопом, где указанный реагент способен реагировать с тиолом цистеинов, введенных в указанное антитело, в соответствии с методами, описанными в Current Protocols in Immunology, Volumes 1 and 2, Coligen et al., Ed. Wiley-Interscience, New York, NY, Pubs. (1991). Хелатообразующими лигандами, которые могут образовывать комплекс с ионами металла, являются DOTA, DOTP, DOTMA, DTPA и TETA (Macrocyclics, Dallas, TX). Радионуклиды могут быть присоединены посредством образования комплекса с конъюгатами “антитело-лекарственное средство” согласно изобретению (Wu et al. (2005) Nature Biotechnology 23(9):1137-1146).
Линкерные реагенты, такие как DOTA-малеимид (4-малеимидобутирамидобензил-DOTA), могут быть получены посредством реакции взаимодействия аминобензил-DОТА с 4-малеимидомасляной кислотой (Fluka), активированной изопропилхлорформиатом (Aldrich), в соответствии с процедурой, описанной Axworthy et al. (2000) Proc. Natl. Acad. Sci. USA 97(4):1802-1807). DOTA-малеимидные реагенты реагируют со свободными цистеиновыми аминокислотными остатками сконструированных на основе цистеина антител и способствуют образованию комплекса металл-лиганд на указанном антителе (Lewis et al. (1998) Bioconj. Chem. 9:72-86). Реагенты для мечения хелатообразующего линкера, такие как DOTA-NHS (моно-N-гидрокси-сукцинимидоэфир l,4,7,10-тетраазациклододекан-l,4,7,10-тетрауксусной кислоты), являются коммерчески доступными (Macrocyclics, Dallas, TX). Визуализация рецептора-мишени меченными радионуклидом антителами позволяет идентифицировать активацию пути посредством детектирования и количественной оценки прогрессирующей аккумуляции антител в опухолевой ткани (Albert et al. (1998) Bioorg. Med. Chem. Lett. 8:1207-1210). Конъюгированные радиоактивные металлы могут оставаться внутри клеток после деградации лизосом.
Хелатные комплексы с металлом, подходящие для мечения антитела в экспериментах по визуализации, описаны в патентах США 5342606; 5428155; 5316757; 5480990; 5462725; 5428139; 5385893; 5739294; 5750660; 5834456; и в публикациях Hnatowich et al. (1983) J. Immunol. Methods 65:147-157; Meares et al. (1984) Anal. Biochem. 142:68-78; Mirzadeh et al. (1990) Bioconjugate Chem. 1:59-65; Meares et al. (1990) J. Cancer l990, Suppl. 10:21-26; Izard et al. (1992) Bioconjugate Chem. 3:346-350; Nikula et al. (1995) Nucl. Med. Biol. 22:387-90; Camera et al. (1993) Nucl. Med. Biol. 20:955-62; Kukis et al. (1998) J. Nucl. Med. 39:2105-2110; Verel et al. (2003) J. Nucl. Med. 44:1663-1670; Camera et al .(1994) J. Nucl. Med. 21:640-646; Ruegg et al. (1990) Cancer Res. 50:4221-4226; Verel et al. (2003) J. Nucl. Med. 44:1663-1670; Lee et al. (2001) Cancer Res. 61:4474-4482; Mitchell et al. (2003) J. Nucl. Med. 44:1105-1112; Kobayashi et al. (1999) Bioconjugate Chem. 10:103-111; Miederer et al. (2004) J. Nucl. Med. 45:129-137; DeNardo et al. (1998) Clinical Cancer Research 4:2483-90; Blend et al. (2003) Cancer Biotherapy & Radiopharmaceuticals 18:355-363; Nikula et al. (1999) J. Nucl. Med. 40:166-76; Kobayashi et al. (1998) J. Nucl. Med. 39:829-36; Mardirossian et al. (1993) Nucl. Med. Biol. 20:65-74; Roselli et al. (1999) Cancer Biotherapy & Radiopharmaceuticals, 14:209-20.
Флуоресцентные метки, такие как хелаты, образованные редкоземельными металлами (хелаты, образованные европием), флуоресцеины нескольких типов, включая ФИТЦ, 5-карбоксифлуоресцеин, 6-карбоксифлуоресцеин; родамины нескольких типов, включая TAMRA; данзил; лиссамин; цианины; фикоэритрины; техасский красный и их аналоги. Флуоресцентные метки могут быть конъюгированы с антителами методами, описанными, например, в руководстве Current Protocols in Immunology, см. выше. Флуоресцентными красителями и флуоресцентными реагентами-метками являются коммерчески доступные реагенты, поставляемые фирмами Invitrogen/Molecular Probes (Eugene, OR) и Pierce Biotechnology, Inc. (Rockford, IL).
Различные метки “фермент-субстрат” являются доступными или описаны в литературе (в патенте США 4275149). Фермент обычно катализирует химическое превращение хромогенного субстрата, которое может быть измерено различными методами. Так, например, фермент может катализировать изменение цвета субстрата, которое может быть измерено спектрофотометрическим методом. Альтернативно фермент может изменять интенсивность флуоресценции или хемилюминесценции субстрата. Методы количественной оценки изменения интенсивности флуоресценции описаны выше. Хемилюминесцентный субстрат подвергается электронному возбуждению под действием химической реакции, после чего он может излучать свет, который может быть затем измерен (например, на хемилюминометре), или сообщать энергию флуоресцентному акцептору. Примерами ферментативных меток являются люциферазы (например, люцифераза светляка и бактериальная люцифераза; патент США 4737456), люциферин, 2,3-дигидрофталазиндионы, малат-дегидрогеназа, уреаза, пероксидаза, такая как пероксидаза хрена (ПХ), щелочная фосфатаза (ЩФ), β-галактозидаза, глюкоамилаза, лизоцим, сахарид-оксидазы (например, глюкозооксидаза, галактозооксидаза и глюкозо-6-фосфат-дегидрогеназа), гетероциклические оксидазы (такие как уриказа и ксантин-оксидаза), лактопероксидаза, микропероксидаза и т.п. Методы конъюгирования ферментов с антителами описаны в публикациях O’Sullivan et al. (1981) "Methods for the Preparation of Enzyme-Antibody Conjugates for use in Enzyme Immunoassay", in Methods in Enzym. (ed J. Langone & H. Van Vunakis), Academic Press, New York, 73:147-166.
Примерами комбинаций “фермент-субстрат” являются, например:
(i) пероксидаза хрена (ПХ) с ее субстратом пероксидом водорода, где указанный пероксид водорода окисляет краситель-предшественник (например, ортофенилендиамин (OPD) или гидрохлорид 3,3’,5,5’- тетраметилбензидина (TMB));
(ii) щелочная фосфатаза (ЩФ) с ее хромогенным субстратом пара-нитрофенилфосфатом; и
(iii) β-D-галактозидаза (β-D-Gal) с ее хромогенным субстратом (например, п-нитрофенил-β-D-галактозидазой) или флуорогенным субстратом 4-метилумбеллиферил-β-D-галактозидазой.
Специалистам известны и различные другие комбинации “фермент-субстрат”. Общее их описание можно найти в патентах США 4275149 и 4318980.
Метка может быть непосредственно конъюгирована с аминокислотной боковой цепью, с активированной аминокислотной боковой цепью, с антителом, сконструированным на основе цистенина и т.п. Так, например, антитело может быть конъюгировано с биотином, а любая из меток трех вышеуказанных широких категорий может быть конъюгирована с авидином или со стрептавидином, или наоборот. Биотин селективно связывается со стрептавидином, и, таким образом, данная метка может быть опосредованно конъюгирована с антителом. Альтернативно, для осуществления непрямого конъюгирования метки с полипептидным вариантом, такой полипептидный вариант конъюгируют с небольшим гаптеном (например, дигоксином), а одну из меток вышеупомянутых различных типов конъюгируют с антигаптеновым полипептидным вариантом (например, с антителом против дигоксина). Таким образом, может быть достигнуто опосредованное конъюгирование метки с полипептидным вариантом (Hermanson, G. (1996) in Bioconjugate Techniques Academic Press, San Diego).
Антитело согласно изобретению может быть использовано в любом известном аналитическом методе, таком как ELISA, в анализах на конкурентное связывание, в прямых и непрямых “сэндвич”-анализах и в анализах, проводимых путем иммунопреципитации (Zola, (1987) Monoclonal Antibodies: A Manual of Techniques, pp.147-158, CRC Press, Inc.).
Детектируемая метка может быть использована для определения локализации, для визуализации и количественной оценки события связывания или распознавания. Меченые антитела согласно изобретению могут распознавать рецепторы клеточной поверхности. Другим применением детектируемо меченных антител является метод иммунной иммобилизации на сферах, включающий конъюгирование сферы с флуоресцентно меченным антителом и детектирование флуоресцентного сигнала после связывания с лигандом. В аналогичных методах детектирования связывания, для измерения и детектирования взаимодействий антитела с антигеном применяется эффект поверхностного плазмонного резонанса (ППР).
Детектируемые метки, такие как флуоресцентные красители и хемилюминесцентные красители (Briggs et al. (1997) "Synthesis of Functionalised Fluorescent Dyes and Their Coupling to Amines and Amino Acids", J. Chem. Soc, Perkin-Trans. 1:1051-1058), дают детектируемый сигнал и обычно используются для мечения антител, предпочтительно обладающих нижеследующими свойствами, а именно: (i) меченое антитело должно продуцировать сигнал с очень высокой интенсивностью при низком фоновом сигнале, так, чтобы небольшие количества антител могли быть детектированы высокочувствительным методом в бесклеточном или клеточном анализе; и (ii) меченое антитело должно быть фотостабильным, так чтобы флуоресцентный сигнал мог детектироваться, наблюдаться и регистрироваться без применения значительного уровня оптического отбеливания. В методах, в которых применяется связывание меченого антитела с клеточными мембранами или с клеточными поверхностями, особенно “живых” клеток, данные метки предпочтительно (iii) должны иметь хорошую растворимость в воде, что позволяет достичь эффективной концентрации конъюгата и высокой чувствительности детекции, и (iv) должны быть нетоксичными по отношению к “живым” клеткам во избежание нарушения нормальных метаболических процессов в клетках или преждевременной гибели клеток.
Прямая количественная оценка интенсивности флуоресценции клеток и подсчет событий флуоресцентного мечения, например, событий связывания конъюгатов “пептид-краситель” с клеточной поверхностью, могут быть осуществлены на системе FMAT® 8100 HTS System (Applied Biosystems, Foster City, Calif.), которая позволяет проводить автоматическое смешивание и считывание, и нерадиоактивные анализы на “живых” клетках или на сферах (Miraglia, "Homogeneous cell- and bead-based assays for high throughput screening using fluorometric microvolume assay technology", (1999) J. of Biomolecular Screening 4:193-204). Применение меченых антител также предусматривает проведение анализов на связывание с рецептором клеточной поверхности, анализов с иммунной иммобилизацией, флуоресцентных твердофазных анализов (ЕLISA), анализа путем расщепления каспазой (Zheng, "Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo", (1998) Proc. Natl. Acad. Sci. USA 95:618-23; US 6372907), анализа на апоптоз (Vermes, "A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V" (1995) J. Immunol. Methods 184:39-51) и анализа на цитотоксичность. Метод флуориметрического анализа на уровне микрообъемов может быть применен для идентификации позитивной или негативной регуляции под действием молекулы, доставленной на клеточную поверхность (Swartzman, "A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology", (1999) Anal. Biochem. 271:143-51).
Меченые антитела согласно изобретению могут быть использованы в качестве визуализирующих биологических маркеров и зондов в различных методах и технологиях биомедицины и молекулярной визуализации, таких как (i) MRI (визуализация методом магнитного резонанса); (ii) MicroCT (компьютерная томография); (iii) SPECT (однофотонная эмиссионная компьютерная томография); (iv) PET (позитронная эмиссионная томография) Chen et al. (2004) Bioconjugate Chem. 15:41-49; (v) биолюминесценция; (vi) флуоресценция; и (vii) ультразвуковое обследование. Иммуносцинтиграфия представляет собой способ визуализации, в котором антитела, меченные радиоактивными веществами, вводят животному или человеку, и по изображению определяют место локализации антитела в организме животного или человека (патент США 6528624). Визуализирующие биомаркеры могут быть объективно измерены и оценены как показатель нормальных биологических процессов, патогенных процессов или фармакологических ответов на терапевтическое лечение. Биологическими маркерами могут быть маркеры несколько типов: маркеры типа 0, которые представляют собой природные давно известные маркеры данного заболевания и линейно коррелируют с известными клиническими показателями, например, оценкой воспаления синовия при ревматоидном артрите, проводимой методом ЯМР-томографии; маркеры типа I, которые позволяют детектировать эффект терапевтического лечения в соответствии с действующим механизмом, даже если этот механизм не может быть ассоциирован с клиническим результатом; маркеры типа II, которые действуют как “суррогатные” конечные точки, где изменения в биомаркере или изменения сигнала, поступающего от биомаркера, позволяют предсказывать благоприятный клинический эффект для «подтверждения» целевого ответа, такого как эрозия кости при ревматоидном артрите, измеренная с помощью компьютерной томографии (КТ). Таким образом, с помощью визуализирующих биомаркеров могут быть получены фармакодинамические (ФД) терапевтические данные, относящиеся (i) к экспрессии белка-мишени, (ii) к связыванию терапевтического средства с белком-мишенью, то есть к селективности, и (iii) к клиренсу и времени полужизни; а также фармакокинетические данные. Преимуществами in vivo визуализирующих биомаркеров по сравнению с лабораторными биологическими маркерами являются: возможность их применения для осуществления неинвазивной обработки, возможность их количественной оценки и применения для обследования всего организма, возможность многократного введения доз и проведения анализов, то есть в различные моменты времени, и возможность применения результатов, полученных в преклинических исследованиях (для мелких животных), для проведения клинических исследований (для человека). В некоторых случаях биологическая визуализация позволяет не проводить ряд экспериментов или свести до минимума количество экспериментов на животных в преклинических исследованиях.
Методы мечения пептидов хорошо известны специалистам. См. Haugland, 2003, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; Brinkley, 1992, Bioconjugate Chem. 3:2; Garman, (1997) Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate Chem. 1:2; Glazer et al. (1975) Chemical Modification of Proteins. Laboratory Techniques in Biochemistry and Molecular Biology (T. S. Work and E. Work, Eds.) American Elsevier Publishing Co., New York; Lundblad, R. L. and Noyes, C. M. (1984) Chemical Reagents for Protein Modification, Vols. I and II, CRC Press, New York; Pfleiderer, G. (1985) “Chemical Modification of Proteins”, Modern Methods in Protein Chemistry, H. Tschesche, Ed., Walter DeGryter, Berlin and New York; и Wong (1991) Chemistry of Protein Conjugation and Cross-linking, CRC Press, Boca Raton, Fla.); De Leon-Rodriguez et al. (2004) Chem.Eur. J. 10:1149-1155; Lewis et al. (2001) Bioconjugate Chem. 12:320-324; Li et al. (2002) Bioconjugate Chem. 13:110-115; Mier et al. (2005) Bioconjugate Chem. 16:240-237.
Пептиды и белки, меченные двумя молекулами, флуоресцентным репортером и гасителем, находящимися в непосредственной близости друг от друга, участвуют в переносe резонансной энергии флуоресценции (FRET). Репортерные группы обычно представляют собой флуоресцентные красители, которые возбуждаются под действием света на определенных длинах волн и переносят энергию на акцептор или гаситель, то есть на группу с соответствующим стоксовым сдвигом, обеспечивающую излучение с максимальной яркостью. Флуоресцентными красителями являются молекулы с более явно выраженной ароматичностью, такие как флуоресцеин и родамин и их производные. Флуоресцентный репортер может быть частично или в значительной степени погашен молекулой-гасителем в интактном пептиде. После расщепления пептида пептидазой или протеазой может наблюдаться детектируемое увеличение интенсивности флуоресценции (Knight, C. (1995) "Fluorimetric Assays of Proteolytic Enzymes", Methods in Enzymology, Academic Press, 248:18-34).
Меченые антитела согласно изобретению могут быть также использованы в качестве средства для аффинной очистки. В этом способе меченое антитело иммобилизуют на твердой фазе, такой как смола сефадекс или фильтровальная бумага, методами, хорошо известными специалистам. Иммобилизованное антитело подвергают контакту с образцом, содержащим очищаемый антиген, а затем носитель промывают подходящим растворителем для удаления почти всего материала в образце, за исключением очищаемого антигена, и присоединяют к иммобилизованному полипептидному варианту. И наконец, носитель промывают другим подходящим растворителем, таким как глициновый буфер, pH 5,0, который высвобождает антиген из полипептидного варианта.
Реагенты для мечения обычно имеют реакционноспособные функциональные группы, которые могут реагировать (i) непосредственно с тиолом цистеина антитела, сконструированного на основе цистеина, с образованием меченого антитела, (ii) с линкерным реагентом с образованием промежуточного соединения “линкер-метка” или (iii) с линкерным антителом с образованием меченого антитела. Реакционноспособными функциональными группами реагентов для мечения являются малеимид, галогенацетил, йодацетамидосукцинимидиловый эфир (например, NHS, N-гидроксисукцинимид), изотиоцианат, сульфонилхлорид, 2,6-дихлортриазинил, пентафторфениловый эфир и фосфорамидит, хотя могут быть также использованы и другие функциональные группы.
Репрезентативной реакционноспособной функциональной группой является N-гидроксисукцинимидоэфир (NHS), в котором карбоксигруппа замещена детектируемой меткой, например, биотином или флуоресцентным красителем. NHS-эфир указанной метки может быть предварительно получен, выделен, очищен и/или охарактеризаван, либо он может быть образован in situ и подвергнут реакции с нуклеофильной группой антитела. Обычно карбоксильную форму метки активируют посредством реакции взаимодействия с определенной комбинацией карбодиимидных реагентов, например, с дициклогексилкарбодиимидом, диизопропилкарбодиимидом, или урониевым реагентом, например, TSTU (тетрафторборатом O-(N-сукцинимидил)-N,N,N’,N’-тетраметилурония), HBTU (гексафторфосфатом (O-бензотриазол-1-ил)-N,N,N’N’-тетраметилурония) или HATU (гексафторфосфатом O-(7-азабензотриазол-l-ил)-N,N,N’,N’-тетраметилурония); и с активатором, таким как 1-гидроксибензотриазол (HOBt) и N-гидроксисукцинимид, с получением NHS-эфира метки. В некоторых случаях метка и антитело могут быть связаны посредством in situ активации метки и взаимодействия с антителом с получением конъюгата “метка-антитело” в одну стадию. Другими активирующими и связывающими реагентами являются TBTU (гексафторфосфат 2-(lH-бензотриазо-l-ил)-l,l,3,3-тетраметилурония), TFFH (2-фторгексафторфтосфат N,N’,N",N’"-тетраметилурония), PyBOP (гексафторфосфат бензотриазол-1-ил-окси-трис-пирролидинофосфония), EEDQ (2-этокси-1-этоксикарбонил-1,2-дигидрохинолин), DCC (дициклогексилкарбодиимид); DIPCDI (диизопропилкарбодиимид), MSNT (l-(мезитилен-2-сульфонил)-3-нитро-lH-l,2,4-триазол) и арилсульфонилгалогениды, например, триизопропилбензолсульфонилхлорид.
Соединения «альбумин-связывающий пептид–Fab» согласно изобретению
В одном из аспектов изобретения антитело согласно изобретению присоединено к альбумин-связывающему белку. Связывание белка плазмы может быть эффективным средством улучшения фармакокинетических свойств короткоживущих молекул. Альбумин является самым распространенным белком в плазме. Пептиды, связывающиеся с альбумином сыворотки, (АВР), могут изменять фармакодинамику гибридных белков, содержащих активные домены, например, изменять поглощающую способность ткани, ее проницаемость и диффузию. Эти фармакодинамические параметры могут быть модулированы путем специфического отбора соответствующей последовательности пептида, связывающегося с альбумином сыворотки (заявка на патент США 2004/0001827). Ряд альбумин-связывающих пептидов был идентифицирован посредством скрининга методом фагового дисплея (Dennis et al. (2002) "Albumin Binding As A General Strategy For Improving The Pharmacokinetics Of Proteins" J. Biol. Chem. 277:35035-35043; WO 01/45746). Соединения согласно изобретению включают АВР-последовательности, описанные в работах (i) Dennis et al. (2002) J. Biol. Chem. 277:35035-35043, таблицы III и IV, стр. 35038; (ii) в заявке на патент США 20040001827, абзац [0076], SEQ ID NO: 9-22; и (iii) WO 01/45746, стр. 12-13: которые вводятся в настоящее описание посредством ссылки. Альбумин-связывающие (АВР)-Fab были сконструированы путем присоединения альбумин-связывающего пептида к С-концу тяжелой цепи Fab в стехиометрическом отношении 1:1 (1 АВР/1 Fab). Было показано, что связывание этих АВР-Fab с альбумином увеличивает время полужизни антитела у кроликов и мышей более чем в 25 раз. Поэтому вышеописанные реакционноспособные остатки Cys могут быть введены в эти АВР-Fab и использованы для сайт-специфического конъюгирования с цитотоксическими лекарственными средствами с последующим проведением исследований на животных in vivo.
Репрезентативными последовательностями альбумин-связывающего пептида являются, но не ограничиваются ими, аминокислотные последовательности, представленные в SEQ ID NO: 246-250:
CDKTHTGGGSQRLMEDICLPRWGCLWEDDF SEQ ID NO: 246
QRLMEDICLPRWGCLWEDDF SEQ ID NO: 247
QRLIEDICLPRWGCLWEDDF SEQ ID NO: 248
RLIEDICLPRWGCLWEDD SEQ ID NO: 249
DICLPRWGCLW SEQ ID NO: 250
Конъюгаты «антитело–лекарственное средство»
В другом своем аспекте настоящее изобретение относится к иммуноконъюгатам или к конъюгатам «антитело–лекарственное средство» (ADC), содержащим антитело, конъюгированное с цитотоксическим средством, таким как химиотерапевтическое средство, лекарственное средство, рост-ингибирующий агент, токсин (например, ферментативно активный токсин бактериального, грибкового, растительного или животного происхождения, или его фрагменты) или радиоактивный изотоп (то есть радиоконъюгат). В другом своем аспекте настоящее изобретение относится к способам применения таких иммуноконъюгатов. В одном из аспектов изобретения иммуноконъюгат содержит любое из вышеупомянутых анти-CD79b антител, ковалентно связанных с цитотоксическим средством или с детектируемым агентом.
В одном из аспектов изобретения анти-CD79b антитело согласно изобретению связывается с тем же эпитопом на CD79b, с которым связывается другое антитело против CD79b. В другом варианте изобретения анти-CD79b антитело согласно изобретению связывается с тем же эпитопом на CD79b, с которым связывается Fab-фрагмент моноклонального антитела, полученного из гибридом, депонированных в ATCC под номером HB11413 20 июля 1993 г., моноклонального антитела, содержащего вариабельные домены SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B), или химерного антитела, содержащего вариабельный домен антитела, полученного из гибридом HB11413, депонированных в ATCC 20 июля 1993 г., и константные домены от IgG1, или вариабельные домены моноклонального антитела, содержащего последовательности SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B). В другом варианте изобретения анти-CD79b антитело согласно изобретению связывается с тем же эпитопом на CD79b, с которым связывается другое анти-CD79b антитело (то есть CB3.1 (BD Biosciences Catalog #555678; San Jose, CA), AT105-1 (AbD Serotec Catalog #MCA2208; Raleigh, NC), AT107-2 (AbD Serotec Catalog #MCA2209), антитело против человеческого CD79b (BD Biosciences Catalog #557592; San Jose, CA)).
В другом аспекте изобретения анти-CD79b антитело согласно изобретению связывается с эпитопом на CD79b, отличающимся от эпитопа, с которым связывается другое анти-CD79b антитело. В другом варианте изобретения анти-CD79b антитело согласно изобретению связывается с эпитопом на CD79b, отличающимся от эпитопа, с которым связывается Fab-фрагмент моноклонального антитела, полученного из гибридом, депонированных в ATCC под номером HB11413 20 июля 1993 г., моноклонального антитела, содержащего вариабельные домены SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B), или химерного антитела, содержащего вариабельный домен антитела, полученного из гибридом HB11413, депонированных в ATCC 20 июля 1993 г., и константные домены от IgG1, или вариабельные домены моноклонального антитела, содержащего последовательности SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B). В другом варианте изобретения анти-CD79b антитело согласно изобретению связывается с эпитопом на CD79b, отличающимся от эпитопа, с которым связывается другое анти-CD79b антитело (то есть CB3.1 (BD Biosciences Catalog #555678; San Jose, CA), AT105-1 (AbD Serotec Catalog #MCA2208; Raleigh, NC), AT107-2 (AbD Serotec Catalog #MCA2209), антитело против человеческого CD79b (BD Biosciences Catalog #557592; San Jose, CA)).
В другом аспекте изобретения анти-CD79b антитело согласно изобретению отличается от (то есть не является им) Fab-фрагмента моноклонального антитела, полученного из гибридом, депонированных в ATCC под номером HB11413 20 июля 1993 г., моноклонального антитела, содержащего вариабельные домены SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B), или химерного антитела, содержащего вариабельный домен антитела, полученного из гибридом HB11413, депонированных в ATCC 20 июля 1993 г., и константные домены от IgG1, или вариабельные домены моноклонального антитела, содержащего последовательности SEQ ID NO: 10 (фигуры 7A-B) и SEQ ID NO: 14 (фигуры 8A-B). В другом аспекте изобретения анти-CD79b антитело согласно изобретению отличается от (то есть не является им) Fab-фрагмента другого анти-CD79b антитела (то есть CB3.1 (BD Biosciences Catalog #555678; San Jose, CA), AT105-1 (AbD Serotec Catalog #MCA2208; Raleigh, NC), AT107-2 (AbD Serotec Catalog #MCA2209), антитела против человеческого CD79b (BD Biosciences Catalog #557592; San Jose, CA)).
В одном из аспектов изобретения антитело согласно изобретению специфически связывается с CD79b животного первого вида, но специфически не связывается с CD79b животного другого вида. В одном из вариантов изобретения животным первого вида является человек и/или примат (например, собакоподобная обезьяна), а животным второго вида является животное семейства мышиных (например, мышь) и/или животное семейства собачьих. В одном из вариантов изобретения животным первого вида является человек. В одном из вариантов изобретения животным первого вида является примат, например, собакоподобная обезьяна. В одном из вариантов изобретения животным второго вида является животное семейства мышиных, например, мышь. В одном из вариантов изобретения животным второго вида является животное семейства собачьих.
В одном из своих аспектов настоящее изобретение относится к композициям, содержащим одно или несколько антител согласно изобретению и носитель. В одном из вариантов изобретения указанным носителем является фармацевтически приемлемый носитель.
В одном из своих аспектов настоящее изобретение относится к нуклеиновым кислотам, кодирующим анти-CD79b антитело согласно изобретению.
В одном из своих аспектов настоящее изобретение относится к векторам, содержащим нуклеиновую кислоту согласно изобретению.
В одном из своих аспектов настоящее изобретение относится к клеткам-хозяевам, содержащим нуклеиновую кислоту или вектор согласно изобретению. Вектором может быть вектор любого типа, например, рекомбинантный вектор, такой как экспрессионный вектор. При этом могут быть использованы клетки-хозяева любого вида. В одном из вариантов изобретения клетками-хозяевами являются прокариотические клетки, например, E. coli. В одном из вариантов изобретения клетками-хозяевами являются эукариотические клетки, например, клетки млекопитающих, такие как клетки яичника китайского хомячка (СНО).
В одном из своих аспектов настоящее изобретение относится к способам получения антитела согласно изобретению. Так, например, настоящее изобретение относится к способу получения анти-CD79b антитела (которое, как определено в настоящей заявке, включает полноразмерную последовательность и его фрагменты), где указанный способ включает экспрессию в подходящей клетке-хозяине рекомбинантного вектора согласно изобретению, кодирующего указанное антитело (или его фрагмент), и выделение указанного антитела.
В одном из своих аспектов настоящее изобретение относится к промышленному изделию, содержащему контейнер, и композиции, содержащейся в данном контейнере, где указанная композиция содержит одно или несколько анти-CD79b антител согласно изобретению. В одном из вариантов изобретения указанная композиция содержит нуклеиновую кислоту согласно изобретению. В одном из вариантов изобретения композиция, содержащая антитело, также содержит носитель, который, в некоторых вариантах изобретения, является фармацевтически приемлемым. В одном из вариантов изобретения промышленное изделие согласно изобретению также содержит инструкции по введению композиции (например, антитела) индивидууму.
В одном из своих аспектов настоящее изобретение относится к набору, содержащему первый контейнер, включающий композицию, содержащую одно или несколько анти-CD79b антител согласно изобретению; и второй контейнер, содержащий буфер. В одном из вариантов изобретения указанный буфер является фармацевтически приемлемым. В одном из вариантов изобретения композиция, содержащая антитело-антагонист, также включает носитель, который, в некоторых вариантах изобретения, является фармацевтически приемлемым. В одном из вариантов изобретения набор также содержит инструкции по введению композиции (например, антитела) индивидууму.
В одном из своих аспектов настоящее изобретение относится к применению анти-CD79b антитела согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к применению нуклеиновой кислоты согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к применению экспрессионного вектора согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к применению клетки-хозяина согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к применению промышленного изделия согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к применению набора согласно изобретению в целях приготовления лекарственного препарата для терапевтического и/или профилактического лечения заболевания, такого как рак, опухоль и/или клеточно-пролиферативное расстройство. В одном из вариантов изобретения рак, опухоль и/или клеточно-пролиферативное расстройство выбраны из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к способу ингибирования роста клеток, экспрессирующих CD79b, где указанный способ включает контактирование указанных клеток с антителом согласно изобретению, приводящее к ингибированию роста указанных клеток. В одном из вариантов изобретения антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу терапевтического лечения млекопитающего, имеющего раковую опухоль, содержащую клетки, экспрессирующие CD79b, где указанный способ включает введение указанному млекопитающему терапевтически эффективного количества антитела согласно изобретению, и тем самым эффективное лечение указанного млекопитающего. В одном из вариантов изобретения указанное антитело конъюгировано с цитиотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу лечения или предупреждения клеточно-пролиферативного расстройства, ассоциированного с повышенным уровнем экспрессии CD79b, где указанный способ включает введение индивидууму, нуждающемуся в таком лечении, эффективного количества антитела согласно изобретению, и тем самым эффективное лечение или предупреждение указанного клеточно-пролиферативноого расстройства. В одном из вариантов изобретения указанным клеточно-пролиферативным расстройством является рак. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу ингибирования роста клеток, рост которых, по меньшей мере частично, зависит от рост-потенцирующего действия CD79b, где указанный способ включает контактирование указанных клеток с эффективным количеством антитела согласно изобретению и тем самым ингибирование роста указанных клеток. В одном из вариантов изобретения указанное антитело конъюгировано с цитиотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу терапевтического лечения опухоли у млекопитающего, рост которой, по меньшей мере частично, зависит от рост-потенцирующего действия CD79b, где указанный способ включает контактирование указанных клеток с эффективным количеством антитела согласно изобретению, и тем самым эффективное лечение указанной опухоли. В одном из вариантов изобретения указанное антитело конъюгировано с цитиотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
В одном из своих аспектов настоящее изобретение относится к способу лечения рака, включающему введение пациенту фармацевтической композиции, содержащей описанный здесь иммуноконъюгат, приемлемый разбавитель, носитель или наполнитель. В одном из вариантов изобретения указанное раковое заболевание выбрано из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга. В одном из вариантов изобретения пациенту вводят цитотоксическое средство в комбинации с соединением-конъюгатом «антитело–лекарственное средство».
В одном из своих аспектов настоящее изобретение относится к способу ингибирования пролиферации В-клеток, включающему обработку клеток иммуноконъюгатом, содержащим антитело согласно изобретению, в условиях, благоприятствующих связыванию иммуноконъюгата с CD79b. В одном из вариантов изобретения заболевание, ассоциированное с пролиферацией В-клеток, выбрано из лимфомы, неходжкинской лимфомы (НХЛ), агрессивной НХЛ, рецидивирующей агрессивной НХЛ, рецидивирующей бессимптомной НХЛ, не поддающейся лечению НХЛ, не поддающейся лечению бессимптомной НХЛ, хронического лимфоцитарного лейкоза (ХЛЛ), мелкоклеточной лимфоцитарной лимфомы, лейкоза, ретикулоэндотелиоза (РЭ), острого лимфоцитарного лейкоза (ОЛЛ) и лимфомы клеток коры головного мозга. В одном из вариантов изобретения В-клеткой является ксенотрансплантат. В одном из вариантов изобретения указанную обработку проводят in vitro. В одном из вариантов изобретения указанную обработку проводят in vivo.
В одном из своих аспектов настоящее изобретение относится к способу определения присутствия CD79b в образце, предположительно содержащем CD79b, где указанный способ включает обработку указанного образца антителом согласно изобретению и определение уровня связывания указанного антитела с CD79b в указанном образце, где уровень связывания указанного антитела с CD79b в указанном образце является показателем присутствия указанного белка в указанном образце. В одном из вариантов изобретения указанным образцом является биологический образец. В другом варианте изобретения указанный биологический образец содержит В-клетки. В одном из вариантов изобретения биологический образец берут у млекопитающего, страдающего или предположительно страдающего В-клеточным расстройством и/или В-клеточно-пролиферативным расстройством, включая, но не ограничиваясь ими, лимфому, неходжкинскую лимфому (НХЛ), агрессивную НХЛ, рецидивирующую агрессивную НХЛ, рецидивирующую бессимптомную НХЛ, не поддающуюся лечению НХЛ, не поддающуюся лечению бессимптомную НХЛ, хронический лимфоцитарный лейкоз (ХЛЛ), мелкоклеточную лимфоцитарную лимфому, лейкоз, ретикулоэндотелиоз (РЭ), острый лимфоцитарный лейкоз (ОЛЛ) и лимфому клеток коры головного мозга.
В одном из своих аспектов настоящее изобретение относится к способу диагностики клеточно-пролиферативного расстройства, ассоциированного с увеличением числа клеток, таких как В-клетки, экспрессирующие CD79b, где указанный способ включает контактирование тестируемых клеток в биологическом образце с любыми из вышеупомянутых антител; определение уровня антитела, связанного с тестируемыми клетками в образце, путем детектирования связывания антитела с CD79b; и сравнение с уровнем антитела, связанного с клетками, в контрольном образце, где уровень связанного антитела нормализуют по числу CD79b-экспрессирующих клеток в тестируемых и контрольных образцах, и где более высокий уровень связанного антитела в тестируемом образце, по сравнению с контрольным образцом, указывает на присутствие клеточно-пролиферативного расстройства, ассоциированного с клетками, экспрессирующими CD79b.
В одном из своих аспектов настоящее изобретение относится к способу детектирования растворимого CD79b в крови или в сыворотке, где указанный способ включает контактирование тестируемого образца крови или сыворотки, взятого у млекопитающего, предпочтительно страдающего В-клеточно-пролиферативным расстройством, с анти-CD79b антителом согласно изобретению, и детектирование увеличения уровня растворимого CD79b в тестируемом образце по сравнению с контрольным образцом крови или сыворотки, взятым у здорового млекопитающего. В одном из вариантов изобретения указанный способ детектирования может быть применен для диагностики В-клеточно-пролиферативного расстройства, ассоциированного с повышением уровня растворимого CD79b в крови или сыворотке млекопитающего.
В одном из своих аспектов настоящее изобретение относится к способу связывания антитела согласно изобретению с клеткой, экспрессирующей CD79b, где указанный способ включает контактирования указанной клетки с антителом согласно изобретению. В одном из вариантов изобретения указанное антитело конъюгировано с цитотоксическим средством. В одном из вариантов изобретения указанное антитело конъюгировано с рост-ингибирующим агентом.
Способы согласно изобретению могут быть применены для лечения любого подходящего патологического состояния, например, состояния, при котором клетки и/или ткани экспрессируют CD79b. В одном из вариантов изобретения, в способе согласно изобретению, клеткой-мишенью является гемопоэтическая клетка. Так, например, гемопоэтической клеткой может быть клетка, выбранная из группы, состоящей из лимфоцитов, лейкоцитов, тромбоцитов, эритроцитов и природных клеток-киллеров. В одном из вариантов изобретения, в способе согласно изобретению, клеткой-мишенью является В-клетка или Т-клетка. В одном из вариантов изобретения, в способе согласно изобретению, клеткой-мишенью является раковая клетка. Так, например, раковыми клетками могут быть клетки, выбранные из группы, состоящей из клеток лимфомы, лейкоза или миеломы.
Способы согласно изобретению могут также включать дополнительные стадии обработки. Так, например, в одном из вариантов изобретения, указанный способ также включает стадию, в которой клетку-мишень и/или ткань-мишень (например, раковую клетку) облучают или обрабатывают химиотерапевтическим средством.
Как описано в настоящей заявке, CD79b представляет собой сигнальный компонент В-клеточного рецептора. В соответствии с этим, в одном из вариантов способов согласно изобретению указанной клеткой-мишенью (например, раковой клеткой) является клетка, в которой экспрессируется CD79b, по сравнению с клеткой, в которой не экспрессируется CD79b. В другом варианте изобретения указанной клеткой-мишенью является раковая клетка, в которой наблюдается повышенный уровень экспрессии CD79b, по сравнению с нормальной нераковой клеткой ткани того же типа. В одном из вариантов изобретения способ согласно изобретению направлен на уничтожение клетки-мишени.
В других своих аспектах настоящее изобретение относится к векторам, содержащим ДНК, кодирующую любое из описанных здесь антител. Настоящее изобретение также относится к клеткам-хозяевам, содержащим любой такой вектор. Так, например, клетками-хозяевами могут быть клетки CHO, клетки E. coli или дрожжевые клетки. Настоящее изобретение также относится к способу получения любого из описанных здесь антител, где указанный способ включает культивирование клеток-хозяев в условиях, подходящих для экспрессии нужного антитела, и выделение нужного антитела из клеточной культуры.
В еще одном своем аспекте настоящее изобретение относится к рассматриваемой композиции, содержащей описанное здесь анти-CD79b антитело в комбинации с носителем. Указанным носителем является, но необязательно, фармацевтически приемлемый носитель.
В другом своем аспекте настоящее изобретение относится к применению описанного здесь антитела против полипептида CD79b в целях приготовления лекарственного препарата для лечения состояния, которое является восприимчивым к антителу против полипептида CD79b.
Другим аспектом настоящего изобретения является композиция, содержащая смесь соединений «антитело–лекарственное средство» формулы I, где средняя загрузка лекарственного средства на антитело составляет примерно 2-5 или примерно 3-4.
В другом своем аспекте настоящее изобретение относится к фармацевтической композиции, включающей соединение ADC формулы I, смесь соединений ADC формулы I или их фармацевтически приемлемые соли или сольваты, и фармацевтически приемлемый разбавитель, носитель или наполнитель.
В другом своем аспекте настоящее изобретение относится к фармацевтической комбинации, содержащей соединение ADC формулы I и второе соединение, обладающее противораковыми или другими терапевтическими свойствами.
В другом своем варианте настоящее изобретение относится к способу предотвращения или ингибирования пролиферации опухолевых или раковых клеток, где указанный способ включает обработку клеток конъюгатом «антитело–лекарственное средство» формулы I или его фармацевтически приемлемой солью или сольватом в количестве, эффективном для предотвращения или ингибирования пролиферации опухолевых или раковых клеток.
В другом своем аспекте настоящее изобретение относится к способу лечения рака, включающему введение пациенту терапевтически эффективного количества фармацевтической композиции, включающей ADC формулы I.
В другом своем аспекте настоящее изобретение относится к промышленным изделиям, то есть к наборам, содержащим конъюгат «антитело–лекарственное средство», контейнер, а также вкладыш в упаковку или этикетку с инструкцией по лечению.
В одном из своих аспектов настоящее изобретение относится к способу получения соединения-конъюгата «антитело–лекарственное средство» формулы I, где указанный способ включает стадии: (a) реакции взаимодействия цистеиновой группы, введенной в сконструированное на основе цистеина антитело, с линкерным реагентом, с образованием промежуточного соединения антитело-линкер Ab-L; и (b) реакции взаимодействия Ab-L с активированной молекулой лекарственного средства D с образованием конъюгата «антитело–лекарственное средство»; или стадии: (c) реакции взаимодействия нуклеофильной группы молекулы лекарственного средства с линкерным реагентом с образованием промежуточного соединения «лекарственное средство–линкер» D-L; и (d) реакции взаимодействия D-L с цистеиновой группой, введенной в сконструированное на основе цистеина антитело с образованием конъюгата «антитело–лекарственное средство».
В одном из своих аспектов настоящее изобретение относится к анализу для детектирования раковых клеток, включающему: (a) обработку клеток конъюгатом «сконструированное на основе цистеина анти-CD79b антитело–лекарственное средство», и (b) определение степени связывания соединения-конъюгата «сконструированное на основе цистеина анти-CD79b антитело–лекарственное средство» с указанными клетками.
A. Анти-CD79b антитела
В одном из своих вариантов настоящее изобретение относится к анти-CD79b антителам, которые могут быть применены здесь в качестве терапевтических средств. Репрезентативными антителами являются поликлональные, моноклональные, гуманизированные, биспецифические и гетероконъюгированные антитела.
1. Поликлональные антитела
Поликлональные антитела предпочтительно вырабатываются у животных после множества подкожных (s.c.) или внутрибрюшинных (i.p.) инъекций соответствующего антигена и адъюванта. Они могут использоваться для конъюгирования соответствующего антигена (в частности, если используются синтетические пептиды) с белком, который является иммуногенным для видов, подвергаемых иммунизации. Так, например, указанный антиген может быть конъюгирован с гемоцианином лимфы улитки (KLH), сывороточным альбумином, бычьим тироглобулином или соевым ингибитором трипсина с использованием бифункционального или дериватизирующего агента, например, малеимидобензоилсульфосукцинимидоэфира (конъюгированного посредством цистеиновых остатков), N-гидроксисукцинимида (посредством лизиновых остатков), глутаральдегида, ангидрида янтарной кислоты, SОCl2, или R1N=C=NR, где R и R1 представляют собой различные алкильные группы.
Животных иммунизируют антигеном, иммуногенными конъюгатами или дериватами путем объединения, например, 100 мкг или 5 мкг белка или конъюгата (для кроликов или мышей, соответственно) с 3 объемами полного адъюванта Фрейнда и путем подкожной инъекции раствора во множество участков. Через месяц животных повторно иммунизируют во множество участков путем подкожной инъекции 1/5-1/10 от первоначального количества пептида или конъюгата в полном адъюванте Фрейнда. Через 7-14 дней у животных берут кровь и анализируют сыворотку на титр антител. Затем животных повторно иммунизируют до достижения плато титра. Конъюгаты могут быть также получены в рекомбинантной клеточной культуре в виде гибридных белков. Кроме того, для усиления иммунного ответа могут быть также использованы агрегирующие агенты, такие как квасцы.
2. Моноклональные антитела
Моноклональные антитела могут быть получены с применением гибридомной технологии, впервые описанной Kohler et al. Nature, 256:495 (1975), либо они могут быть получены методами рекомбинантных ДНК (патент США № 4816567).
Для получения гибридом, мышь или другое подходящее животное-хозяин, такое как хомячок, иммунизируют, как описано выше, для вырабатывания у них лимфоцитов, продуцирующих или способных продуцировать антитела, специфически связывающиеся с белком, используемым для иммунизации. Альтернативно лимфоциты могут быть иммунизированы in vitro. После иммунизации лимфоциты выделяют и подвергают слиянию с миеломными клетками с использованием подходящего агента для слияния, такого как полиэтиленгликоль, в результате чего образуются гибридомные клетки (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
Полученные таким образом гибридомные клетки высевают и культивируют в подходящей культуральной среде, которая предпочтительно содержит одно или несколько веществ, ингибирующих рост или выживание неслитых родительских миеломных клеток (также называемых «партнером по слиянию»). Так, например, если родительские миеломные клетки не содержат фермента гипоксантин-гуанин-фосфорибозилтрансферазы (HGPRT или HPRT), то селективная культуральная среда для получения гибридом обычно включает гипоксантин, аминоптерин и тимидин (среда НАТ), то есть вещества, предупреждающие рост HGPRT-дефицитных клеток.
Предпочтительными миеломными клетками, называемыми партнерами по слиянию, являются клетки, которые способны подвергаться эффективному слиянию, поддерживать стабильное продуцирование высоких уровней антител указанными выбранными антитело-продуцирующими клетками и являются чувствительными к селективной среде, на которой проводят отбор на неслитые родительские клетки. Предпочтительными миеломными клеточными линиями являются мышиные миеломные линии, такие как клеточные линии, происходящие от клеток мышиных опухолей МОРС-21 и МРС-11, имеющихся в институте Salk Institute Cell Distribution Center, San Diego, California USA, и клетки SP-2 и их производные, например, клетки X63-Ag8-653, имеющиеся в Американской коллекции типовых культур, Manassas, Virginia, USA. Для продуцирования человеческих моноклональных антител также используются человеческие миеломные клеточные линии и гетеромиеломные клеточные линии “мышь-человек” (Kozbor J. Immunol., 133:3001 (1984) и Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp.51-63 (Marcel Dekker, Inc., New York, 1987)).
Культуральную среду для роста гибридомных клеток анализируют на продуцирование моноклональных антител против антигена. Специфичность связывания моноклональных антител, продуцируемых гибридомными клетками, определяют предпочтительно путем иммунопреципитации или путем проведения in vitro анализа на связывание, такого как радиоиммуноанализ (РИА) или твердофазный иммунноферментный анализ (ELISA).
Аффинность связывания моноклонального антитела может быть, например, определена с помощью анализа Скэтчарда, описанного Munson et al., Anal. Biochem., 107:220 (1980).
После идентификации гибридомных клеток, которые продуцируют антитела с нужной специфичностью, аффинностью и/или активностью, клоны могут быть субклонированы путем проведения процедур лимитирующего разведения и культивированы стандартными методами (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Подходящими культуральными средами, предназначенными для достижения данной цели, являются, например, среда D-MEM или RPMI-1640. Кроме того, гибридомные клетки могут быть выращены in vivo в качестве асцитных опухолей у животных, например, путем i.p. инъекции этих клеток мышам.
Моноклональные антитела, секретированные субклонами, соответствующим образом выделяют из культуральной среды, асцитной жидкости или сыворотки путем проведения стандартных процедур очистки антител, таких как, например, аффинная хроматография (например, на белке А или на G-белке-сефарозе), или ионнообменная хроматография, хроматография на гидроксиапатитах, гель-электрофорез, диализ и т.п.
ДНК, кодирующая моноклональные антитела, может быть легко выделена и секвенирована в соответствии со стандартными процедурами (например, с использованием олигонуклеотидных зондов, которые способны специфически связываться с генами, кодирующими тяжелые и легкие цепи мышиных антител). Предпочтительным источником такой ДНК служат гибридомные клетки. После выделения эта ДНК может быть встроена в экспрессионные векторы, которые затем трансфицируют в клетки-хозяева, такие как клетки E.coli, обезьяньи клетки СОS, клетки яичника китайского хомячка (СНО) или миеломные клетки, которые в иных случаях не продуцируют белок антитела, в результате чего в этих рекомбинантных клетках-хозяевах синтезируются моноклональные антитела. Обсуждение рекомбинантной экспрессии антитело-кодирующей ДНК в бактериях можно найти в статьях Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) и Plückthun, Immunol. Revs., 130:151-188 (1992).
В другом варианте изобретения моноклональные антитела или фрагменты антител могут быть выделены из фаговых библиотек антител, созданных методами, описанными McCafferty et al., Nature, 348:552-554 (1990). В работе Clackson et al. Nature, 352:624-628 (1991) и Marks et al., J. Mol. Biol. 222:581-597 (1991) описано выделение мышиных и человеческих антител, соответственно, с использованием фаговых библиотек. В более поздних публикациях описано продуцирование высокоаффинных (порядка нМ) человеческих антител посредством перестановки генов цепей антитела (Marks et al. Bio/Technology, 10:779-783 (1992)), а также путем комбинированного инфицирования и рекомбинации in vivo, применяемой в качестве стратегии для конструирования очень больших фаговых библиотек (Waterhouse et al. Nuc. Acids. Res. 21:2265-2266 (1993)). Таким образом, эти методы являются приемлемой альтернативой традиционной гибридомной технологии получения моноклональных антител, применяемой для выделения моноклональных антител.
ДНК, кодирующая антитело, может быть модифицирована для продуцирования полипептидов химерных или гибридных антител, например, путем замены последовательности, кодирующей константные домены (CH и CL) тяжелой цепи и легкой цепи человеческого антитела, гомологичными последовательностями мышиных антител (патент США № 4816567 и Morrison, et al., Proc. Natl. Acad. Sci. USA, 81:6851 (1984)), или путем присоединения иммуноглобулин-кодирующей последовательности ко всей кодирующей последовательности (или ее части) для неиммуноглобулинового полипептида (гетерологичного полипептида). Такие последовательности неиммуноглобулиновых полипептидов используют для замены константных доменов антитела, либо их используют для замены вариабельных доменов одного антигенсвязывающего сайта антитела для создания химерного двухвалентного антитела, содержащего один антигенсвязывающий сайт, обладающий специфичностью к одному антигену, и другой антигенсвязывающий сайт, обладающий специфичностью к другому антигену.
3. Человеческие и гуманизированные антитела
Анти-CD79b антитела согласно изобретению могут также содержать гуманизированные антитела или человеческие антитела. Гуманизированные формы нечеловеческих антител (например, мышиных антител) представляют собой химерные иммуноглобулины, цепи иммуноглобулинов или их фрагменты (такие как Fv, Fab, Fab', F(ab')2 или другие антигенсвязывающие подпоследовательности антител), которые содержат минимальную последовательность, происходящую от нечеловеческого иммуноглобулина. Гуманизированными антителами являются человеческие иммуноглобулины (антитело реципиента), в которых остатки, происходящие от гипервариабельной области (CDR) данного антитела-реципиента, заменены остатками, происходящими от гипервариабельной области (CDR) нечеловеческого антитела (донорного антитела), такого как мышиное антитело, крысиное антитело или кроличье антитело, обладающее нужной специфичностью, аффинностью и связывающей способностью. В некоторых случаях остатки каркасной области (Fv) человеческого иммуноглобулина заменены соответствующими нечеловеческими остатками. Гуманизированные антитела могут также содержать остатки, не обнаруженные в антителе реципиента или в «импортных» последовательностях CDR или каркасной области. В общих чертах, гуманизированное антитело может содержать в основном все или, по меньшей мере, один, а обычно два вариабельных домена, в которых все или почти все области CDR соответствуют областям нечеловеческого иммуноглобулина, и все или почти все FR представляют собой FR с человеческой иммуноглобулиновой консенсусной последовательностью. Гуманизированное антитело также содержит, но необязательно, по меньшей мере, часть константной области иммуноглобулина (Fc), обычно области человеческого иммуноглобулина [Jones et al. (1986) Nature, 321:522-525; Riechmann et al. (1998) Nature 332:323-329 и Presta Curr. Op. Struct. Biol., 2:593-596 (1992)].
Методы гуманизации нечеловеческих антител хорошо известны специалистам. Вообще говоря, гуманизированное антитело имеет один или несколько аминокислотных остатков, введенных в него из источника, не являющегося человеком. Эти нечеловеческие аминокислотные остатки часто называют “импортными” остатками, которые обычно берут из “импортного” вариабельного домена. Гуманизация может быть осуществлена в основном методом Винтера (Winter) и сотрудниками [Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)], путем замены последовательностей CDR грызунов или CDR-последовательностей соответствующими последовательностями человеческого антитела. В соответствии с этим, такие “гуманизированные” антитела представляют собой химерные антитела (патент США № 4816567), в которых в основном меньшая часть, по сравнению с вариабельным доменом интактного человеческого антитела, заменена соответствующей последовательностью от нечеловеческого антитела. Фактически, гуманизированные антитела обычно представляют собой человеческие антитела, в которых некоторые остатки CDR, а возможно и некоторые остатки FR, заменены остатками, происходящими от аналогичных участков антител грызунов.
При создании гуманизированных антител, в целях снижения антигенности и НАМА-ответа (вырабатывания человеческих антимышиных антител) при использовании данного антитела для терапевтического лечения человека, очень важно выбрать вариабельные домены как легкой, так и тяжелой цепи человеческого антитела. Снижение уровня НАМА-ответа или продотвращение такого ответа является важным аспектом клинической разработки подходящих терапевтических средств. См., например, Khaxzaeli et al., J. Natl. Cancer Inst. (1988), 80:937; Jaffers et al., Transplantation (1986), 41:572; Shawler et al., J. Immunol. (1985), 135:1530; Sears et al., J. Biol. Response Mod. (1984), 3:138; Miller et al., Blood (1983), 62:988; Hakimi et al., J. Immunol. (1991), 147:1352; Reichmann et al., Nature (1988), 332:323; Junghans et al., Cancer Res. (1990), 50:1495. Как описано в данной заявке, настоящее изобретение относится к антителам, которые были гуманизованы в целях снижения или предотвращения НАМА-ответа. Варианты этих антител могут быть также получены рутинными методами, известными специалистам, некоторые из которых подробно описаны ниже. В соответствии с так называемым методом “подгонки”, последовательность вариабельного домена антитела грызуна скринируют по всей библиотеке известных последовательностей вариабельных доменов человеческого антитела. Затем идентифицируют последовательность V-домена человеческого антитела, которая является наиболее схожей с последовательностью грызунов, и берут в качестве человеческой каркасной области (FR) для создания гуманизированного антитела (Sims et al., J. Immunol. 151:2296 (1993); Chothia et al., J. Mol. Biol. 196:901 (1987)). В другом методе используют конкретную каркасную область, происходящую от консенсусной последовательности всех человеческих антител конкретной подгруппы легких и тяжелых цепей. Эта же самая каркасная область может быть использована для нескольких различных гуманизированных антител (Carter et al., Proc. Natl. Acad. Sci., USA, 89:4285 (1992); Presta et al., J. Immunol, 151:2623 (1993)).
Так, например, аминокислотная последовательность антитела, описанного в настоящей заявке, может служить в качестве исходной (родительской) последовательности для диверсификации последовательности(ей) каркасной области и/или гипервариабельной области. Выбранная каркасная последовательность, к которой присоединена исходная гипервариабельная последовательность, называется здесь акцепторной человеческой каркасной последовательностью. Акцепторные человеческие каркасные последовательности могут быть получены или могут происходить от человеческого иммуноглобулина (областей VL и/или VH), предпочтительно акцепторные человеческие каркасные последовательности могут быть получены или могут происходить от человеческой консенсусной каркасной последовательности, поскольку такие каркасные последовательности, как было продемонстрировано, обладают минимальной иммуногенностью, либо вообще не обладают иммуногенностью у человека.
Если акцептор происходит от человеческого иммуноглобулина, то человеческая каркасная последовательность может быть, но необязательно, выбрана на основе ее гомологии с донорной каркасной последовательностью путем выравнивания донорной каркасной последовательности с различными человеческими каркасными последовательностями, имеющимися в коллекции человеческих каркасных последовательностей, и отбора наиболее гомологичной каркасной последовательности в качестве акцептора.
В одном из вариантов изобретения человеческие консенсусные каркасные области происходят от консенсусных каркасных последовательностей VH подгруппы III и/или VL каппа подгруппы I.
Таким образом, акцепторная человеческая каркасная область VH может содержать одну, две, три или все нижеследующие каркасные последовательности:
FR1, содержащую EVQLVESGGGLVQPGGSLRLSCAAS (SEQ ID NO: 143),
FR2, содержащую WVRQAPGKGLEWV (SEQ ID NO: 144),
FR3, содержащую RFTISX1DX2SKNTX3YLQMNSLRAEDTAVYYC (SEQ ID NO: 147), где X1 представляет собой A или R, X2 представляет собой T или N, и X3 представляет собой A или L,
FR4, содержащей WGQGTLVTVSS (SEQ ID NO: 146).
Примерами консенсусных каркасных областей VH, являются:
консенсусная каркасная область человеческой VH подгруппы I минус CDR по Кабату (SEQ ID NO: 108);
консенсусная каркасная область человеческой VH подгруппы I минус удлиненные гипервариабельные области (SEQ ID NO: 109-111);
консенсусная каркасная область человеческой VH подгруппы II минус CDR по Кабату (SEQ ID NO: 112);
консенсусная каркасная область человеческой VH подгруппы II минус удлиненные гипервариабельные области (SEQ ID NO: 113-115);
консенсусная каркасная область человеческой VH подгруппы III минус CDR по Кабату (SEQ ID NO: 116);
консенсусная каркасная область человеческой VH подгруппы III минус удлиненные гипервариабельные области (SEQ ID NO: 117-119);
акцепторная каркасная область человеческой VH минус CDR по Кабату (SEQ ID NO: 120);
акцепторная каркасная область человеческой VH минус удлиненные гипервариабельные области (SEQ ID NO: 121-122);
акцепторная каркасная область 2 человеческой VH минус CDR по Кабату (SEQ ID NO: 123); или
акцепторная каркасная область 2 человеческой VH минус удлиненные гипервариабельные области (SEQ ID NO: 124-126).
В одном из вариантов изобретения акцепторная каркасная область человеческой VH содержит одну, две, три или все нижеследующие каркасные последовательности:
FR1, содержащую EVQLVESGGGLVQPGGSLRLSCAAS (SEQ ID NO: 143),
FR2, содержащую WVRQAPGKGLEWV (SEQ ID NO: 144),
FR3, содержащую RFTISADTSKNTAYLQMNSLRAEDTAVYYC (SEQ ID NO: 145),
RFTISADTSKNTAYLQMNSLRAEDTAVYYCA (SEQ ID NO: 148),
RFTISADTSKNTAYLQMNSLRAEDTAVYYCAR (SEQ ID NO: 149),
RFTISADTSKNTAYLQMNSLRAEDTAVYYCS (SEQ ID NO: 150) или
RFTISADTSKNTAYLQMNSLRAEDTAVYYCSR (SEQ ID NO: 151),
FR4, содержащую WGQGTLVTVSS (SEQ ID NO: 146).
Акцепторная каркасная область человеческой VL может содержать одну, две, три или все нижеследующие каркасные последовательности:
FR1, содержащую DIQMTQSPSSLSASVGDRVTITC (SEQ ID NO: 139),
FR2, содержащую WYQQKPGKAPKLLIY (SEQ ID NO: 140),
FR3, содержащую GVPSRFSGSGSGTDFTLTISSLQPEDFATYYC (SEQ ID NO: 141),
FR4, содержащую FGQGTKVEIKR (SEQ ID NO: 142).
Примерами консенсусных каркасных последовательностей VL являются:
консенсусная каркасная последовательность человеческой VL каппа подгруппы I (SEQ ID NO: 127);
консенсусная каркасная последовательность человеческой VL каппа подгруппы II (SEQ ID NO: 128);
консенсусная каркасная последовательность человеческой VL каппа подгруппы III (SEQ ID NO: 129); или
консенсусная каркасная последовательность человеческой VL каппа подгруппы IV (SEQ ID NO: 130).
Хотя последовательность акцептора может быть идентична выбранной человеческой каркасной последовательности, независимо от того, происходит ли она от человеческого иммуноглобулина или от человеческой консенсусной каркасной последовательности, однако в настоящем изобретении рассматривается акцепторная последовательность, которая, по сравнению с человеческой последовательностью иммуноглобулина или человеческой консенсусной каркасной последовательностью, может содержать уже имеющиеся аминокислотные замены. Эти уже имеющиеся замены, по сравнению с человеческой последовательностью иммуноглобулина или консенсусной каркасной последовательностью, предпочтительно являются минимальными, а обычно отличаются только на четыре, три, два аминокислотных остатка или один аминокислотный остаток.
Остатки гипервариабельных областей нечеловеческого антитела вводят в акцепторные каркасные области человеческих VL и/или VH. Так, например, могут быть включены остатки, соответствующие остаткам CDR по Кабату, остаткам гипервариабельной петли по Чотия, остаткам Abm и/или контактирующим остаткам. При этом могут быть включены, но необязательно, остатки удлиненной гипервариабельной области: 24-34 (L1), 50-56 (L2) и 89-97 (L3), 26-35B (H1), 50-65, 47-65 или 49-65 (H2) и 93-102, 94-102 или 95-102 (H3).
Хотя «введение» остатков гипервариабельной области обсуждается в описании настоящего изобретения, однако следует отметить, что такое введение может быть осуществлено различными методами, например, нуклеиновая кислота, кодирующая нужную аминокислотную последовательность, может быть получена путем внесения мутаций в нуклеиновую кислоту, кодирующую последовательность мышиного вариабельного домена, с последующей заменой каркасных остатков на остатки акцепторной человеческой каркасной области, или путем внесения мутаций в нуклеиновую кислоту, кодирующую последовательность человеческого вариабельного домена, с последующей заменой остатков гипервариабельного домена на остатки нечеловеческого антитела, или путем синтеза нуклеиновой кислоты, кодирующей нужную последовательность, и т.п.
В описанных здесь примерах варианты с присоединенной гипервариабельной областью были получены методом мутагенеза Kunkel нуклеиновой кислоты, кодирующей человеческие акцепторные последовательности, с использованием отдельного олигонуклеотида для каждой гипервариабельной области (Kunkel et al., Methods Enzymol. 154:367-382 (1987)). Соответствующие замены могут быть введены в каркасную и/или гипервариабельную область рутинными методами для коррекции и восстановления нужных взаимодействий «гипервариабельная область–антиген».
Фаговое (фагмидное) представление (также называемое здесь в некоторых случаях фаговым дисплеем) может быть применено как удобный и быстрый метод продуцирования и скрининга многих различных потенциальных вариантов антител в библиотеке, полученной путем рандомизации последовательностей. Однако специалистам известны и другие методы получения и скрининга модифицированных антител.
Технология фагового (фагмидного) представления является эффективным средством для продуцирования и отбора новых белков, связывающихся с лигандом, таким как антиген. Применение технологии фагового (фагмидного) дисплея позволяет получать крупные библиотеки вариантов белков, которые могут быть быстро отсортированы на последовательности, которые связываются с молекулой-мишенью с высокой аффинностью. Нуклеиновые кислоты, кодирующие полипептидные варианты, обычно присоединяют к последовательности нуклеиновой кислоты, кодирующей белок вирусной оболочки, такой как белок, кодируемый геном III, или белок, кодируемый геном VIII. Были разработаны одновалентные системы фагмидного представления, в которых последовательность нуклеиновой кислоты, кодирующая белок или полипептид, присоединена к последовательности нуклеиновой кислоты, кодирующей часть белка, кодируемого геном III (Bass, S., Proteins, 8:309 (1990); Lowman and Wells, Methods: A Companion to Methods in Enzymology, 3:205 (1991)). В одновалентной системе фагмидного представления, гибридный ген экспрессируется на низком уровне, и при этом белки гена III дикого типа экспрессируются так, что инфекционность частиц сохраняется. Методы получения пептидных библиотек и скрининга этих библиотек описаны во многих патентах (например, в патенте США № 5723286, в патенте США № 5432018, в патенте США № 5580717, в патенте США № 5427908 и в патенте США № 5498530).
Библиотеки антител или антигенсвязывающих полипептидов были получены различными методами, включая модификацию одного гена путем встраивания рандомизированных последовательностей ДНК или клонирования семейства родственных генов. Методы представления антител или антигенсвязывающих фрагментов с применением технологии фагового дисплея описаны в патентах США №№ 5750373, 5733743, 5837242, 5969108, 6172197, 5580717 и 5658727. Затем библиотеку скринируют на присутствие антител или антигенсвязывающих белков, обладающих нужными свойствами.
Методы замены выбранной аминокислоты на уровне матричной нуклеиновой кислоты хорошо известны специалистам, и некоторые из них описаны в настоящей заявке. Так, например, остатки гипервариабельной области могут быть заменены методом Кункеля. См., например, Kunkel et al., Methods Enzymol. 154:367-382 (1987).
Последовательность олигонуклеотидов включает один или несколько сконструированных наборов кодонов для модифицируемых остатков гипервариабельной области. Набором кодонов является набор из различных нуклеотидных триплетов, используемых для кодирования нужных аминокислотных вариантов. Наборы кодонов могут быть представлены символами, обозначающими конкретные нуклеотиды или эквимолярные смеси нуклеотидов, представленных ниже в соответствии с кодом IUB.
Коды IUB
G Гуанин
A Аденин
T Тимин
C Цитозин
R (A или G)
Y (C или T)
M (A или C)
K (G или T)
S (C или G)
W (A или T)
H (A или C или T)
B (C или G или T)
V (A или C или G)
D (A или G или T) H
N (A или C или G или T).
Так, например, в серии кодонов DVK D может представлять собой нуклеотиды A или G или T; V может представлять собой A или G или C, а K может представлять собой G или T. Такой набор кодонов может составлять 18 различных кодонов и может кодировать аминокислоты Ala, Trp, Tyr, Lys, Thr, Asn, Lys, Ser, Arg, Asp, Glu, Gly и Cys.
Наборы олигонуклеотидов или праймеров могут быть синтезированы стандартными методами. Набор олигонуклеотидов может быть синтезирован, например, методом твердофазного синтеза, и может содержать последовательности, которые представляют собой все возможные комбинации нуклеотидных триплетов, имеющихся в таком наборе кодонов, и которые кодируют желаемую группу аминокислот. Синтез олигонуклеотидов с «вырожденностью» отобранных нуклеотидов в некоторых положениях хорошо известен специалистам. Такие наборы нуклеотидов, имеющие определенные наборы кодонов, могут быть синтезированы на коммерчески доступных синтезаторах нуклеиновых кислот (поставляемых, например, Applied Biosystems, Foster City, CA), либо они могут быть закуплены у поставщиков (например, у Life Technologies, Rockville, MD). Поэтому набор синтезированных олигонуклеотидов, имеющих конкретный набор кодонов, обычно включает множество олигонуклеотидов с различными последовательностями, отличающимися набором кодонов в полноразмерной последовательности. Олигонуклеотиды, используеые в соответствии с настоящим изобретением, имеют последовательности, позволяющие гибридизироваться с матрицей нуклеиновой кислоты вариабельных доменов, а также могут включать рестрикционные сайты для клонирования.
В одном из этих методов последовательности нуклеиновой кислоты, кодирующие варианты аминокислот, могут быть созданы методом олигонуклеотид-опосредуемого мутагенеза. Такой метод хорошо известен специалистам и описан Zoller et al. Nucleic Acids Res. 10:6487-6504 (1987). Вкратце, последовательности нуклеиновой кислоты, кодирующие варианты аминокислот, получают путем гибридизации набора олигонуклеотидов, содержащих нужные наборы кодонов, с матричной ДНК, где указанной матрицей является одноцепочечная форма плазмиды, содержащая последовательность матричной нуклеиновой кислоты вариабельной области. После гибридизации для синтеза полноразмерной второй комплементарной цепи матрицы используют ДНК-полимеразу, что позволяет встраивать олигонуклеотидный праймер, и такая цепь будет содержать наборы кодонов, обеспечиваемые набором олигонуклеотидов.
Обычно используют олигонуклеотиды длиной по меньшей мере 25 нуклеотидов. Оптимальный олигонуклеотид имеет 12-15 нуклеотидов, которые являются полностью комплементарными матрице с любой стороны нуклеотида(ов), кодирующего(их) мутацию(и). Это будет гарантировать правильную гибридизацию олигонуклеотида с одноцепочечной молекулой матричной ДНК. Олигонуклеотиды могут быть легко синтезированы методами, известными специалистам и описанными в публикации Crea et al., Proc. Nat'l. Acad. Sci. USA, 75:5765 (1978).
ДНК-матрицу получают с использованием векторов, происходящих от векторов бактериофага М13 (подходящими являются коммерчески доступные векторы M13mp18 и M13mp19), или с использованием векторов, которые содержат одноцепочечный ориджин репликации фага, описанный Viera et al., Meth. Enzymol., 153:3 (1987). Таким образом, ДНК, которая является мутированной, может быть встроена в один из этих векторов с получением одноцепочечной матрицы. Получение одноцепочечной матрицы описано в разделах 4.21-4.41 руководства Sambrook et al., см. выше.
Для модификации нативной последовательности ДНК олигонуклеотид гибридизуют с одноцепочечной матрицей в подходящих условиях гибридизации. Затем, для синтеза комплементарной цепи матрицы, проводимого с использованием олигонуклеотида в качестве праймера, добавляют ДНК-полимеризующий фермент, обычно ДНК-полимеразу Т7 или фрагмент Кленова ДНК-полимеразы I. В результате образуется гетеродуплексная молекула, в которой одна цепь ДНК кодирует мутированную форму гена 1, а другая цепь (исходная матрица) кодирует нативную немодифицированную последовательность гена 1. Затем такую гетеродуплексную молекулу переносят в подходящую клетку-хозяина, обычно в прокариот, такой как E. coli JM101. После культивирования клеток их высевают на планшеты с агарозой и скринируют с использованием олигонуклеотидного праймера, радиоактивно помеченного 32-фосфатом в целях идентификации бактериальных колоний, содержащих мутированную ДНК.
Только что описанный метод может быть модифицирован в целях создания гомодуплексной молекулы, в которой обе цепи плазмиды содержат мутацию(и). Такую модификацию проводят следующим образом: одноцепочечный олигонуклеотид гибридизуют с одноцепочечной матрицей, как описано выше. Смесь из трех дезоксирибонуклеотидов, а именно дезоксирибоаденозина (dATP), дезоксирибогуанозина (dGTP) и дезоксириботимидина (dTT), объединяют с модифицированным тиодезоксирибоцитозином, обозначаемым dCTP-(aS) (который может быть получен от Amersham). Эту смесь добавляют к комплексу «матрица–олигонуклеотид». После добавления ДНК-полимеразы к этой смеси образуется цепь ДНК, идентичная матрице, за исключением мутированных оснований. Кроме того, эта новая цепь ДНК будет содержать dCTP-(aS) вместо dCTP, что будет обеспечивать защиту ДНК от расщепления рестриктирующей эндонуклеазой. После образования одноцепочечного разрыва в цепи-матрице двухцепочечного гетеродуплекса под действием соответствующего рестриктирующего фермента, цепь-матрица может быть гидролизована нуклеазой ExoIII или другой соответствующий нуклеазой в положении, находящемся за областью мутагенного(ых) сайта(ов). Затем реакцию прекращают, в результате чего образуется молекула, которая является одноцепочечной только наполовину. Затем получают полноразмерный двухцепочечный ДНК-гомодуплекс с использованием ДНК-полимеразы в присутствии всех четырех дезоксирибонуклеотид-трифосфатов, АТР и ДНК-лигазы. Затем такая гомодуплексная молекула может быть перенесена в подходящую клетку-хозяина.
Как было показано выше, последовательность набора олигонуклеотидов имеет длину, достаточную для гибридизации с матричной нуклеиновой кислотой, и может также, но необязательно, содержать рестрикционные сайты. ДНК-матрица может быть получена с помощью векторов, которые происходят от векторов бактериофага М13 или векторов, содержащих одноцепочечный ориджин репликации фага, как описано в публикации Viera et al., Meth. Enzymol., 153:3 (1987). Таким образом, ДНК, которая является мутированной, должна быть встроена в один из этих векторов с получением одноцепочечной матрицы. Получение одноцепочечной матрицы описано в разделах 4.21-4.41 руководства Sambrook et al., см. выше.
В соответствии с другим методом связывание с антигеном может быть восстановлено в процессе гуманизации антител путем отбора повторно спаренных гипервариабельных областей (см. заявку № 11/061841, поданную 18 февраля, 2005 г.). Такой метод включает введение нечеловеческих гипервариабельных областей в акцепторную каркасную последовательность, а затем введение одной или нескольких аминокислотных замен в одну или несколько гипервариабельных областей без модификации акцепторной каркасной последовательности. Альтернативно введение одной или нескольких аминокислотных замен может сопровождаться модификацией в акцепторной каркасной последовательности.
В соответствии с другим методом библиотека может быть получена путем конструирования наборов вышерасположенных и нижерасположенных олигонуклеотидов, где каждый из этих наборов имеет множество олигонуклеотидов с различными последовательностями, образуемыми сериями кодонов, присутствующих в последовательности олигонуклеотидов. Наборы вышерасположенных и нижерасположенных олигонуклеотидов, вместе с последовательностью матричной нуклеиновой кислоты вариабельного домена, могут быть использованы в полимеразной цепной реакции с образованием «библиотеки» ПЦР-продуктов. ПЦР-продукты могут называться «кластерами нуклеиновых кислот», поскольку они могут быть присоединены к другим родственным или неродственным последовательностям нуклеиновой кислоты, например, к белкам вирусной оболочки и к доменам димеризации, с применением хорошо разработанных методов молекулярной биологии.
Последовательность ПЦР-праймеров включает один или несколько сконструированных наборов кодонов в положениях, доступных для растворителя, и в различных положениях широкого ряда в гипервариабельной области. Как было описано выше, набором кодонов является набор из различных последовательностей нуклеотидных триплетов, используемых для кодирования нужных вариантов аминокислот.
Подходящие антитела, удовлетворяющие нужным критериям и отобранные путем проведения соответствующих стадий скрининга/отбора, могут быть выделены и клонированы стандартными рекомбинантными методами.
Также важно, чтобы гуманизированные антитела сохраняли высокую аффинность связывания с антигеном и другие желаемые биологические свойства. Для достижения этой цели, в соответствии с предпочтительным методом, гуманизированные антитела получают путем анализа родительских последовательностей и различных концептуальных гуманизированных продуктов с применением трехмерных моделей родительских и гуманизированных последовательностей. Трехмерные модели иммуноглобулина являются общедоступными и известны специалистам. Также существуют компьютерные программы для иллюстрации и представления вероятных трехмерных комбинаторных структур выбранных последовательностей-кандидатов иммуноглобулина. Изучение такого представления позволяет проанализировать вероятную роль, которую играют данные остатки в функционировании последовательности-кандидата иммуноглобулина, то есть провести анализ влияния этих остатков на способность иммуноглобулина-кандидата связываться с антигеном. В этом методе остатки FR могут быть выбраны из последовательностей реципиента и «импортных» последовательностей и объединены так, чтобы можно было получить антитело с нужными свойствами, такими как повышенная аффинность к антигену(ам)-мишени(ям). В основном, непосредственное и наибольшее влияние на связывание с антигеном оказывают остатки гипервариабельной области.
Рассматриваются также различные формы гуманизированного анти-CD79b антитела. Так, например, гуманизированным антителом может быть фрагмент антитела, такой как Fab, который конъюгируют, но необязательно, с одним или несколькими цитотоксическими средствами, с образованием иммуноконъюгата. Альтернативно гуманизированным антителом может быть интактное антитело, такое как интактное антитело IgG1.
В качестве альтернативы гуманизации могут быть получены человеческие антитела. Так, например, в настоящее время могут быть получены трансгенные животные (например, мыши), которые после иммунизации будут обладать способностью продуцировать полный репертуар человеческих антител в отсутствие эндогенно продуцируемого иммуноглобулина. Так, например, указывалось, что гомозиготная делеция гена в области стыка тяжелой цепи антитела (JH) у химерных мышей и у мышей с мутированной зародышевой линией приводит к полному ингибированию продуцирования эндогенного антитела. Перенос массива генов иммуноглобулина человеческой зародышевой линии таким мышам с мутированной зародышевой линией приводит к продуцированию человеческих антител после введения антигена. См., например, Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno. 7:33 (1993); патенты США №№ 5545806, 5569825, 5591669 (все от GenPharm); 5545807; и WO 97/17852.
Альтернативно технология фагового дисплея (McCafferty et al., Nature 348:552-553 [1990]) может быть использована для продуцирования человеческих антител и фрагментов антител in vitro из наборов генов вариабельного домена иммуноглобулина (V) от неиммунизированных доноров. В соответствии с этим методом гены домена V антител клонируют с сохранением рамки считывания в мажорный или минорный ген белковой оболочки нитчатого фага, такого как M13 или fd, и представляют на поверхности фаговой частицы как функциональные фрагменты антител. Поскольку нитчатая частица содержит копию одноцепочечной ДНК генома фага, то отбор, проводимый на основе функциональных свойств антитела, также позволяет отбирать ген, кодирующий антитело, обладающее этими свойствами. Таким образом, фаг имитирует некоторые свойства В-клеток. Фаговый дисплей может быть осуществлен в различных форматах, описанных в публикациях Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Для фагового дисплея может быть использовано несколько источников V-генных сегментов. В публикации Clackson et al., Nature, 352:624-628 (1991) описано выделение разнообразных массивов антител против оксазолона из небольшой рандомизированной комбинаторной библиотеки V-генов, полученной из селезенки иммунизированных мышей. Может быть также сконструирован набор V-генов от неиммунизированных людей-доноров, и могут быть получены антитела против разнообразного массива антигенов (включая аутоантигены), в основном методами, описанными в публикации Marks et al., J. Mol. Biol. 222:581-597 (1991), или Griffith et al., EMBO J. 12:725-734 (1993). См., также патенты США №№ 5565332 и 5573905.
Как обсуждалось выше, человеческие антитела могут быть также получены с использованием in vitro активированных В-клеток (см., также патенты США №№ 5567610 и 5229275).
4. Фрагменты антител
В некоторых случаях желательно использовать не полноразмерные антитела, а их фрагменты. Меньший размер фрагментов позволяет обеспечивать быстрый клиренс, что может улучшать доступ к солидным опухолям.
Для получения фрагментов антител были разработаны различные методы. Традиционно эти фрагменты образуются в результате протеолитического расщепления интактных антител (см., например, Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992), и Brennan et al., Science, 229:81 (1985)). Однако эти фрагменты могут продуцироваться непосредственно рекомбинантными клетками-хозяевами. Fab-, Fv- и scFv-фрагменты антител могут экспрессироваться в E. coli и секретироваться из E. coli, что облегчает продуцирование этих фрагментов в большом количестве. фрагменты антител могут быть выделены из фаговых библиотек антител, обсуждаемых выше. Альтернативно Fab’-SH-фрагменты могут быть непосредственно выделены из E. coli и химически связаны с образованием F(ab’)2-фрагментов (Carter et al., Bio/Technology 10:163-167 (1992)). В соответствии с другим подходом, F(ab’)2-фрагменты могут быть выделены непосредственно из культуры рекомбинантной клетки-хозяина. Fab- и F(ab’)2-фрагмент с более длительным временем полужизни in vivo, содержащий остатки, связывающиеся с эпитопом рецептора «спасения», описаны в патенте США № 5869046. Специалистам известны и другие методы получения фрагментов антител. В других вариантах изобретения выбранным антителом является одноцепочечный Fv-фрагмент (scFv). См. WO 93/16185, патент США № 5571894 и патент США № 5587458. Fv- и sFv-фрагменты присутствуют только у видов с интактными комбинированными сайтами, не содержащими константных областей, а поэтому они являются подходящими для снижения уровня неспецифического связывания в процессе их применения in vivo. Могут быть сконструированы гибридные sFv-белки с получением гибридного эффекторного белка у амино- или карбокси-конца sFv. См. Antibody Engineering, ed. Borrebaeck, см. выше. Фрагментом антитела может быть также “одноцепочечное антитело”, например, антитело, описанное в патенте США № 5641870. Такие одноцепочечные фрагменты антител могут быть моноспецифическими или биспецифическими.
5. Биспецифические антитела
Биспецифическими антителами являются антитела, которые обладают специфичностью связывания, по меньшей мере, с двумя различными эпитопами. Репрезентативные биспецифические антитела могут связываться с двумя различными эпитопами. Репрезентативные биспецифические антитела могут связываться с двумя различными эпитопами белка CD79b, описанного в настоящей заявке. Другие такие антитела могут представлять собой комбинацию CD79b-связывающего сайта с сайтом связывания для других белков. Альтернативно ветвь антитела против CD79b может быть объединена с ветвью, которая связывается с триггерной молекулой на лейкоцитах, такой как молекула Т-клеточного рецептора (например, СD3) или Fc-рецепторы для IgG (FcγR), такими как FcγRI (CD64), FcγRII (CD32) и FcγRIII (CD16), так, чтобы клеточные защитные механизмы были сфокусированы в CD79b-экспрессирующих клетках и локализованных в этих клетках. Биспецифические антитела могут быть также использованы для определения локализации цитотоксических агентов в клетках, экспрессирующих CD79b. Эти антитела имеют CD79b-связывающую ветвь и ветвь, которая связывается с цитотоксическим агентом (таким как, например, сапорин, антитело против интерферона-α, винкаалкалоид, цепь рицина А, метотрексат или гаптен, меченный радиоактивным изотопом). Биспецифические антитела могут быть получены в виде полноразмерных антител или фрагментов антител (например, биспецифические F(ab’)2-антитела).
В WO 96/16673 описано биспецифическое анти-ErbB2/анти-FcγRIII антитело, а в патенте США № 5837234 описано биспецифическое анти-ErbB2/анти-FcγRI антитело. Биспецифическое анти-ErbB2/Fcα антитело описано в WO98/02463. В патенте США № 5821337 описано биспецифическое анти-ErbB2/анти-СD3 антитело.
Методы получения биспецифических антител известны специалистам. Традиционное продуцирование полноразмерных биспецифических антител основано на коэкспрессии двух пар тяжелой цепи-легкой цепи иммуноглобулина, где эти две цепи обладают различной специфичностью (Millstein et al., Nature, 305:537-539 (1983)). Эти гибридомы (квадромы), из-за рандомизированного набора тяжелой и легкой цепей иммуноглобулина, продуцируют потенциальную смесь из 10 различных молекул антител, из которых только одна молекула имеет “правильную” биспецифическую структуру. Очистка такой “правильной” молекулы, которую обычно осуществляют путем постадийного проведения аффинной хроматографии, представляет собой определенные трудности и дает низкий выход продукта. Аналогичные процедуры описаны в WO 93/08829 и у Traunecker et al., EMBO J., 10:3655-3659 (1991).
В соответствии с другим подходом вариабельные домены антитела с нужными специфичностями связывания (объединенные сайты “антитело-антиген”) присоединяют к последовательностям константного домена иммуноглобулина. Такое присоединение предпочтительно осуществляют с константным доменом тяжелой цепи Ig, содержащим, по меньшей мере, часть шарнирной области, СН2 и СН3. При этом предпочтительно, чтобы этот гибрид имел первую константную область тяжелой цепи (СН1), содержащую сайт, необходимый для связывания с легкой цепью, присутствующей, по меньшей мере, в одном из гибридов. ДНК, кодирующая гибриды тяжелой цепи иммуноглобулина и, если это необходимо, легкой цепи иммуноглобулина, встраивают в отдельные экспрессионные векторы, и котрансфицируют в подходящую клетку-хозяина. Это обеспечивает высокую степень гибкости при коррекции соотношений трех полипептидных фрагментов в тех вариантах изобретения, в которых неравные содержания трех полипептидных цепей, используемых в данной конструкции, дают оптимальные выходы нужного биспецифического антитела. Однако можно встраивать кодирующие последовательности для двух или всех трех полипептидных цепей в один экспрессионный вектор, если экспрессия, по меньшей мере, двух полипептидных цепей при равном соотношении дает высокие выходы, или если такие соотношения не оказывают значительного влияния на выход нужной комбинации цепи.
В предпочтительном варианте такого подхода, биспецифические антитела состоят из гибридной тяжелой цепи иммуноглобулина, имеющей первую специфичность связывания, в одной ветви, и гибридной пары “тяжелая цепь-легкая цепь” иммуноглобулина (обеспечивающей вторую специфичность связывания), в другой ветви. Было обнаружено, что такая асимметричная структура облегчает отделение нужного биспецифического соединения от нежелательных комбинаций иммуноглобулиновой цепи, поскольку присутствие легкой цепи иммуноглобулина только в одной половине биспецифической молекулы обеспечивает простой способ его выделения. Этот способ описан в WO 94/04690. Более подробное описание получения биспецифических антител см., например, у Suresh et al., Methods in Enzymology, 121:210 (1986).
В соответствии со вторым подходом, описанным в патенте США № 5731168, граница между парой молекул антитела может быть сконструирована для максимизации процента гетеродимеров, выделенных из рекомбинантной клеточной культуры. Такая граница предпочтительно содержит, по меньшей мере, часть домена СН3. В этом методе небольшие боковые цепи одной или нескольких аминокислот в пограничной области первой молекулы антитела заменяют более крупными боковыми цепями (например, тирозина или триптофана). В пограничной области второй молекулы антитела создают компенсирующие «полости», имеющие размер, идентичный или аналогичный размеру более крупной(ых) боковой(ых) цепи(ей), путем замены крупных боковых цепей аминокислот более мелкими боковыми цепями (например, аланина или треонина). Это позволяет увеличить выход гетеродимеров по отношению к другим нежелательным конечным продуктам, таким как гомодимеры.
Биспецифические антитела включают перекрестно-сшитые антитела или их “гетероконъюгаты”. Так, например, одно из антител в указанном гетероконъюгате может быть связано с авидином, а другое с биотином. Такие антитела были, например, предложены для доставки клеток иммунной системы к нежелательным клеткам (патент США № 4676980) и для лечения ВИЧ-инфекций (WO 91/00360, WO 92/200373 и ЕР 03089). Антитела-гетероконъюгаты могут быть получены любыми стандартными методами перекрестного сшивания. Подходящие перекрестно-сшивающие агенты хорошо известны специалистам и описаны в патенте США № 4676980 наряду с различными методами перекрестного сшивания.
Методы продуцирования биспецифических антител из фрагментов антител также описаны в литературе. Так, например, биспецифические антитела могут быть получены путем химического связывания. В работе Brennan et al., Science, 229:81 (1985) описана процедура, в которой интактные антитела подвергают протеолитическому расщеплению с образованием F(ab’)2-фрагментов. Эти фрагменты восстанавливают в присутствии агента, образующего дитиоловый комплекс, такого как арсенит натрия, для стабилизации смежных дитиолов и предотвращения образования межмолекулярных дисульфидных связей. Затем полученные Fab’-фрагменты превращают в производные тионитробензоата (TNВ). После этого одно из производных Fab’-TNВ снова превращают в Fab’-тиол путем восстановления меркаптоэтиламином и смешивают с эквимолярным количеством другого производного Fab’-TNВ, в результате чего получают биспецифическое антитело. Такие продуцированные биспецифические антитела могут быть использованы в качестве агентов для селективной иммобилизации ферментов.
Последние достижения в данной области позволяют проводить прямое выделение из E. coli фрагментов Fab’-SH, которые могут быть химически связаны с образованием биспецифических антител. В работе Shalaby et al., J. Exp. Med. 175:217-225 (1992) описано продуцирование полностью гуманизированной молекулы F(ab’)2 биспецифического антитела. Каждый Fab’-фрагмент был отдельно секретирован из E. coli и подвергнут прямому химическому связыванию in vitro с образованием биспецифического антитела. Таким образом, полученное биспецифическое антитело обладает способностью связываться с клетками, сверхэкспрессирующими рецептор ErbB2, и с нормальными человеческими Т-клетками, а также запускает литическую активность человеческих цитотоксических лимфоцитов против опухоли-мишени человеческой молочной железы.
Были также описаны различные методы получения и выделения фрагментов биспецифических антител непосредственно из рекомбинантной клеточной культуры. Так, например, биспецифические антитела были продуцированы с использованием “лейциновых молний”. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). Пептиды лейциновой молнии, происходящие от белков Fos и Jun, были присоединены к Fab’-частям двух других антител путем лигирования генов. Гомодимеры антитела были восстановлены в шарнирной области с образованием мономеров, а затем снова окислены с образованием гетеродимеров антител. Этот метод может быть также использован для продуцирования гомодимеров антитела. Технология “диантител”, описанная Hollinger et al., Proc. Natl. Acad. Sci., USA, 90:6444-6448 (1993), обеспечивает альтернативный механизм получения фрагментов биспецифического антитела. Эти фрагменты содержат VН, присоединенный к VL посредством линкера, который является слишком коротким для создания пары между двумя доменами одной и той же цепи. В соответствии с этим VL- и VН-домены одного фрагмента вынуждены спариваться с комплементарными VL- и VН-доменами другого фрагмента, образуя тем самым два антигенсвязывающих сайта. Также была описана другая стратегия получения фрагментов биспецифического антитела с использованием одноцепочечных Fv(sFv)-димеров. См. Gruber et al., J. Immunol., 152:5368 (1994).
Рассматриваются также антитела с более чем двумя валентностями. Так, например, могут быть получены и триспецифические антитела. Tutt et al., J. Immunol. 147:60 (1991).
6. Гетероконъюгированные антитела
Гетероконъюгированные антитела также входят в объем настоящего изобретения. Гетероконъюгированные антитела состоят из двух ковалентно связанных антител. Такие антитела, например, как предполагается, нацеливают клетки иммунной системы на нежелательные клетки [патент США № 4676980], а поэтому они могут быть использованы для лечения ВИЧ-инфекций [WO 91/00360, WO 92/200373 и EP 03089]. Известно, что антитела могут быть получены in vitro методами синтеза белков, включая методы с использованием перекрестно-сшивающих агентов. Так, например, иммунотоксины могут быть сконструированы путем проведения реакции дисульфидного обмена или образования тиоэфирной связи. Примерами подходящих реагентов, используемых для этой цели, являются иминотиолат и метил-4-меркаптобутиримидат, и такие реагенты описаны, например, в патенте США № 4676980.
7. Поливалентные антитела
Поливалентное антитело может быть быстрее интернализовано (и/или оно может быстрее подвергаться катаболизму), чем двухвалентное антитело благодаря экспрессии антигена в клетке, с которым связываются антитела. Антителами согласно изобретению могут быть поливалентные антитела (не принадлежащие к классу IgM) с тремя или более антигенсвязывающими сайтами (например, четырехвалентные антитела), которые могут быть легко продуцированы посредством рекомбинантной экспрессии нуклеиновой кислоты, кодирующей полипептидные цепи данного антитела. Поливалентное антитело может содержать домен димеризации и три или более антигенсвязывающих сайтов. Предпочтительный домен димеризации содержит (или состоит из них) Fc-область или шарнирную область. В этом случае антитело может содержать Fc-область и три или более антигенсвязывающих сайта, расположенных со стороны амино-конца по отношению к Fс-области. Описанное здесь предпочтительное поливалентное антитело содержит (или состоит из них) от трех и примерно до восьми антигенсвязывающих сайтов, а предпочтительно четыре антигенсвязывающих сайта. Поливалентное антитело содержит по меньшей мере одну полипептидную цепь (предпочтительно две полипептидных цепи), где указанная(ые) полипептидная(ые) цепь(и) содержит(ат) два или более вариабельных доменов. Так, например, полипептидная(ые) цепь(и) может (могут) содержать VD1-(X1)n-VD2-(X2)n-Fc, где VD1 представляет собой первый вариабельный домен, VD2 представляет собой второй вариабельный домен, Fc представляет собой одну полипептидную цепь Fc-области, X1 и X2 представляют собой аминокислоту или полипептид, а n равно 0 или 1. Так, например, полипептидная(ые) цепь(и) может (могут) содержать: цепь «VH-CH1-гибкий линкер-VH-CH1-Fc-область»; или цепь «VH-CH1-VH-CH1-Fc-область». Поливалентное антитело согласно изобретению также предпочтительно содержит по меньшей мере два (предпочтительно четыре) полипептида вариабельного домена легкой цепи. Описанное здесь поливалентное антитело может, например, содержать примерно от двух до восьми полипептидов вариабельного домена легкой цепи. Рассматриваемые здесь полипептиды вариабельного домена легкой цепи содержат вариабельный домен легкой цепи, а также, но необязательно, домен CL.
8. Конструирование антител с эффекторными функциями
Может оказаться желательным модифицировать антитело согласно изобретению для придания ему эффекторных функций, например, для повышения антиген-зависимой клеточно-опосредуемой цитотоксичности (ADCC) и/или комплемент-зависимой цитотоксичности (CDC) антитела. Это может быть достигнуто путем введения одной или нескольких аминокислотных замен в Fc-область антитела. Альтернативно или дополнительно, цистеиновый(е) остаток(ки) может (могут) быть введен(ы) в Fc-область, что будет приводить к образованию межцепочечных дисульфидных связей в этой области. Таким образом, полученное гомодимерное антитело может обладать повышенной способностью к интернализации и/или повышенной способностью к комплемент-опосредуемому цитолизу клеток, и повышенной антитело-зависимой клеточной цитотоксичностью (ADCC). См. Caron et al., J. Exp. Med. 176:1191-1195 (1992) и Shopes, B. J. Immunol. 148:2918-2922 (1992). Гомодимерные антитела, обладающие повышенной противоопухолевой активностью, могут быть также получены с использованием гетеробифункциональных перекрестно-сшивающих агентов, описанных в публикации Wolff et al., Cancer Research 53:2560-2565 (1993). Альтернативно может быть сконструировано антитело, имеющее две Fc-области, в результате чего может быть усилен лизис комплемента и повышена ADCC. См. Stevenson et al., Anti-Cancer Drug Design 3:219-230 (1989). Для увеличения времени полужизни антитела в сыворотке, в указанное антитело (в частности, в его фрагмент) может быть введен эпитоп, связывающийся с рецептором «спасения», например, как описано в патенте США № 5739277. Используемый здесь термин «эпитоп, связывающийся с рецептором «спасения» означает эпитоп Fc-области молекулы IgG (например, IgG1, IgG2, IgG3 или IgG4), который является ответственным за увеличение времени полужизни молекулы IgG в сыворотке in vivo.
9. Иммуноконъюгаты
Настоящее изобретение также относится к иммуноконъюгатам (которые являются синонимами терминов «конъюгаты антитело-лекарственное средство» или «ADC»), включающим антитело, конъюгированное с цитотоксическим агентом, таким как химиотерапевтическое средство, рост-ингибирующий агент, токсин (например, ферментативно активный токсин бактериального, грибкового, растительного или животного происхождения или его фрагменты) или радиоактивный изотоп (то есть радиоактивный конъюгат).
В некоторых вариантах изобретения иммуноконъюгат содержит антитело и химиотерапевтическое средство или другой токсин. Химиотерапевтические средства, используемые для получения указанных иммуноконъюгатов, описаны выше. Ферментативно активными токсинами и их фрагментами, которые могут быть использованы для этих целей, являются А-цепь дифтерийного токсина, несвязывающиеся активные фрагменты дифтерийного токсина, А-цепь экзотоксина (от Pseudomonas aeruginosa), А-цепь рицина, А-цепь абрина, А-цепь модецина, альфа-сарцин, белки Aleurites fordii, белки диантина, белки Phytolaca americana (PAPI, PAPII и PAP-S), ингибитор Momordica charantia, курцин, кротин, ингибитор Sapaonaria officinalis, гелонин, митогеллин, рестриктоцин, феномицин, эномицин и трикотецены. Для продуцирования радиоактивно конъюгированных антител могут быть использованы различные радионуклиды. Примерами таких радионуклидов являются 212Bi, 131I, 131In, 90Y и 186Re. Конъюгаты антитела и цитотоксического лекарственного средства получают с использованием различных бифункциональных белок-связывающих агентов, таких как N-сукцинимидил-3-(2-пиридилтиол)пропионат (SPDP), иминотиолан (IT), бифункциональные производные имидоэфиров (такие как диметиладипимидат-HCl), активные сложные эфиры (такие как дисукцинимидилсуберат), альдегиды (такие как глутаральдегид), бис-азидосоединения (такие как бис(п-азидобензоил)гександиамин), производные бис-диазония (такие как бис-(п-диазонийбензоил)этилендиамин), диизоцианаты (такие как толуол-2,6-диизоцианат) и бис-активные соединения фтора (такие как 1,5-дифтор-2,4-динитробензол). Так, например, иммунотоксин рицин может быть получен, как описано в публикации Vitetta et al. Science, 238:1098 (1987). 14С-меченная 1-изотиоцианатобензил-3-метилдиэтилентриаминопентауксусная кислота (МХ-DTPA) является репрезентативным хелатообразующим агентом для конъюгирования радионуклида с антителом. См. WO 94/11026.
В настоящем изобретении также рассматриваются конъюгаты антитела и одного или нескольких низкомолекулярных токсинов, таких как калихеамицин, ауристатиновые пептиды, такие как монометилауристатин (ММАЕ) (синтетический аналог доластатина), майтанзиноиды, такие как DM1, трихотен и СС1065, и производные этих токсинов, обладающие токсической активностью.
Репрезентативные иммуноконъюгаты – конъюгаты «антитело–лекарственное средство»
Иммуноконъюгат (или «конъюгат антитело–лекарственное средство» (“ADC”)) согласно изобретению может представлять собой иммуноконъюгат формулы I, указанной ниже, где антитело конъюгировано (то есть ковалентно связано) с одной или несколькими молекулами лекарственного средства (D) посредством, но необязательно, линкера (L). ADC могут включать конъюгаты «тио-Маb-лекарственное средство» («ТDC»).
В соответствии с этим, антитело может быть конъюгировано с лекарственным средством либо непосредственно, либо посредством линкера. В формуле I р означает среднее число молекул лекарственного средства на антитело, где указанное число может составлять, например, примерно от 1 до 20 молекул лекарственного средства на антитело, а в некоторых вариантах изобретения от 1 и примерно до 8 молекул лекарственного средства на антитело. Настоящее изобретение относится к композиции, содержащей смесь соединений «антитело–лекарственное средство» формулы I, где средняя нагрузка лекарственного средства на антитело составляет примерно 2-5 или примерно 3-4.
а. Репрезентативные линкеры
Линкер может содержать один или более линкерных компонентов. Репрезентативными линкерными компонентами являются 6-малеимидокапроил («MC»), малеимидопропаноил («MP»), валин-цитруллин («val-cit»), аланин-фенилаланин («ala-phe»), п-аминобензилоксикарбонил («PAB»), и компоненты, образующиеся в результате конъюгирования с линкерными реагентами: N-сукцинимидил-4-(2-пиридилтио)пентаноат («SPP»), N-сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат («SMCC», также обозначенный здесь «МСС») и N-сукцинимидил-(4-йодацетил)аминобензоат («SIAB»). Специалистам известны различные линкерные компоненты, некоторые из которых описаны ниже.
Линкером может быть «отщепляемый линкер», облегчающий высвобождение лекарственного средства в клетке. Так, например, могут быть использованы линкеры, чувствительные к воздействию кислоты (например, гидразон); линкеры, чувствительные к действию протеазы (например, пептидазы); фотохимически неустойчивые линкеры; диметиловые линкеры или дисульфидсодержащие линкеры (Chari et al., Cancer Research 52:127-131 (1992), патент США № 5208020).
В некоторых вариантах изобретения линкер представлен нижеследующей формулой II:
где А представляет собой удлиняющий компонент; а равно целому числу 0 или 1; W представляет собой аминокислоту; w независимо представляет собой целое число от 0 до 12; Y означает спейсерный компонент; у равно 0, 1 или 2, а Ab, D и p определены выше для формулы I. Репрезентативные варианты таких линкеров описаны в заявке США 2005-0238649 A1, которая во всей своей полноте вводится в настоящее описание посредством ссылки.
В некоторых вариантах изобретения линкерный компонент может содержать «удлиняющий компонент», который связывает антитело с другим линкерным компонентом или с молекулой лекарственного средства. Репрезентативные удлиняющие компоненты представлены ниже (где волнистая линия означает сайты ковалентного связывания с антителом):
В некоторых вариантах изобретения линкерный компонент может содержать аминокислотный компонент. В одном из таких вариантов изобретения аминокислотный компонент обеспечивает расщепление линкера протеазой, что облегчает высвобождение лекарственного средства из иммуноконъюгата после его обработки внутриклеточными протеазами, такими как лизосомные ферменты. См., например, Doronina et al. (2003) Nat. Biotechnol. 21:778-784. Репрезентативными аминокислотными компонентами являются, но не ограничиваются ими, дипептид, трипептид, тетрапептид и пентапептид. Репрезентативными дипептидами являются валин-цитруллин (vc или val-cit), аланин-фенилаланин (af или ala-phe), фенилаланин-лизин (fk или phe-lys); или N-метил-валин-цитруллин (Me-val-cit). Репрезентативными трипептидами являются глицин-валин-цитруллин (gly-val-cit) и глицин-глицин-глицин (gly-gly-gly). Аминокислотный компонент может содержать природные аминокислотные остатки, а также небольшие аминокислоты и неприродные аминокислотные аналоги, такие как цитруллин. Аминокислотные компоненты могут быть сконструированы и оптимизированы по их селективности в отношении ферементативного расщепления конкретными ферментами, например, опухолеассоциированной протеазой, катепсином В, C и D, или плазминовой протеазой.
В некоторых вариантах изобретения линкерный компонент может содержать «спейсерный» компонент, который связывает антитело с молекулой лекарственного средства, либо непосредственно, либо посредством удлиняющего компонента и/или аминокислотного компонента. Спейсерным компонентом может быть «самоэлиминирующийся» или «несамоэлиминирующийся» компонент. «Несамоэлиминирующийся» спейсерный компонент представляет собой компонент, где часть спейсерного компонента или весь этот компонент остаются связанными с молекулой лекарственного средства после ферментативного (например, протеолитического) расщепления ADC. Примерами несамоэлиминирующихся спейсерных компонентов являются, но не ограничиваются ими, глициновый спейсерный компонент и глицин-глициновый спейсерный компонент. Также рассматриваются и другие комбинации пептидных спейсеров, чуствительных к последовательность-специфическому ферментативному расщеплению. Так, например, ферментативное расщепление ADC, содержащего глицин-глициновый спейсерный компонент, протеазой, ассоциированной с опухолевыми клетками, будет приводить к высвобождению молекулы «глицин-глицин-лекарственное средство» из остальной части ADC. В одном из таких вариантов молекула «глицин-глицин-лекарственное средство» подвергается одностадийному гидролизу в опухолевой клетке, что приводит к отщеплению глицин-глицинового спейсерного компонента от молекулы лекарственного средства.
«Самоэлиминирующийся» спейсерный компонент обеспечивает высвобождение молекулы лекарственного средства без проведения одностадийного гидролиза. В некоторых вариантах изобретения спейсерный компонент линкера содержит п-аминобензильную группу. В одном из таких вариантов п-аминобензиловый спирт присоединен к аминокислотному компоненту посредством амидной связи, а карбамат, метилкарбамат или карбонат образуются в результате реакции взаимодействия бензилового спирта с цитотоксическим агентом. См., например, Hamann et al. (2005) Expert Opin. Ther. Patents (2005) 15:1087-1103. В одном из вариантов изобретения спейсерным компонентом является п-аминобензилоксикарбонил (PAB). В некоторых вариантах изобретения фениленовая часть п-аминобензильной группы замещена Qm, где Q представляет собой -С1-С8алкил, -О-(С1-С8алкил), галоген, нитро или циано; m равно целому числу от 0 до 4. Другими примерами самоэлиминирующихся спейсерных компонентов являются, но не ограничиваются ими, ароматические соединения, которые по своим электронным свойствам аналогичны п-аминобензиловому спирту (см. например, заявку US 2005/0256030 A1), такому как производные 2-аминоимидазол-5-метанола (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237) и орто- или пара-аминобензилацетали. Могут быть использованы спейсеры, которые подвергаются циклизации после гидролиза амидной связи, такие как замещенные и незамещенные амиды 4-аминомасляной кислоты (Rodrigues et al. (1995) Chemistry Biology 2:223), соответствующим образом замещенные кольцевые бицикло[2.2.1]- и бицикло[2.2.2]-системы (Storm et al. (1972) J. Amer. Chem. Soc. 94:5815) и амиды 2-аминофенилпропионовой кислоты (Amsberry, et al. (1990) J. Org. Chem. 55:5867). Примерами самоэлиминирующихся спейсеров, используемых в ADC, являются аминосодержащие лекарственные средства, замещенные в α-положении глицина (Kingsbury et al. (1984) J. Med. Chem. 27:1447).
В одном из вариантов изобретения указанный спейсерный элемент представляет собой нижеуказанный разветвленный бис(гидроксиметил)стирол (BHMS), который может быть использован для включения и высвобождения множества лекарственных средств и который имеет структуру:
,
где Q представляет собой -С1-С8алкил, -О-(С1-С8алкил), галоген, нитро или циано; m равно целому числу от 0 до 4; n равно 0 или 1; а p равно числу от 1 и примерно до 20.
В другом варианте изобретения линкером L может быть линкер дендритного типа, используемый для ковалентного связывания более чем одной молекулы лекарственного средства с антителом посредством ветвящейся многофункциональной линкерной молекулы (Sun et al. (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al. (2003) Bioorganic & Medicinal Chemistry 11:1761-1768). Дендритные линкеры могут повышать молярное отношение лекарственного средства к антителу, то есть нагрузку, которая соответствует эффективности ADC. Таким образом, если сконструированное на основе цистеина антитело содержит только одну реакционноспособную тиоловую группу цистеина, то посредством дендритного линкера может быть присоединено большое количество молекул лекарственного средства.
Репрезентативные линкерные компоненты и их комбинации представлены ниже для ADC формулы II:
Линкерные компоненты, включая удлиняющие, спейсерные и аминокислотные компоненты, могут быть синтезированы методами, известными специалистам, например, методами, описанными в заявке US 2005-0238649 A1.
b. Репрезентативные молекулы лекарственного средства
(1) Майтанзин и майтанзиноиды
В некоторых вариантах изобретения иммуноконъюгат содержит антитело, конъюгированное с одной или несколькими молекулами майтанзиноида. Майтанзиноиды представляют собой митотические ингибиторы, которые действуют посредством ингибирования полимеризации тубулина. Майтанзин был впервые выделен у восточно-африканской землеройки Maytenus serrata (патент США № 3896111). Затем было обнаружено, что некоторые микробы также продуцируют майтанзиноиды, такие как майтанзинол и сложные эфиры С-3-майтанзинола (патент США № 4151042). Синтетический майтанзинол и его производные и аналоги описаны, например, в патентах США №№ 4137230; 4248870; 4256746; 4260608; 4265814; 4294757; 4307016; 4308268; 4308269; 4309428; 4313946; 4315929; 4317821; 4322348; 4331598; 4361650; 4364866; 4424219; 4450254; 4362663 и 4371533.
Молекулы майтанзиноидных лекарственных средств являются привлекательными молекулами лекарственных средств для использования в конъюгатах «антитело–лекарственное средство», поскольку они (i) могут быть относительно легко получены путем ферментации или химической модификации или дериватизации продуктов ферментации, (ii) являются пригодными для дериватизации функциональными группами, подходящими для конъюгирования посредством присоединения дисульфидных и недисульфидных линкеров к антителам, (iii) являются стабильными в плазме и (iv) являются эффективными против различных опухолевых клеточных линий.
Майтанзиновые соединения, которые могут быть использованы в качестве майтанзиноидных лекарственных средств, хорошо известны специалистам и могут быть выделены из природных источников известными методами, либо они могут быть получены методами генной инженерии и ферментации (US 6790952; US 2005/0170475; Yu et al. (2002) PNAS 99:7968-7973). Майтанзинол и его аналоги могут быть также получены известными методами синтеза.
Репрезентативными майтанзиноидными лекарственными средствами являются лекарственные средства, имеющие модифицированное ароматическое кольцо, такие как C-19-десхлоро (патент США 4256746) (полученные путем восстановления анзамитоцина Р2 алюмогидридом лития); C-20-гидрокси (или C-20-десметил) +/-C-19-десхлор (патенты США N№ 4361650 и 4307016) (полученные путем деметилирования с использованием Streptomyces или Actinomyces, или путем дехлорирования с использованием LAH); и C-20-десметокси, C-20-ацилокси (-OCOR), +/-десхлоро (патент США № 4294757) (полученные путем ацилирования с использованием ацилхлоридов), и молекулы, имеющие модификации в других положениях.
Репрезентативными молекулами майтанзиноидного лекарственного средства являются молекулы, имеющие модификации, такие как: C-9-SH (патент США 4424219) (полученные путем реакции взаимодействия майтанзинола с H2S или P2S5); C-14-алкоксиметил(десметокси/CH2OR)(патент США 4331598); C-14-гидроксиметил или ацилоксиметил (CH2OH или CH2OAc) (патент США 4450254) (полученные от Nocardia); C-15-гидрокси/ацилокси (патент США 4364866) (полученные путем превращения майтанзинола под действием Streptomyces); C-15-метокси (патенты США №№ 4313946 и 4315929) (выделенные из Trewia nudlflora); C-18-N-десметил (патенты США №№ 4362663 и 4322348) (полученные путем деметилирования майтанзинола под действием Streptomyces); и 4,5-дезокси (патент США 4371533) (полученные путем восстановления майтанзинола трихлоридом титана/LAH).
Известно, что многие положения в майтанзиновых соединениях, в зависимости от типа связи, могут быть использованы в качестве положения присоединения. Так, например, для образования сложноэфирной связи, подходящими являются C-3-положение, имеющее гидроксильную группу, C-14-положение, модифицированное гидроксиметилом, C-15-положение, модифицированное гидроксильной группой, и C-20-положение, имеющее гидроксильную группу (US 5208020; US RE39151; US 6913748; US 7368565; US 2006/0167245; US 2007/0037972).
Молекулами майтанзиноидного лекарственного средства являются молекулы, имеющие структуру:
,
где волнистая линия означает ковалентное связывание атома серы молекулы майтанзиноидного лекарственного средства с линкером ADC. R может независимо представлять собой H или С1-С6алкил. Алкиленовой цепью, связывающей амидную группу с атомом серы, может быть метанил, этанил или пропил, то есть, где m равно 1, 2 или 3 (US 633410 ; US 5208020; US 7276497; Chari et al. (1992) Cancer Res. 52:127-131; Liu et al. (1996) Proc. Natl. Acad. Sci USA 93:8618-8623).
В настоящем описании рассматриваются все стереоизомеры молекул майтанзиноидного лекарственного средства соединений согласно изобретению, то есть любая комбинация R- и S-конфигураций у хиральных атомов углерода D. В одном из вариантов изобретения молекула майтанзиноидного лекарственного средства имеет нижеследующую стереохимическую структуру:
Репрезентативными вариантами молекул майтанзиноидного лекарственного средства являются: DM1; DM3 и DM4, имеющие структуры:
,
где волнистая линия означает ковалентное связывание атома серы молекулы лекарственного средства с линкером (L) конъюгата ««антитело–лекарственное средство» (WO 2005/037992; US 2005/0276812 A1).
Другие репрезентативные конъюгаты «майтанзиноид-антитело-лекарственное средство» имеют нижеследующие структуры и обозначения (где Ab представляет собой антитело, а p равно от 1 до примерно 8):
Репрезентативные конъюгаты ««антитело–лекарственное средство», где DM1 присоединен посредством линкера BMPEO к тиоловой группе антитела, имеют нижеследующую структуру и обозначения:
,
где Ab представляет собой антитело, n равно 0, 1 или 2, а p равно 1, 2, 3 или 4.
Иммуноконъюгаты, содержащие майтанзиноиды, способы их получения и их терапевтическое применение описаны, например, в публикации Erickson, et al. (2006) Cancer Res. 66(8):4426-4433; в патентах США №№ 5208020, 5416064, в заявке US 2005/0276812 A1 и в Европейском патенте ЕР 0425235В1, которые во всей своей полноте вводятся в настоящую заявку посредством ссылки.
Конъюгаты “антитело-майтанзиноид” получают путем химического связывания антитела с молекулой майтанзиноида, где указанное связывание не приводит к значительному снижению биологической активности антитела или молекулы майтанзиноида. См., например, патент США № 5208020 (который во всей своей полноте вводится в настоящее описание посредством ссылки). Майтанзиноиды могут быть синтезированы известными методами, либо они могут быть выделены из природных источников. Подходящие майтанзиноиды описаны, например, в патенте США № 5208020 и в других патентах и в непатентных публикациях, описанных выше, и такими майтанзиноидами являются майтанзинол и аналоги майтанзинола, имеющие модификации в ароматическом кольце или в других положениях молекулы майтанзинола, такие как различные сложные эфиры майтанзинола.
Для создания конъюгатов «антитело–майтанзиноид» может быть использовано множество линкерных групп, известных специалистам, включая, например, группы, описанные в патенте США № 5208020 или в Европейском патенте ЕР 0425235В1, и в публикации Chari et al., Cancer Research 52:127-131 (1992) и в заявке на патент США US 2005/016993 A1, которые во всей своей полноте вводятся в настоящее описание посредством ссылки. Конъюгаты «антитело–майтанзиноид», содержащие линкерный компонент SMCC, могут быть получены, как описано в заявке на патент США US 2005/0276812 A1, в разделе «Конъюгаты антитело–лекарственное средство и методы». Линкерными группами являются дисульфидные группы, тиоэфирные группы, группы, чувствительные к воздействию кислоты, фотохимически неустойчивые группы, группы, чувствительные к действию пептидазы, или группы, чувствительные к действию эстеразы, описанные в вышеупомянутых патентах. Дополнительные линкерные группы описаны и проиллюстрированы в настоящей заявке.
Конъюгаты «антитело–майтанзиноид» могут быть получены с использованием различных бифункциональных белок-связывающих агентов, таких как N-сукцинимидил-3-(2-пиридилдитио)пропионат (SPDP), сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат (SMCC), иминотиолан (IT), бифункциональные производные имидоэфиров (такие как диметиладипимидат-HCl), активные сложные эфиры (такие как дисукцинимидилсуберат), альдегиды (такие как глутаральдегид), бис-азидосоединения (такие как бис(п-азидобензоил)гександиамин), производные бис-диазония (такие как бис-(п-диазонийбензоил)этилендиамин), диизоцианаты (такие как толуол-2,6-диизоцианат) и бис-активные соединения фтора (такие как 1,5-дифтор-2,4-динитробензол). В некоторых вариантах изобретения связывающими агентами для создания дисульфидной связи являются N-сукцинимидил-3-(2-пиридилдитио)пропионат (SPDP) (Carlsson et al., Biochem. J. 173:723-737 [1978]) или N-сукцинимидил-4-(2-пиридилтио)пентаноат (SPР).
Линкер может быть присоединен к молекуле майтанзиноида в различных положениях, в зависимости от типа связи. Так, например, сложноэфирная связь может быть образована посредством реакции с гидроксильной группой стандартными методами связывания. Такая реакция может осуществляться в положении С-3, имеющем гидроксильную группу, в положении С-14, модифицированном гидроксиметилом, в положении С-15, модифицированном гидроксильной группой, и в положении С-20, имеющем гидроксильную группу. В одном из вариантов изобретения указанная связь образуется в положении С-3 майтанзинола или его аналога.
(2) Ауристатины и доластатины
В некоторых вариантах изобретения иммуноконъюгат содержит антитело, конъюгированное с доластатином или с пептидным аналогом доластатина или их производными, например, с ауристатином (патенты США №№ 5635483, 5780588). Было обнаружено, что доластатины и ауристатины негативно влияют на динамику образования микротрубочек, гидролиз GTP и деление ядер и клеток (Woyke et al. (2001) Antimicrob. Agents and Chemother. 45(12):3580-3584), и обладают противораковой (патент США 5663149) и противогрибковой активностью (Pettit et al. (1998) Antimicrob. Agents Chemother. 42:2961-2965). Молекулы доластатиновых или ауристатиновых лекарственных средств могут быть присоединены к антителу у N-(амино)-конца или у С-(карбокси)-конца молекулы пептидного лекарственного средства (WO 02/088172).
Репрезентативными вариантами ауристатина являются молекулы лекарственного средства, содержащие присоединенный к N-концу монометилауристатин, DE и DF (заявка US 2005/0238649, описанная Senter et al., Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623, и представленная 28 марта 2004 г., и указанная заявка во всей своей полноте вводится в настоящее описание посредством ссылки).
Пептидная молекула лекарственного средства может быть выбрана из соединений формул DE и DF, представленных ниже:
,
где волнистая линия в DE и DF обозначает сайт ковалентного присоединения к антителу или к компоненту антитело-линкер;
и в каждом положении, независимо:
R2 выбран из H и C1-C8алкила;
R3 выбран из H, C1-C8алкила, C3-C8карбоцикла, арила, C1-C8алкил-арила, C1-C8алкил-(C3-C8карбоцикла), C3-C8гетероцикла и C1-C8алкил-(C3-C8гетероцикла);
R4 выбран из H, C1-C8алкила, C3-C8карбоцикла, арила, C1-C8алкил-арила, C1-C8алкил-(C3-C8карбоцикла), C3-C8гетероцикла и C1-C8алкил-(C3-C8гетероцикла);
R5 выбран из H и метила;
или R4 и R5, взятые вместе, образуют карбоциклическое кольцо и имеют формулу -(CRaRb)n-, где Ra и Rb независимо выбраны из H, C1-C8алкила и C3-C8карбоцикла, а n выбран из 2, 3, 4, 5 и 6;
R6 выбран из H и C1-C8алкила;
R7 выбран из H, C1-C8алкила, C3-C8карбоцикла, арила, C1-C8алкил-арила, C1-C8алкил-(C3-C8карбоцикла), C3-C8гетероцикла и C1-C8алкил-(C3-C8гетероцикла);
каждый из R8 независимо выбран из H, OH, C1-C8алкила, C3-C8карбоцикла и O-(C1-C8алкила);
R9 выбран из H и C1-C8алкила;
R10 выбран из арила или C3-C8гетероцикла;
Z представляет собой O, S, NH или NR12, где R12 представляет собой C1-C8алкил;
R11 выбран из H, C1-C20алкила, арила, C3-C8гетероцикла, -(R13O)m-R14 или -(R13O)m-CH(R15)2;
m равно целому числу 1-1000;
R13 представляет собой C2-C8алкил;
R14 представляет собой H или C1-C8алкил;
R15 в каждом случае независимо представляет собой H, COOH, -(CH2)n-N(R16)2, -(CH2)n-SO3H или -(CH2)n-SO3-C1-C8алкил;
R16 в каждом случае независимо представляет собой H, C1-C8алкил или -(CH2)n-COOH;
R18 выбран из -C(R8)2-C(R8)2-арила, -C(R8)2-C(R8)2-(C3-C8гетероцикла) и -C(R8)2-C(R8)2-(C3-C8карбоцикла); и
n равно целому числу от 0 до 6.
В одном из вариантов изобретения R3, R4 и R7 независимо представляют собой изопропил или втор-бутил, а R5 представляет собой –H или метил. В предпочтительном варианте изобретения каждый из R3 и R4 представляет собой изопропил, R5 представляет собой -H, а R7 представляет собой втор-бутил.
В другом варианте изобретения каждый из R2 и R6 представляет собой метил, а R9 представляет собой -H.
В еще одном варианте изобретения R8 в каждом случае представляет собой -OCH3.
В репрезентативном варианте изобретения каждый из R3 и R4 представляет собой изопропил, каждый из R2 и R6 представляет собой метил, R5 представляет собой -H, R7 представляет собой втор-бутил, R8 в каждом случае представляет собой -OCH3, а R9 представляет собой -H.
В одном из вариантов изобретения Z представляет собой -O- или -NH-.
В одном из вариантов изобретения R10 представляет собой арил.
В репрезентативном варианте изобретения R10 представляет собой фенил.
В репрезентативном варианте изобретения, если Z представляет собой -O-, то R11 представляет собой –H, метил или трет-бутил.
В одном из вариантов изобретения, если Z представляет собой -NH, то R11 представляет собой -CH(R15)2, где R15 представляет собой -(CH2)n-N(R16)2, а R16 представляет собой -C1-C8алкил или -(CH2)n-COOH.
В другом варианте изобретения, если Z представляет собой -NH, то R11 представляет собой -CH(R15)2, где R15 представляет собой -(CH2)n-SO3H.
Репрезентативным вариантом ауристатина формулы DE является MMAE, где волнистая линия означает ковалентное связывание конъюгата «антитело–лекарственное средство» с линкером (L):
Репрезентативным вариантом ауристатина формулы D является MMAF, где волнистая линия означает ковалентное связывание конъюгата «антитело–лекарственное средство» с линкером (L) (см. заявку US 2005/0238649 и публикацию Doronina et al. (2006) Bioconjugate Chem. 17:114-124):
Другими репрезентативными вариантами являются монометилвалиновые соединения, имеющие фенилаланинкарбокси-модификации у С-конца пентапептидного ауристатинового лекарственного средства (WO 2007/008848), и монометилвалиновые соединения, имеющие фенилаланиновые модификации боковой цепи у С-конца пентапептидного ауристатинового лекарственного средства (WO 2007/008603).
Другими молекулами лекарственного средства являются нижеследующие производные MMAF, где волнистая линия означает ковалентное связывание конъюгата «антитело–лекарственное средство» с линкером (L):
В одном из аспектов изобретения гидрофильными группами являются, но не ограничиваются ими, сложные эфиры триэтиленгликоля (TEG), представленные выше, которые могут быть присоединены к молекуле лекарственного средства в положении R11. Не ограничиваясь какой-либо конкретной теорией, можно лишь отметить, что гидрофильные группы улучшают интернализацию молекулы лекарственного средства и предотвращают ее агломерацию.
Репрезентативные варианты ADC формулы I, содержащие ауристатин/доластатин или их производные, описаны в заявке US 2005-0238649 и в публикации Doronina et al. (2006) Bioconjugate Chem. 17:114-124, которые во всей своей полноте вводятся в настоящее описание посредством ссылки. Репрезентативные варианты ADC формулы I, содержащие MMAE или MMAF и различные линкерные компоненты, имеют нижеследующие структуры и обозначения (где “Ab” представляет собой антитело; p равно от 1 до примерно 8, “Val-Cit” или “vc” представляет собой дипептид валин-цитруллин, а “S” представляет собой атом серы). При этом следует отметить, что в некоторых описаниях структуры ADC, связанного с атомом серы, антитело имеет обозначение “Ab-S”, которое указывает лишь на связь с атомом серы, но не указывает на то, что конкретный атом серы присоединен к нескольким молекулам «линкер–лекарственное средство». В нижеследующих структурах, скобка слева может быть также поставлена слева от атома серы Ab и S, и такая запись будет эквивалентна формуле ADC согласно изобретению, представленной в настоящем описании.
Репрезентативные варианты ADC формулы I, содержащие MMAF и различные линкерные компоненты, также включают Ab-MC-PAB-MMAF и Ab-PAB-MMAF. Интересно отметить, что иммуноконъюгаты, содержащие MMAF, присоединенные к антителу посредством линкера, который не подвергается протеолитическому расщеплению, обладают активностью, сравнимой с активностью иммуноконъюгатов, содержащих MMAF, присоединенный к антителу посредством протеолитически расщепляемого линкера. См., Doronina et al. (2006) Bioconjugate Chem. 17:114-124. В таких случаях высвобождение лекарственного средства, очевидно, происходит благодаря разложению антитела в клетке. См. ниже.
Обычно пептидные молекулы лекарственного средства могут быть получены путем образования пептидной связи между двумя или более аминокислотами и/или пептидными фрагментами. Такие пептидные связи могут быть образованы, например, методом синтеза в жидкой фазе (см. E. Schröder and K. Lübke, “The Peptides”, volume 1, pp 76-136, 1965, Academic Press), хорошо известным специалистам в области пептидного синтеза. Молекулы ауристатиновых/доластатиновых лекарственных средств могут быть получены методами, описанными в заявке США US 2005-0238649 A1; в патентах США № 5635483; № 5780588; в публикациях Pettit et al. (1989) J. Am. Chem. Soc. 111:5463-5465; Pettit et al. (1998) Anti-Cancer Drug Design 13:243-277; Pettit, G.R., et al. Synthesis, 1996, 719-725; Pettit et al. (1996) J. Chem. Soc. Perkin Trans. 1 5:859-863; и Doronina (2003) Nat. Biotechnol. 21(7):778-784.
В частности, молекулы ауристатиновых/доластатиновых лекарственных средств формулы DF, таких как MMAF и их производные, могут быть получены методами, описанными в заявке США 2005-0238649 A1 и в публикации Doronina et al. (2006) Bioconjugate Chem. 17:114-124. Молекулы ауристатиновых/доластатиновых лекарственных средств формулы DЕ, таких как MMAE и их производные, могут быть получены методами, описанными в публикации Doronina et al. (2003) Nat. Biotech. 21:778-784. Молекулы «лекарственное средство–линкер» MC-MMAF, MC-MMAE, MC-vc-PAB-MMAF и MC-vc-PAB-MMAE могут быть соответствующии образом синтезированы рутинными методами, например, как описано в публикации Doronina et al. (2003) Nat. Biotech. 21:778-784, и в публикации патентной заявки № US 2005/0238649 A1, а затем они могут быть конъюгированы с представляющим интерес антителом.
(3) Калихеамицин
В других вариантах изобретения иммуноконъюгат содержит антитело, конъюгированное с одной или несколькими молекулами калихеамицина. Антибиотики семейства калихеамицинов способны продуцировать двухцепочечные ДНК-разрывы в субпикомолярных концентрациях. Описание получения конъюгатов семейства калихеамицинов можно найти в патентах США №№ 5712374, 5714586, 5739116, 5767285, 5770701, 5770710, 5773001, 5877296 (все патенты принадлежат компании American Cyanamid Company). Структурными аналогами калихеамицина, которые могут быть использованы в этих целях, являются, но не ограничиваются ими, γ1I, α2I, α3I, N-ацетил-γ1I, PSAG и θ1I (см. Hinman et al., Cancer Research 53:3336-3342 (1993), Lode et al., Cancer Research 58:2925-2928 (1998) и вышеупомянутые патенты США, принадлежащие компании American Cyanamid). Другим противоопухолевым лекарственным средством, с которым может быть конъюгировано антитело, является средство QFA, которое представляет собой антифолат. Калихеамицин и QFA имеют внутриклеточные активные сайты и с трудом проходят через плазматическую мембрану. Поэтому поглощение этих агентов клетками путем интернализации, опосредуемой антителом, приводит к значительному усилению их цитотоксических эффектов.
с. Другие цитотоксические средства
Другими противоопухолевыми средствами, которые могут быть конъюгированы с антителом, являются ВСNU, стрептозоцин, винкристин и 5-фторурацил, семейство агентов, известных под общим названием комплекс LL-Е33288, описанный в патентах США №№ 5053394, 5770710, а также эсперамицины (патент США № 5877296).
Ферментативно активными токсинами и их фрагментами, которые могут быть использованы в этих целях, являются А-цепь дифтерийного токсина, несвязывающиеся активные фрагменты дифтерийного токсина, А-цепь экзотоксина (от Pseudomonas aeruginosa), А-цепь рицина, А-цепь абрина, А-цепь модецина, альфа-сарцин, белки Aleurites fordii, белка диантина, белки Phytolaca americana (PAPI, PAPII и PAP-S), ингибитор Momordica charantia, курцин, кротин, ингибитор Sapaonaria officinalis, гелонин, митогеллин, рестриктоцин, феномицин, эномицин и трикотецены. См., например, заявку WO 93/21232, опубликованную 28 октября 1993 г.
В настоящем изобретении также рассматривается иммуноконъюгат, образуемый антителом и соединением, обладающим нуклеолитической активностью (например, рибонуклеазой или ДНК-эндонуклеазой, такой как дезоксирибонуклеаза; ДНКазой).
В некоторых вариантах изобретения иммуноконъюгат может содержать высокорадиоактивный атом. Для продуцирования радиоактивно конъюгированных антител могут быть использованы различные радиоактивные изотопы. Примерами таких радионуклидов являются 211At, 131I, 125I, 90Y, 186Re, 188Re, 153Sm, 212Bi, 32Р, 212Рb и радиоактивные изотопы Lu. Если указанный иммуноконъюгат используется для детекции, то он может содержать радиоактивный атом для сцинтиграфических исследований, например, 99mТс или 123I, или спин-метку для визуализации методом ядерного магнитного резонанса (ЯМР) (известной также как МР-визуализация, МРВ), такую как йод-123, йод-131, индий-111, фтор-19, углерод-13, азот-15, кислород-17, гадолиний, марганец или железо.
Радиоактивные или другие метки могут быть включены в иммуноконъюгат известными методами. Так, например, пептид может быть синтезирован биологическими методами, либо он может быть синтезирован методом химического синтеза аминокислот с использованием подходящих аминокислотных предшественников, включающих, например, фтор-19 вместо водорода. Такие метки, как 99mТс или 123I, 186Re, 188Re и 111In, могут быть присоединены посредством цистеинового остатка пептида. Иттрий-90 может быть присоединен посредством лизинового остатка. Для введения йода-123 может быть применен метод IODOGEN (Fraker et al. (1978) Biochem. Biophys. Res. Commun. 80:49-57). Другие методы подробно описаны в публикации «Monoclonal Antibodies in Immunoscintigraphy” (Chatal, CRC Press 1989).
В некоторых вариантах изобретения иммуноконъюгат может содержать антитело, конъюгированное с пролекарством-активирующим ферментом, который превращает пролекарство (например, пептидиловое химиотерапевтическое средство, см. WO 81/01145) в активное лекарственное средство, такое как противораковое лекарственное средство. Такие иммуноконъюгаты могут быть использованы в антитело-зависимой опосредуемой ферментами пролекарственной терапии (“ADEPT”). Ферментами, которые могут быть конъюгированы с антителом, являются, но не ограничиваются ими, щелочные фосфатазы, которые могут быть использованы для превращения фосфатсодержащих пролекарств в свободные лекарственные средства; арилсульфатазы, которые могут быть использованы для превращения сульфатсодержащих пролекарств в свободные лекарственные средства; цитозиндезаминаза, которая может быть использована для превращения нетоксичного 5-фторцитозина в противораковое лекарственное средство, а именно в 5-фторурацил; протеазы, такие как протеаза Serratia, термолизин, субтилизин, карбоксипептидазы и катепсины (такие как катепсины В и L), которые могут быть использованы для превращения пептидсодержащих пролекарств в свободные лекарственные средства; D-аланилкарбоксипептидазы, которые могут быть использованы для превращения пролекарств, содержащих D-аминокислотные заместители; углевод-расщепляющие ферменты, такие как β-галактозидаза и нейраминидаза, которые могут быть использованы для превращения гликозилированных пролекарств в свободные лекарственные средства; β-лактамаза, которая может быть использована для превращения лекарственных средств, дериватизированных β-лактамами, в свободные лекарственные средства; и пенициллин-амидазы, такие как пенициллин V-амидаза или пенициллин G-амидаза, которые могут быть использованы для превращения лекарственных средств, дериватизированных у атомов азота амина феноксиацетильными или фенилацетильными группами, соответственно, в свободные лекарственные средства. Ферменты могут быть ковалентно присоединены к антителам методами рекомбинантных ДНК, хорошо известными специалистам. (см., например, Neuberger et al., Nature, 312:604-608 (1984)).
d. Загрузка лекарственного средства
Загрузка лекарственного средства обозначается p, то есть средним числом молекул лекарственного средства на антитело в молекуле формулы I. Загрузка лекарственного средства может составлять от 1 до 20 молекул лекарственного средства (D) на антитело. Конъюгатами «антитело–лекарственное средство» (ADC) формулы I являются наборы антител, конъюгированных с различными молекулами лекарственного средства, от 1 дo 20. Среднее число молекул лекарственного средства на антитело в препаратах ADC, полученных в результате реакций конъюгирования, может быть охарактеризовано стандартными средствами, такими как масс-спектроскопия, ELISA-анализ и ВЭЖХ. Может быть также определено количественное распределение ADC, выраженное в «p». В некоторых случаях разделение, очистка и характеризация гомогенного ADC, где р представляет собой определенную величину, полученную для ADC с другой загрузкой лекарственного средства, могут быть осуществлены с помощью обращенно-фазовой ВЭЖХ или электрофореза. Так, например, фармацевтические композиции «антитело–лекарственное средство» формулы I могут быть гетерогенной смесью таких конъюгатов с антителами, присоединенными к 1, 2, 3, 4 или более молекулам лекарственного средства.
Для некоторых конъюгатов «антитело–лекарственное средство» p может ограничиваться числом сайтов связывания на антителе. Так, например, если присоединение происходит посредством тиола цистеина, как в репрезентативных вариантах, описанных выше, то антитело может иметь только одну или несколько тиоловых групп цистеина, либо оно может иметь только одну или несколько достаточно реакционноспособных тиоловых групп, посредством которых может присоединяться линкер. В некоторых вариантах изобретения более высокая загрузка лекарственного средства, например, p>5, может приводить к агрегации, нерастворимости, токсичности или к потере способности некоторых конъюгатов «антитело–лекарственное средство» проникать через клетки. В некоторых вариантах изобретения загрузка лекарственного средства на ADC согласно изобретению составляет в пределах от 1 и примерно до 8, примерно от 2 до 6 или примерно от 3 до 5. Действительно, было показано, что для некоторых ADC оптимальное отношение молекул лекарственного средства на антитело может составлять менее чем 8, а может составлять примерно от 2 до 5. См. заявку США 2005-0238649 A1.
В некоторых вариантах изобретения молекулы лекарственного средства в количестве меньше теоретического максимума конъюгируют с антителом в процессе реакции конъюгирования. Антитело может содержать, например, лизиновые остатки, которые не реагируют с промежуточным соединением «лекарственное средство–линкер» или с линкерным реагентом, обсуждаемыми ниже. Обычно антитела не содержат большого количества свободных и реакционноспособных тиоловых групп цистеина, которые могут быть связаны с молекулой лекарственного средства, и действительно, большинство тиоловых групп цистеиновых остатков в антителах присутствуют в виде дисульфидных мостиков. В некоторых вариантах изобретения антитело может быть восстановлено под действием восстановителя, такого как дитиотреитол (DTT) или трикарбонилэтилфосфин (TCEP), в условиях частичного или полного восстановления с образованием реакционноспособных тиоловых групп цистеина. В некоторых вариантах изобретения антитело подвергают реакции в денатурирующих условиях с образованием реакционноспособных нуклеофильных групп, таких как лизин или цистеин.
Загрузка ADC (отношение лекарственное средство/антитело) может регулироваться различными методами, например, путем (i) ограничения молярного избытка промежуточного соединения «лекарственное средство–линкер» или линкерного реагента по отношению к антителу, (ii) ограничения времени реакции или температуры реакции конъюгирования и (iii) неполного или лимитирующего восстановления для модификации тиоловых групп цистеина.
Следует отметить, что в случае, когда с промежуточным соединением «лекарственное средство–линкер» или с линкерным реагентом, а затем с реагентом, таким как молекула лекарственного средства, реагирует более чем одна нуклеофильная группа, то полученным продуктом является смесь соединений ADC с распределением одной или более молекул лекарственного средства, присоединенных к антителу. Среднее число молекул лекарственного средства на антитело может быть вычислено для смеси с помощью «сэндвич»-ELISA-анализа с использованием антител, который является специфическим для антитела и для лекарственного средства. Отдельные молекулы ADC в этой смеси могут быть идентифицированы с помощью масс-спектроскопии и разделены с помощью ВЭЖХ, например, гидрофобной хроматографии (см. например, McDonagh et al. (2006) Prot. Engr. Design & Selection 19(7):299-307; Hamblett et al. (2004) Clin. Cancer Res. 10:7063-7070; Hamblett, K.J., et al. “Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate”, Abstract No. 624, American Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004; Alley, S.C., et al. “Controlling the location of drug attachment in antibody-drug conjugates”, Abstract No. 627, American Association for Cancer Research, 2004 Annual Meeting, March 27-31, 2004, Proceedings of the AACR, Volume 45, March 2004). В некоторых вариантах изобретения гомогенный ADC с загрузкой одного лекарственного средства может быть выделен из смеси для конъюгирования с помощью электрофореза или хроматографии.
e. Некоторые способы получения иммуноконъюгатов
ADC формулы I может быть получен несколькими способами с проведением реакций органического химического синтеза в соответствующих условиях и с использованием реагентов, известных специалистам, где указанные способы включают: (1) реакцию взаимодействия нуклеофильной группы антитела с двухвалентным линкерным реагентом с образованием Ab-L посредством ковалентной связи, а затем реакцию взаимодействия с молекулой лекарственного средства D; и (2) реакцию взаимодействия нуклеофильной группы молекулы лекарственного средства с двухвалентным линкерным реагентом с образованием D-L посредством ковалентной связи, а затем реакцию взаимодействия с нуклеофильной группой антитела. Репрезентативные методы получения ADC формулы 1 с помощью последней реакции описаны в заявке US 2005-0238649 A1, которая во всей своей полноте вводится в настоящее описание посредством ссылки.
Нуклеофильными группами, присутствующими на антителах, являются, но не ограничиваются ими: (i) N-концевые аминогруппы, (ii) аминогруппы боковой цепи, например, лизина, (iii) тиоловые группы боковой цепи, например, цистеина, и (iv) гидроксильные или аминогруппы сахаров, где указанное антитело является гликозилированным. Аминогруппы, тиоловые группы и гидроксильные группы являются нуклеофильными и могут подвергаться реакции взаимодействия с образованием ковалентных связей с электрофильными группами на линкерных молекулах или линкерных реагентах, включая: (i) активные сложные эфиры, такие как NНS-эфиры, HOBt-эфиры, галогенформиаты и галогенангидриды кислот; (ii) алкил- и бензилгалогениды, такие как галогенацетамиды; (iii) альдегиды, кетоны, карбоксильные и малеимидные группы. Некоторые антитела имеют восстанавливаемые межцепочечные дисульфиды, то есть цистеиновые мостики. Для конъюгирования с линкерными реагентами антитела могут быть сделаны реакционноспособными путем их обработки восстановителем, таким как DТТ (дитиотреитол) или трикарбонилэтилфосфин (ТСЕР), в результате чего такие антитела будут полностью или частично восстановленными. Каждый цистеиновый мостик, теоретически, может образовывать два реакционноспособных тиоловых нуклеофила. В антитела могут быть введены дополнительные нуклеофильные группы посредством модификации лизиновых остатков, например, посредством реакции взаимодействия лизинов с 2-иминотиоланом (реагентом Траута), что будет приводить к превращению амина в тиол. Реакционноспособные тиоловые группы могут быть включены в антитело путем введения одного, двух, трех, четырех или более цистеиновых остатков (например, получения вариантов антител, содержащих один или несколько неприродных цистеиновых аминокислотных остатков).
Конъюгаты “антитело-лекарственное средство” согласно изобретению могут быть также получены путем реакции взаимодействия электрофильной группы антитела, такой как карбонильная группа альдегида или кетона, с нуклеофильной группой линкерного реагента или лекарственного средства. Подходящими нуклеофильными группами на линкерном реагенте являются, но не ограничиваются ими, гидразид, оксим, амино, гидразин, тиосемикарбазон, карбоксилат гидразина и арилгидразид. В одном из вариантов изобретения антитело модифицируют так, чтобы оно включало электрофильные группы, способные реагировать с нуклеофильными заместителями на линкерном реагенте или лекарственном средстве. В другом варианте изобретения сахара гликозилированных антител могут быть окислены, например, периодатными окислителями с образованием альдегидных или кетоновых групп, которые могут реагировать с аминогруппой линкерных реагентов или молекул лекарственного средства. Полученные иминовые группы Шиффова основания могут образовывать стабильную связь, либо они могут быть восстановлены, например, борогидридными реагентами с образованием стабильных аминовых связей. В одном из вариантов изобретения реакция взаимодействия углеводной части гликозилированного антитела с галактозооксидазой или с метапериодатом натрия может приводить к образованию карбонильных (альдегидных и кетоновых) групп в антителе, которые могут реагировать с соответствующими группами на лекарственном средстве (Hermanson, Bioconjugate Techniques). В другом варианте изобретения антитела, содержащие N-концевые сериновые или треониновые остатки, могут реагировать с метапериодатом натрия с образованием альдегида вместо первой аминокислоты (Geoghegan & Stroh (1992), Bioconjugate Chem. 3:138-146; патент США № 5362852). Такой альдегид может взаимодействовать с молекулой лекарственного средства или с линкерным нуклеофилом.
Нуклеофильными группами на молекуле лекарственного средства являются, но не ограничиваются ими, аминогруппы, тиольные, гидроксильные, гидразидные, оксимовые, гидразиновые, тиосемикарбазоновые, гидразинкарбоксилатные и арилгидразидные группы, способные реагировать, с образованием ковалентных связей, с электрофильными группами на линкерных молекулах и линкерных реагентах, включая: (i) активные сложные эфиры, такие как NНS-эфиры, HOBt-эфиры, галогенформиаты и галогенангидриды кислот; (ii) алкил- и бензилгалогениды, такие как галогенацетамиды; (iii) альдегиды, кетоны, карбоксильные и малеимидные группы.
Короче говоря, рассматриваемыми соединениями согласно изобретению являются, но не ограничиваются ими: ADC, полученные с использованием нижеследующих перекрестно-сшивающих реагентов, таких как BMPS, EMCS, GMBS, HBVS, LC-SMCC, MBS, MPBH, SBAP, SIA, SIAB, SMCC, SMPB, SMPH, сульфо-EMCS, сульфо-GMBS, сульфо-KMUS, сульфо-MBS, сульфо-SIAB, сульфо-SMCC и сульфо-SMPB, и SVSB (сукцинимидил-(4-винилсульфон)бензоат), которые являются коммерчески доступными (например, поставляются Pierce Biotechnology, Inc., Rockford, IL., U.S.A; см. страницы 467-498, 2003-2004 Applications Handbook and Catalog).
Иммуноконъюгаты, содержащие антитело и цитотоксическое средство, могут быть получены с использованием различных бифункциональных белок-связывающих агентов, таких как N-сукцинимидил-3-(2-пиридилдитио)пропионат (SPDP), сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат (SMCC), иминотиолан (IT), бифункциональные производные имидоэфиров (такие как диметиладипимидат-HCl), активные сложные эфиры (такие как дисукцинимидилсуберат), альдегиды (такие как глутаральдегид), бис-азидосоединения (такие как бис(п-азидобензоил)гександиамин), производные бис-диазония (такие как бис-(п-диазонийбензоил)этилендиамин), диизоцианаты (такие как толуол-2,6-диизоцианат) и бис-активные соединения фтора (такие как 1,5-дифтор-2,4-динитробензол). Так, например, иммунотоксин рицин может быть получен, как описано в публикации Vitetta et al. Science, 238:1098 (1987). 14С-меченная 1-изотиоцианатобензил-3-метилдиэтилентриаминопентауксусная кислота (МХ-DTPA) является репрезентативным хелатообразующим агентом для конъюгирования радионуклида с антителом. См. WO 94/11026.
Альтернативно гибридный белок, содержащий антитело и цитотоксическое средство, может быть получен, например, рекомбинантными методами или методом пептидного синтеза. Рекомбинантая молекула ДНК может содержать области, кодирующие антитело и цитотоксические части конъюгата, либо смежные друг с другом, либо разделенные областью, кодирующей линкерный пептид, который не оказывает негативного влияния на желаемые свойства данного конъюгата.
В еще одном варианте изобретения указанное антитело может быть конъюгировано с “рецептором” (таким как стрептавидин) для его предварительного нацеливания на опухоль, где указанный конъюгат “антитело-рецептор” вводят пациенту с последующим удалением несвязанного конъюгата из кровотока с использованием агента для клиренса, а затем вводят “лиганд” (например, авидин), конъюгированный с цитотоксическим средством (например, радионуклеотидом).
Репрезентативные иммуноконъюгаты – конъюгаты «тио-антитело–лекарственное средство»
a. Получение сконструированных на основе цистеина анти-CD79b антител
ДНК, кодирующую вариант аминокислотной последовательности сконструированных на основе цистеина анти-CD79b антител и родительских анти-CD79b антител согласно изобретению, получают различными методами, которые включают, но не ограничиваются ими, выделение из природного источника (в случае природных вариантов аминокислотных последовательностей), получение препарата с помощью сайт-направленного (или олигонуклеотид-опосредуемого) мутагенеза (Carter (1985) et al. Nucleic Acids Res. 13:4431-4443; Ho et al. (1989) Gene (Amst.) 77:51-59; Kunkel et al. (1987) Proc. Natl. Acad. Sci. USA 82:488; Liu et al. (1998) J. Biol. Chem. 273:20252-20260), ПЦР-мутагенеза (Higuchi, (1990) in PCR Protocols, pp.177-183, Academic Press; Ito et al. (1991) Gene 102:67-70; Bernhard et al. (1994) Bioconjugate Chem. 5:126-132; и Vallette et al. (1989) Nuc. Acids Res. 17:723-733), и кластерного мутагенеза (Wells et al. (1985) Gene 34:315-323) ранее полученной ДНК, кодирующей полипептид. Протоколы, наборы и реагенты для осуществления мутагенеза являются коммерчески доступными, например, такие как набор для сайт-направленного мутагенеза QuikChange® Multi Site-Direct Mutagenesis Kit (Stratagene, La Jolla, CA). Одиночные мутации также вводят с помощью олигонуклеотид-направленного мутагенеза с использованием двухцепочечной плазмидной ДНК в качестве матрицы посредством ПЦР-мутагенеза (Sambrook and Russel, (2001) Molecular Cloning: A Laboratory Manual, 3rd edition; Zoller et al. (1983) Methods Enzymol. 100:468-500; Zoller, M.J. and Smith, M. (1982) Nucl. Acids Res. 10:6487-6500). Варианты рекомбинантных антител могут быть также сконструированы путем модификации рестрикционными фрагментами или с помощью удлиняющей ПЦР с перекрыванием, проводимой с использованием синтетических олигонуклеотидов. Мутагенные праймеры кодируют замену(ы) цистеиновых кодонов. Стандартные методы мутагенеза могут быть применены для продуцирования ДНК, кодирующей такие мутантные антитела, сконструированные на основе цистеина (Sambrook et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; и Ausubel et al. Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York, N.Y., 1993).
Технология фагового дисплея (McCafferty et al., (1990) Nature 348:552-553) может быть использована для продуцирования человеческих анти-CD79b антител и фрагментов антител in vitro из наборов генов вариабельного домена иммуноглобулина (V) от неиммунизованных доноров. В соответствии с этим методом гены домена V антител клонируют с сохранением рамки считывания в мажорный или минорный ген белковой оболочки нитчатого фага, такого как M13 или fd, и представляют на поверхности фаговой частицы как функциональные фрагменты антител. Поскольку нитчатая частица содержит копию одноцепочечной ДНК генома фага, то отбор, проводимый на основе функциональных свойств антитела, также позволяет отбирать ген, кодирующий антитело, обладающее этими свойствами. Таким образом, фаг имитирует некоторые свойства В-клеток (Johnson et al. (1993) Current Opinion in Structural Biology 3:564-571; Clackson et al. (1991) Nature, 352:624-628; Marks et al. (1991) J. Mol. Biol. 222:581-597; Griffith et al. (1993) EMBO J. 12:725-734; US 5565332; US 5573905; US 5567610; US 5229275).
Анти-CD79b антитела могут быть химически синтезированы с применением известного метода олигопептидного синтеза, либо они могут быть получены и очищены рекомбинантным методом. Соответствующая аминокислотная последовательность или ее части могут быть получены методом прямого твердофазного синтеза пептидов (Stewart et al., Solid-Phase Peptide Synthesis, (1969) W.H. Freeman Co., San Francisco, CA; Merrifield, (1963) J. Am. Chem. Soc., 85:2149-2154). Синтез белка in vitro может быть осуществлен вручную или автоматизированным методом. Автоматизированный метод твердофазного синтеза может быть осуществлен, например, с использованием t-BOC- или Fmoc- защищенных аминокислот на пептидном синтезаторе Applied Biosystems (Foster City, CA) в соответствии с инструкциями производителей. Различные части анти-CD79b антитела или полипептида CD79b могут быть получены методом химического синтеза и комбинированным методом химического или ферментативного синтеза с продуцированием нужного анти-CD79b антитела или полипептида CD79b.
Для получения фрагментов антитела были разработаны различные методы. Традиционно эти фрагменты образуются в результате протеолитического расщепления интактных антител (Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992) и Brennan et al. (1985) Science, 229:81), либо они могут продуцироваться непосредственно рекомбинантными клетками-хозяевами. Fab-, Fv- и scFv-фрагменты анти-CD79b антител могут экспрессироваться в E. coli и секретироваться из E. coli, что облегчает продуцирование этих фрагментов в большом количестве. Фрагменты антител могут быть выделены из фаговых библиотек антител, обсуждаемых выше. Альтернативно Fab’-SH-фрагменты могут быть непосредственно выделены из E. coli и химически связаны с образованием F(ab’)2-фрагментов (Carter et al., Bio/Technology 10:163-167 (1992)), либо они могут быть выделены непосредственно из культуры рекомбинантных клеток-хозяев. Анти-CD79b антителом может быть одноцепочечный Fv-фрагмент (scFv) (WO 93/16185; US 5571894; US 5587458). Фрагментом анти-CD79b антитела может быть также «линейное антитело» (US 5641870). Такие фрагменты линейных антител могут быть моноспецифическими или биспецифическими.
Ниже описано, главным образом, продуцирование анти-CD79b антител путем культивирования клеток, трансформированных или трансфицированных вектором, содержащим нуклеиновую кислоту, кодирующую анти-CD79b антитело. ДНК, кодирующая анти-CD79b антитела, может быть получена из библиотеки кДНК, выделенной из ткани, которая, как очевидно, содержит мРНК анти-CD79b антитела и экспрессирует ее на детектируемом уровне. В соответствии с этим, ДНК человеческого анти-CD79b антитела или полипептида CD79b обычно может быть получена из библиотеки кДНК, выделенной из человеческой ткани. Ген, кодирующий анти-CD79b антитело, может быть также получен из геномной библиотеки или с применением известных методов синтеза (например, автоматизированного синтеза нуклеиновых кислот).
Способы конструирования, отбора и получения препаратов согласно изобретению позволяют получать сконструированные на основе цистеина анти-CD79b антитела, которые реагируют с электрофильной функциональной группой. Эти методы также позволяют получать соединения-конъюгаты антител, такие как соединения-конъюгаты «антитело–лекарственное средство» (ADC), с молекулами лекарственных средств в определенных, сконструированных селективных сайтах. Реакционноспособные цистеиновые остатки на поверхности антитела позволяют осуществлять специфическое конъюгирование молекулы лекарственного средства посредством реагирующей с тиолом группы, такой как малеимид или галогенацетил. Нуклеофильная реактивность тиоловых функциональных групп остатка Cys с малеимидной группой приблизительно в 1000 раз выше, чем реактивность любых других функциональных групп аминокислот в белке, таких как аминогруппа лизиновых остатков или N-концевая аминогруппа. Тиолоспецифическая функциональная группа в йодацетильных и малеимидных реагентах может реагировать с аминогруппами, но при более высоком рН (>9,0), и такая реакция занимает больше времени (Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London). Количество свободного тиола в белке может быть оценено с помощью стандартного анализа Эллмана. Иммуноглобулин M является примером дисульфид-связанного пентамера, а иммуноглобулин G является примером белка с внутренними дисульфидными мостиками, связанными с субъединицами. В белках, таких как указанный белок, для продуцирования реакционноспособного свободного тиола необходимо восстановление дисульфидных связей под действием реагента, такого как дитиотреитол (DTT) или селен (Singh et al. (2002) Anal. Biochem. 304:147-156). Такая процедура может приводить к потере третичной структуры антитела и специфичности связывания с антигеном.
Анализ PHESELECTOR (фаговый ELISA для отбора реакционноспособных тиолов) позволяет детектировать реакционноспособные цистеиновые группы в антителах в формате фагового ELISA, что облегчает конструирование антител на основе цистеина (Junutula, J.R. et al. (2008) J. Immunol Methods 332:41-52; WO 2006/034488; US 2007/0092940). На поверхности лунок наносят сконструированное на основе цистеина антитело, а затем инкубируют с фаговыми частицами и добавляют ПХ-меченное “второе” антитело с последующим определением оптической плотности. Мутантные белки, представленные на фаге, могут быть скринированы быстрым, надежным и высокоэффективным методом. Этим же самым методом могут быть получены библиотеки сконструированных на основе цистеина антител, которые могут быть подвергнуты селективному связыванию для идентификации включения соответствующих реактивных сайтов свободных Сys из рандомизированных фаговых библиотек белков антител или других белков. Этот метод включает проведение реакции цистеиновых мутантных белков, представленных на фаге, с аффинным реагентом или репортерной группой, которая также взаимодействует с тиолом.
Анализ PHESELECTOR позволяет осуществлять скрининг реакционноспособных тиоловых групп в антителах. В качестве примера может служит идентификация варианта А121С этим методом. Для идентификации большего числа вариантов тио-Fab с реакционноспособными тиоловыми группами может быть проведен эффективный поиск полноразмерной молекулы Fab. Для идентификации и количественной оценки доступности растворителя для аминокислотных остатков в полипептиде был использован такой параметр, как относительная доступность поверхности. Доступность поверхности может быть выражена как площадь поверхности (А2), которая может контактировать с молекулой растворителя, например, с водой. Пространство, занятое водой, выражают приблизительно как сферу радиусом 1,4 Å. В пакете кристаллографических программ ССР4, которые являются либо бесплатными, либо требуют лицензионной оплаты (Компании по разработке программы CCP4, Daresbury Laboratory, Warrington, WA44AD, United Kingdom, Fax: (+44) 1925 603825, или по интернету: www.ccp4.ac.uk/dist/html/INDEX.html), используются алгоритмы для вычисления поверхностной доступности каждой аминокислоты белка с известными рентгеноструктурными кристаллографическими координатами ("The CCP4 Suite: Programs for Protein Crystallography" (1994) Acta. Cryst. D50:760-763). Двумя репрезентативными программными модулями, с помощью которых проводят вычисления поверхностной доступности, являются программы "AREAIMOL" и "SURFACE", разработанные на основе алгоритмов B. Lee & F.M.Richards (1971) J.Mol. Biol. 55:379-400. Программа AREAIMOL позволяет определять доступность поверхности белка для растворителя, как точку центра сферы зонда (представляющего молекулу растворителя), когда эта точка «обкатывает» ван-дер-ваальсовскую поверхность белка. Программа AREAIMOL позволяет вычислять площадь поверхности, доступную для растворителя, путем генерирования точек поверхности на большой сфере вокруг каждого атома (на расстоянии от центра атома, равном сумме радиусов атома и зонда) и элиминации тех точек, которые находятся в эквивилентных сферах, ассоциированных с соседними атомами. Программа AREAIMOL позволяет определять доступную для растворителя площадь атомов в РDB-файле координат и систематизировать доступную площадь остатка, цепи и всей молекулы. Площади (или разности площадей), доступные для отдельных атомов, могут быть зарегистрированы в выходном псевдо-РDB-файле. Программа AREAIMOL использует только один радиус для каждого элемента и распознает только ограниченное число различных элементов.
Программы AREAIMOL и SURFACE позволяют достигать абсолютную доступность, то есть число ангстрем (Å) в квадрате. Относительную доступность поверхности вычисляют по сравнению с доступностью стандартного пептида с характерными аминокислотами в данном полипептиде. Стандартным пептидом является трипептид Gly-Х-Gly, где Х означает представляющую интерес аминокислоту, и данный стандартный пептид должен иметь “удлиненную” конформацию, то есть конформацию, подобную бета-цепям. Такая удлиненная конформация максимизирует доступность остатка Х. Вычисленную доступную площадь делят на доступную площадь для стандартного пептида в трипептиде Gly-Х-Gly и получают частное, которое представляет собой относительную доступность. Процент доступности представляет собой относительную доступность, умноженную на 100. Другой репрезентативный алгоритм для вычисления доступности поверхности основан на SOLV-модуле программы xsae (Broger, C, F. Hoffman-LaRoche, Basel), которая позволяет вычислять относительную доступность аминокислотного остатка для водной сферы, исходя из рентгенографических координат данного полипептида. Относительная доступность поверхности для каждой аминокислоты в антителе может быть вычислена с использованием данных о его кристаллической структуре (Eigenbrot et al. (1993) J MoI Biol. 229:969-995).
ДНК, кодирующая сконструированные на основе цистеина антитела, может быть легко выделена и секвенирована в соответствии со стандартными процедурами (например, с использованием олигонуклеотидных зондов, способных специфически связываться с генами, кодирующими тяжелые и легкие цепи мышиных антител). Гибридомные клетки служат в качестве источника такой ДНК. После выделения ДНК может быть помещена в экспрессионные векторы, которые затем трансфицируют в клетки-хозяева, такие как клетки E. coli, обезьяньи клетки СОS, клетки яичника китайского хомячка (СНО) или другие клетки-хозяева млекопитающих, такие как миеломные клетки (патент США 5807715; заявки на патент США 2005/0048572 и 2004/0229310), которые обычно не продуцируют белок антитела, в результате чего в этих рекомбинантных клетках-хозяевах синтезируются моноклональные антитела.
После конструирования и отбора сконструированные на основе цистеина антитела, например, тио-Fab, имеющие в высокой степени реакционноспособные неспаренные остатки Сys, а именно «свободные цистеиновые аминокислотные остатки», могут быть получены путем (i) экспрессии в бактериях, например, в E. coli-системе (Skerra et al. (1993) Curr. Opinion in Immunol. 5:256-262; Plückthun (1992) Immunol. Revs. 130:151-188) или в системе клеточной культуры млекопитающих (WO 01/00245), например, в клетках яичника китайского хомячка (СНО); и (ii) очистки стандартными методами очистки белка (Lowman et al. (1991) J. Biol. Chem. 266(17):10982-10988).
Тиоловые группы сконструированного Cys реагируют с электрофильными линкерными реагентами и с промежуточными соединениями «лекарственное средство–линкер» с образованием конъюгатов «сконструированное на основе цистеина антитело–лекарственное средство» и других меченых антител, сконструированных на основе цистеина. Остатки Cys, которые присутствуют в сконструированных на основе цистеина антителах и в родительских антителах, и которые спариваются и образуют межцепочечные и внутрицепочечные дисульфидные связи, не имеют каких-либо реакционноспособных тиоловых групп (если только они не обработаны восстановителем) и не реагируют с электрофильными линкерными реагентами или с промежуточными соединениями “лекарственное средство-линкер”. Только что введенный остаток Cys может оставаться неспаренным и может реагировать, то есть образовывать конъюгат с электрофильным линкерным реагентом или промежуточным соединением «лекарственное средство–линкер», таким как «лекарственное средство–малеимид». Репрезентативными промежуточными соединениями «лекарственное средство–линкер» является MC-MMAE, MC-MMAF, MC-vc-PAB-MMAE и MC-vc-PAB-MMAF. Структурные положения сконструированных остатков Сys в тяжелой и легкой цепях пронумерованы согласно системе последовательной нумерации. Такая система последовательной нумерации коррелирует с системой нумерации Кабата (Kabat et al., (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD), начиная с N-конца, по сравнению со схемой нумерации по Кабату (нижний ряд), где вставки обозначены а,b,c. С использованием системы нумерации Кабата, фактическая линейная аминокислотная последовательность может содержать меньшее или большее число аминокислот вследствие укорочения или вставки в FR или CDR вариабельного домена. Сайты сконструированных на основе цистеина вариантов тяжелой цепи идентифицируют с применением схемы последовательной нумерации и схемы нумерации Кабата.
В одном из вариантов изобретения сконструированное на основе цистеина анти-CD79b антитело получают способом, включающим:
(a) замену одного или нескольких аминокислотных остатков родительского анти-CD79b антитела цистеином; и
(b) определение реакционной способности тиоловых групп цистеина анти-CD79b антитела посредством реакции взаимодействия сконструированного на основе цистеина антитела с реагентом, реагирующим с тиолом.
Сконструированное на основе цистеина антитело может реагировать с реагентом, реагирующим с тиолом, лучше, чем родительское антитело.
Свободные цистеиновые аминокислотные остатки могут быть локализованы в тяжелых или легких цепях, или в константном или вариабельном доменах. Фрагменты антител, например Fab, могут быть также сконструированы путем замены одной или нескольких аминокислот фрагмента антитела одной или несколькими цистеиновыми аминокислотами, с образованием сконструированных на основе цистеина фрагментов антител.
В другом своем варианте настоящее изобретение относится к способу получения (создания) сконструированного на основе цистеина анти-CD79b антитела, где указанный способ включает:
(a) введение одной или нескольких цистеиновых аминокислот в родительское анти-CD79b антитело с получением сконструированного на основе цистеина анти-CD79b антитела; и
(b) определение способности тиоловой группы сконструированного на основе цистеина антитела реагировать с реагентом, реагирующим с тиолом;
где указанное сконструированное на основе цистеина антитело может реагировать с реагентом, реагирующим с тиолом, лучше, чем родительское антитело.
Стадия (a) способа получения сконструированного на основе цистеина антитела может включать:
(i) мутагенез последовательности нуклеиновой кислоты, кодирующей сконструированное на основе цистеина антитело;
(ii) экспрессию сконструированного на основе цистеина антитела; и
(iii) выделение и очистку указанного сконструированного на основе цистеина антитела.
Стадия (b) способа получения сконструированного на основе цистеина антитела может включать экспрессию сконструированного на основе цистеина антитела на вирусной частице, выбранной из фага или фагмидной частицы.
Стадия (b) способа получения сконструированного на основе цистеина антитела может также включать:
(i) реакцию взаимодействия сконструированного на основе цистеина антитела с аффинным реагентом, реагирующим с тиолом, с получением аффинно меченного сконструированного на основе цистеина антитела; и
(ii) измерение уровня связывания аффинно меченного сконструированного на основе цистеина антитела со средой для захвата.
В другом своем варианте настоящее изобретение относится к способу скрининга сконструированных на основе цистеина антител, имеющих в высокой степени реакционноспособные неспаренные цистеиновые аминокислоты, на реакционную способность их тиоловых групп, где указанный способ включает:
(a) введение одной или нескольких цистеиновых аминокислот в родительское антитело с получением сконструированного на основе цистеина антитела;
(b) реакцию взаимодействия сконструированного на основе цистеина антитела с аффинным реагентом, реагирующим с тиолом, с получением аффинно меченного сконструированного на основе цистеина антитела;
(с) измерение уровня связывания аффинно меченного сконструированного на основе цистеина антитела со средой для захвата; и
(d) определение способности тиоловой группы сконструированного на основе цистеина антитела реагировать с реагентом, реагирующим с тиолом.
Стадия (a) способа скрининга сконструированных на основе цистеина антител может включать:
(i) мутагенез последовательности нуклеиновой кислоты, кодирующей сконструированное на основе цистеина антитело;
(ii) экспрессию сконструированного на основе цистеина антитела; и
(iii) выделение и очистку указанного сконструированного на основе цистеина антитела.
Стадия (b) способа скрининга сконструированных на основе цистеина антител может включать экспрессию сконструированного на основе цистеина антител на вирусной частице, выбранной из фага или фагмидной частицы.
Стадия (b) способа скрининга сконструированного на основе цистеина антитела может также включать:
(i) реакцию взаимодействия сконструированного на основе цистеина антитела с аффинным реагентом, реагирующим с тиолом, с получением аффинно меченного сконструированного на основе цистеина антитела; и
(ii) измерение уровня связывания аффинно меченного сконструированного на основе цистеина антитела со средой для захвата.
b. Конструирование вариантов анти-CD79b IgG на основе цистеина
Цистеин был введен в положение 118 тяжелой цепи (в соответствии с Европейской системой нумерации) (эквивалентное положению 118 тяжелой цепи, последовательная нумерация) в полноразмерные химерные родительские моноклональные анти-CD79b антитела или в положение 205 легкой цепи (в соответствии с нумерацией по Кабату) (эквивалентное положению 209 легкой цепи, последовательная нумерация) в полноразмерные химерные родительские моноклональные анти-CD79b антитела методами введения цистеина, описанными в настоящей заявке.
Были получены нижеследующие сконструированные на основе цистеина антитела, содержащие цистеин в положении 118 тяжелой цепи (в соответствии с Европейской системой нумерации): (a) тио-MA79b.v17-HC(A118C) с последовательностью тяжелой цепи (SEQ ID NO: 228) и с последовательностью легкой цепи (SEQ ID NO: 229), фигура 24; (b) тио-MA79b.v18-HC(A118C) с последовательностью тяжелой цепи (SEQ ID NO: 230) и с последовательностью легкой цепи (SEQ ID NO: 231), фигура 25; (c) тио-MA79b.v28-HC(A118C) с последовательностью тяжелой цепи (SEQ ID NO: 232) и с последовательностью легкой цепи (SEQ ID NO: 233), фигура 26; (d) тио-MA79b-HC(A118C) с последовательностью тяжелой цепи (SEQ ID NO: 236) и с последовательностью легкой цепи (SEQ ID NO: 237), фигура 28; и (e) тио-анти-cynoCD79b-HC(A118C) с последовательностью тяжелой цепи (SEQ ID NO: 244) и с последовательностью легкой цепи (SEQ ID NO: 245), фигура 48.
Были получены нижеследующие сконструированные на основе цистеина антитела, содержащие цистеин в положении 205 легкой цепи (в соответствии с нумерацией по Кабату): (a) тио-MA79b-LC(V205C) с последовательностью тяжелой цепи (SEQ ID NO: 234) и с последовательностью легкой цепи (SEQ ID NO: 235), фигура 27, и (b) тио-анти-cynoCD79b(ch10D10)-LC(V205C) с последовательностью тяжелой цепи (SEQ ID NO: 299) и с последовательностью легкой цепи (SEQ ID NO: 300), фигура 49.
Эти сконструированные на основе цистеина моноклональные антитела были экспрессированы в клетках СНО (яичника китайского хомячка) путем временной ферментации в среде, содержащей 1 мМ цистеин.
В одном из вариантов изобретения гуманизированные сконструированные на основе цистеина анти-CD79b антитела MA79b содержат одну или несколько нижеследующих последовательностей тяжелой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 251-259, таблица 2).
Таблица 2 Сравнение последовательностей тяжелой цепи гуманизированных сконструированных на основе цистеина вариантов анти-CD79b антитела MA79b, пронумерованных в соответствии с последовательной системой нумерации, нумерацией по Кабату и Европейской системой нумерации |
||||
Последовательность | Последовательная нумерация | Нумерация по Кабату | Европейская система нумерации | SEQ ID NO: |
EVQLCESGGG | V5C | V5C | 251 | |
LRLSCCASGYT | A23C | A23C | 252 | |
MNSLRCEDTAV | A88C | A84C | 253 | |
TLVTVCSASTK | S116C | S112C | 254 | |
VTVSSCSTKGP | A118C | A114C | A118C | 255 |
VSSASCKGPSV | T120C | T116C | T120C | 256 |
WYVDGCEVHNA | V282C | V278C | V282C | 257 |
KGFYPCDIAVE | S375C | S371C | S375C | 258 |
PPVLDCDGSFF | S400C | S396C | S400C | 259 |
В одном из вариантов изобретения химерные сконструированные на основе цистеина анти-CD79b антитела MA79b содержат одну или несколько нижеследующих последовательностей тяжелой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 260-268, таблица 3).
Таблица 3 Сравнение последовательностей тяжелой цепи сконструированных на основе цистеина вариантов анти-CD79b антитела chMA79b, пронумерованных в соответствии с последовательной системой нумерации, нумерацией по Кабату и Европейской системой нумерации |
||||
Последовательность | Последовательная нумерация | Нумерация по Кабату | Европейская система нумерации | SEQ ID NO: |
EVQLCQSGAE | Q5C | Q5C | 260 | |
VKISCCATGYT | K23C | K23C | 261 | |
LSSLTCEDSAV | S88C | S84C | 262 | |
TSVTVCSASTK | S116C | S112C | 263 | |
VTVSSCSTKGP | A118C | A114C | A118C | 264 |
VSSASCKGPSV | T120C | T116C | T120C | 265 |
WYVDGCEVHNA | V282C | V278C | V282C | 266 |
KGFYPCDIAVE | S375C | S371C | S375C | 267 |
PPVLDCDGSFF | S400C | S396C | S400C | 268 |
В одном из вариантов изобретения химерные сконструированные на основе цистеина анти-CD79b антитела, а именно анти-cynoCD79b(ch10D10), содержат одну или несколько нижеследующих последовательностей тяжелой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 269-277, таблица 4).
Таблица 4 Сравнение последовательностей тяжелой цепи сконструированных на основе цистеина вариантов анти-CD79b антитела, анти-cynoCD79b(ch10D10), пронумерованных в соответствии с последовательной системой нумерации, нумерацией по Кабату и Европейской системой нумерации |
||||
Последовательность | Последовательная нумерация | Нумерация по Кабату | Европейская система нумерации | SEQ ID NO: |
EVQLCESGPG | Q5C | Q5C | 269 | |
LSLTCCVTGYS | T23C | T23C | 270 | |
LNSVTCEDTAT | S88C | S84C | 271 | |
TTLTVCSASTK | S111C | S112C | 272 | |
LTVSSCSTKGP | A113C | A114C | A118C | 273 |
VSSASCKGPSV | T115C | T116C | T120C | 274 |
WYVDGCEVHNA | V282C | V278C | V282C | 275 |
KGFYPCDIAVE | S370C | S371C | S375C | 276 |
PPVLDCDGSFF | S395C | S396C | S400C | 277 |
В одном из вариантов изобретения гуманизированные сконструированные на основе цистеина анти-CD79b антитела MA79b содержат одну или несколько нижеследующих последовательностей легкой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 278-284, таблица 5).
Таблица 5 Сравнение последовательностей легкой цепи гуманизированных сконструированных на основе цистеина вариантов анти-CD79b антитела MA79b, пронумерованных в соответствии с последовательной системой нумерации и нумерацией по Кабату |
|||
Последовательность | Последовательная нумерация | Нумерация по Кабату | SEQ ID NO: |
SLSASCGDRVT | V15C | V15C | 278 |
EIKRTCAAPSV | V114C | V110C | 279 |
TVAAPCVFIFP | S118C | S114C | 280 |
FIFPPCDEQLK | S125C | S121C | 281 |
DEQLKCGTASV | S131C | S127C | 282 |
VTEQDCKDSTY | S172C | S168C | 283 |
GLSSPCTKSFN | V209C | V205C | 284 |
В одном из вариантов изобретения химерные сконструированные на основе цистеина анти-CD79b антитела MA79b содержат одну или несколько нижеследующих последовательностей легкой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 285-291, таблица 6).
Таблица 6 Сравнение последовательностей легкой цепи химерных сконструированных на основе цистеина вариантов анти-CD79b антитела MA79b, пронумерованных в соответствии с последовательной системой нумерации и нумерацией по Кабату |
|||
Последовательность | Последовательная нумерация | Нумерация по Кабату | SEQ ID NO: |
SLAVSCGQRAT | L15C | L15C | 285 |
ELKRTCAAPSV | V114C | V110C | 286 |
TVAAPCVFIFP | S118C | S114C | 287 |
FIFPPCDEQLK | S125C | S121C | 288 |
DEQLKCGTASV | S131C | S127C | 289 |
VTEQDCKDSTY | S172C | S168C | 290 |
GLSSPCTKSFN | V209C | V205C | 291 |
В одном из вариантов изобретения сконструированные на основе цистеина анти-CD79b антитела, а именно анти-cynoCD79b(ch10D10), содержат одну или несколько нижеследующих последовательностей легкой цепи со свободной цистеиновой аминокислотой (SEQ ID NO: 292-298, таблица 7).
Таблица 7 Сравнение последовательностей легкой цепи сконструированных на основе цистеина вариантов анти-CD79b антитела, анти-cynoCD79b(ch10D10), пронумерованных в соответствии с последовательной системой нумерации и нумерацией по Кабату |
|||
Последовательность | Последовательная нумерация | Нумерация по Кабату | SEQ ID NO: |
SLAVSCGQRAT | L15C | L15C | 292 |
EIKRTCAAPSV | V114C | V110C | 293 |
TVAAPCVFIFP | S118C | S114C | 294 |
FIFPPCDEQLK | S125C | S121C | 295 |
DEQLKCGTASV | S131C | S127C | 296 |
VTEQDCKDSTY | S172C | S168C | 297 |
GLSSPCTKSFN | V209C | V205C | 298 |
c. Меченые и сконструированные на основе цистеина анти-CD79b антитела
Сконструированные на основе цистеина анти-CD79b антитела могут быть сайт-специфически и эффективно присоединены к реагенту, реагирующему с тиолом. Реагентом, реагирующим с тиолом, может быть многофункциональный линкерный реагент для захвата, то есть реагент, используемый в качестве аффинной метки (например, реагент «биотин-линкер»), детектируемая метка (например, реагент флуорофор), реагент для иммобилизации на твердой фазе (например, SEPHAROSE™, полистирол или стекло) или промежуточное соединение «лекарственное средство–линкер». Одним из примеров реагента, реагирующего с тиолом, является N-этилмалеимид (NEM). В репрезентативном варианте изобретения, в результате реакции взаимодействия тио-Fab с реагентом «биотин-линкер» образуется биотинилированный тио-Fab, посредством которого могут быть детектированы и определены присутствие и реакционная способность введенного цистеинового остатка. В результате реакции взаимодействия тио-Fab с многофункциональным линкерным реагентом образуется тио-Fab с функциональным линкером, который может также реагировать с молекулой лекарственного средства или другой меткой. В результате реакции взаимодействия тио-Fab с промежуточным соединением «лекарственное средство–линкер» образуется конъюгат «тио-Fab–лекарственное средство».
Описанные здесь репрезентативные способы могут быть применены в основном для идентификации и продуцирования антител, а в основном других белков, путем проведения описанных здесь стадий конструирования и скрининга.
Такой способ может быть применен для конъюгирования других реагирующих с тиолом реагентов, в которых реакционноспособной группой является, например, малеимид, йодацетамид, пиридилдисульфид или другой реагирующий с тиолом партнер по конъюгированию (Haugland, 2003, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc.; Brinkley, 1992, Bioconjugate Chem. 3:2; Garman, 1997, Non-Radioactive Labelling: A Practical Approach, Academic Press, London; Means (1990) Bioconjugate Chem. 1:2; Hermanson, G. in Bioconjugate Techniques (1996) Academic Press, San Diego, pp. 40-55, 643-671). Реагентом, реагирующим с тиолом, может быть молекула лекарственного средства, флуорофор, такой как флуоресцентный краситель, подобный флуоресцеину или родамину, хелатообразующий агент для визуализации или радиоактивный металл, применяемый в терапии, пептидильная или непептидильная метка, или детектируемая метка, либо агент, модифицирующий клиренс, такой как различные изомеры полиэтиленгликоля, пептид, связывающийся с третьим компонентом, или другой углевод или липофильный агент.
d. Применение сконструированных на основе цистеина анти-CD79b антител
Сконструированные на основе цистеина анти-CD79b антитела и их конъюгаты могут быть использованы в качестве терапевтических и/или диагностических средств. Настоящее изобретение также относится к способам предупреждения, лечения, терапии или ослабления одного или нескольких симптомов, ассоциированных с В-клеточно-опосредуемым расстройством. В частности, настоящее изобретение также относится к способам предупреждения, лечения, терапии или ослабления одного или нескольких симптомов, ассоциированных с клеточно-пролиферативным расстройством, таким как рак, например, лимфома, неходжкинская лимфома (НХЛ), агрессивная НХЛ, рецидивирующая агрессивная НХЛ, рецидивирующая бессимптомная НХЛ, не поддающаяся лечению НХЛ, не поддающаяся лечению бессимптомная НХЛ, хронический лимфоцитарный лейкоз (ХЛЛ), мелкоклеточная лимфоцитарная лимфома, лейкоз, ретикулоэндотелиоз (РЭ), острый лимфоцитарный лейкоз (ОЛЛ) и лимфома клеток коры головного мозга. Настоящее изобретение также относится к способам диагностики CD79b-опосредуемого расстройства или предрасположенности к развитию такого расстройства, а также к способам идентификации антител и антигенсвязывающих фрагментов антител, которые преимущественно связываются с В-клеточно-ассоциированными полипептидами CD79b.
В другом своем варианте настоящее изобретение относится к применению сконструированного на основе цистеина анти-CD79b антитела в целях приготовления лекарственного препарата для лечения состояния, которое является восприимчивым к В-клеточно-опосредуемому расстройству.
e. Конъюгаты «сконструированное на основе цистеина антитело–лекарственное средство» (конъюгаты «тио-антитело–лекарственное средство» (TDC))
В другом своем аспекте настоящее изобретение относится к соединению-конъюгату «антитело–лекарственное средство», содержащему сконструированное на основе цистеина анти-CD79b антитело (Ab) и молекулу ауристатинового лекарственного средства (D), где указанное сконструированное на основе цистеина антитело связано с D линкерной молекулой (L) посредством одной или нескольких свободных цистеиновых аминокислот, где указанное соединение имеет формулу I:
где p равно 1, 2, 3 или 4; и где сконструированное на основе цистеина антитело получают способом, включающим замену одного или нескольких аминокислотных остатков родительского анти-CD79b антитела одной или несколькими свободными цистеиновыми аминокислотами.
В другом своем аспекте настоящее изобретение относится к композиции, содержащей смесь соединений «антитело–лекарственное средство» формулы I, где средняя загрузка лекарственного средства на антитело составляет примерно от 2 до 5 или примерно от 3 до 4.
На фигурах 24-28 и 48-49 представлены варианты конъюгатов «сконструированное на основе цистеина анти-CD79b антитело–лекарственное средство» (ADC), где молекула ауристатинового лекарственного средства присоединена к введенной цистеиновой группе в легкой цепи (LC-ADC) или в тяжелой цепи (HC-ADC).
Возможными преимуществами конъюгатов «сконструированное на основе цистеина анти-CD79b антитело–лекарственное средство» являются повышенная безопасность (более высокий терапевтический индекс); улучшенные фармакокинетические параметры; сохранение межцепочечных дисульфидных связей антитела, которые могут стабилизировать конъюгат и поддерживать его конформацию, способствующую активному связыванию; возможность идентификации сайтов конъюгирования лекарственного средства; и возможность получения конъюгатов «сконструированное на основе цистеина антитело–лекарственное средство» в результате реакции конъюгирования сконструированных на основе цистеина антител с реагентами «лекарственное средство–линкер», которая приводит к образованию более гомогенного продукта.
Линкеры
«Линкер», «линкерный компонент» или «связь» означает химическую группу, содержащую ковалентную связь или цепь атомов, которые ковалентно связывают антитело с молекулой лекарственного средства. В различных вариантах изобретения линкер обозначен L. “Линкер” (L) представляет собой бифункциональную или мультифункциональную молекулу, которая может быть использована для связывания одной или нескольких молекул лекарственного средства (D) и молекулы антитела (Ab) с образованием конъюгатов “антитело-лекарственное средство” (ADC) формулы I. Конъюгаты “антитело-лекарственное средство” (ADC) обычно получают с использованием линкера, имеющего реакционноспособную функциональную группу для связывания с лекарственным средством и с антителом. Тиол цистеина, введенного в антитело (Ab), может образовывать связь с электрофильной функциональной группой линкерного реагента, молекулы лекарственного средства или промежуточного соединения «лекарственное средство–линкер».
В одном из аспектов изобретения линкер имеет реакционноспособный сайт, содержащий электрофильную группу, реагирующую с нуклеофильным цистеином, присутствующим на антителе. Тиол цистеина указанного антитела реагирует с электрофильной группой на линкере и образует ковалентную связь с этим линкером. Подходящими электрофильными группами являются, но не ограничиваются ими, малеимидные и галогенацетамидные группы.
Линкерами являются двухвалентный радикал, такой как алкилдиил, арилен, гетероарилен, молекулы, такие как: -(CR2)nO(CR2)n-, повторяющиеся звенья арилокси (например, полиэтиленокси, ПЭГ, полиметиленокси) и алкиламино (например, полиэтиленамино, Jeffamine™); и сложный эфир двухосновной кислоты, а также амиды, включая сукцинат, сукцинамид, дигликолят, малонат и капроамид.
Сконструированные на основе цистеина антитела подвергают реакции взаимодействия с линкерными реагентами или с промежуточными соединениями «лекарственное средство–линкер», электрофильными функциональными группами, такими как малеимид или α-галогенкарбонил, в соответствии с методами конъюгирования, описанными на странице 766 публикации Klussman, et al. (2004), Bioconjugate Chemistry 15(4):765-773, и в соответствии с протоколом, описанным в примере 6.
Линкер может состоять из одного или более линкерных компонентов. Репрезентативными линкерными компонентами являются 6-малеимидокапроил («MC»), малеимидопропаноил («MP»), валин-цитруллин («val-cit» или «vc»), аланин-фенилаланин («ala-phe» или «аf»), п-аминобензилоксикарбонил («PAB»), N-сукцинимидил-4-(2-пиридилтио)пентаноат («SPP»), N-сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат («SMCC»), N-сукцинимидил-(4-йодацетил)аминобензоат («SIAB»), этиленокси-CH2CH2O- в качестве одного или нескольких повторяющихся элементов («ЕО» или «PEO»). Специалистам известны и другие линкерные компоненты, некоторые из которых описаны в настоящей заявке.
В одном из вариантов изобретения линкер L в ADC имеет формулу:
-Aа-Ww-Yy-,
где: А представляет собой удлиняющий компонент, ковалентно связанный с тиолом цистеина антитела (Ab);
а равно 0 или 1;
каждый -W- независимо представляет собой аминокислоту,
w независимо представляет собой целое число от 0 до 12,
Y означает спейсерный компонент, ковалентно связанный с молекулой лекарственного средства; и
у равно 0, 1 или 2.
Удлиняющий компонент
Удлиняющий компонент (-А-), если он присутствует, способен связывать антитело с аминокислотой (-W-). В этом случае антитело (Ab) имеет функциональую группу, которая может образовывать связь с функциональной группой удлиняющего компонента. Подходящими функциональными группами, которые могут присутствовать на антителе и которые могут быть либо природными, либо химически синтезированными, являются, но не ограничиваются ими, сульфгидрил (-SН), амино, гидроксил, карбокси, аномерная гидроксильная группа углевода и карбоксил. В одном аспекте изобретения функциональными группами антитела являются сульфгидрил или амино. Сульфгидрильные группы могут образовываться путем восстановления внутримолекулярной дисульфидной связи антитела. Альтернативно сульфгидрильные группы могут образовываться посредством взаимодействия аминогруппы лизиновой молекулы антитела в присутствии 2-иминотиолана (реагента Траута) или другого сульфгидрил-образующего реагента. В одном из вариантов изобретения антитело (Аb) имеет свободную тиоловую группу цистеина, которая может образовывать связь с электрофильной функциональной группой удлиняющего компонента. Репрезентативные удлиняющие компоненты в конъюгатах формулы I представлены формулами II и III, где Ab-, -W-, -Y-, -D, w и y определены выше, а R17 представляет собой двухвалентный радикал, выбранный из -(СН2)r, С3-С8карбоциклила, -О-(СН2)r, арилена, (СН2)r-арилена, арилен-(СН2)r, (СН2)r-(С3-С8-карбоциклила), -(С3-С8-карбоциклил)-(СН2)r-, С3-С8-гетероциклила, (СН2)r-(С3-С8-гетероциклила), (С3-С8-гетероциклил)-(СН2)r-, -(СН2)rС(О)NRb(СН2)r, -(СН2СН2О)r-, -(СН2СН2О)r-СН2-, -(СН2)rС(О)NRb(СН2СН2О)r, -(СН2)rС(О)NRb(СН2СН2О)r-СН2, -(СН2СН2О)rС(О)NRb(СН2СН2О)r-, -(СН2СН2О)rС(О)NRb(СН2СН2О)r-СН2- и -(СН2СН2О)rС(О)NRb(СН2)r, где Rb представляет собой H, С1-С6алкил, фенил или бензил, а r независимо представляет собой целое число 1-10.
Ариленами являются двухвалентные ароматические углеводородные радикалы с 6-20 атомами углерода, полученные путем удаления двух атомов водорода из исходной ароматической циклической системы. Типичными ариленовыми группами являются, но не ограничиваются ими, радикалы, происходящие от бензола, замещенного бензола, нафталина, антрацена, бифенила и т.п.
Гетероциклические группы включают кольцевую систему, в которой один или несколько атомов на кольце представляют собой гетероатом, например, атом азота, кислорода и серы. Гетероциклический радикал включает 1-20 атомов углерода и 1-3 гетероатомов, выбранных из N, O, P и S. Гиетероцикл может представлять собой моноцикл, имеющий 3-7 атомов на кольце (2-6 атомов углерода и 1-3 гетероатомов, выбранных из N, O, P и S), или бицикл, имеющий 7-10 атомов на кольце (4-9 атомов углерода и 1-3 гетероатомов, выбранных из N, О, Р и S), например, бицикло [4,5]-, [5,5]-, [5,6]- или [6,6]-систему. Гетероциклы описаны в публикациях Paquette, Leo A.; "Principles of Modern Heterocyclic Chemistry" (W.A. Benjamin, New York, 1968), в частности, в главах 1, 3, 4, 6, 7 и 9; в публикации "The Chemistry of Heterocyclic Compounds, A series of Monographs" (John Wiley & Sons, New York, 1950, с исправлениями), в частности, в томах 13, 14, 16, 19 и 28; и в публикации J. Am. Chem. Soc. (1960) 82:5566.
Примерами гетероциклов являются, например, но не ограничиваются ими, пиридил, дигидропиридил, тетрагидропиридил (пиперидил), тиазолил, тетрагидротиофенил, окисленный серой тетрагидротиофенил, пиримидинил, фуранил, тиенил, пирролил, пиразолил, имидазолил, тетразолил, бензофуранил, тианафталенил, индолил, индоленил, хинолинил, изохинолинил, бензимидазолил, пиперидинил, 4-пиперидонил, пирролидинил, 2-пирролидонил, пирролинил, тетрагидрофуранил, бис-тетрагидрофуранил, тетрагидропиранил, бис-тетрагидропиранил, тетрагидрохинолинил, тетрагидроизохинолинил, декагидрохинолинил, октагидроизохинолинил, азоцинил, триазинил, 6H-l,2,5-тиадиазинил, 2H,6H-l,5,2-дитиазинил, тиенил, тиантренил, пиранил, изобензофуранил, хроменил, ксантенил, феноксантинил, 2Н-пирролил, изотиазолил, изоксазолил, пиразинил, пиридазинил, индолизинил, изоиндолил, 3Н-индолил, 1Н-индазолил, пуринил, 4Н-хинолизинил, фталазинил, нафтиридинил, хиноксалинил, хиназолинил, циннолинил, птеридинил, 4Ah-карбазолил, карбазолил, β-карболинил, фенантридинил, акридинил, пиримидинил, фенантролинил, феназинил, фенотиазинил, фуразанил, феноксазинил, изохроманил, хроманил, имидазолидинил, имидазолинил, пиразолидинил, пиразолинил, пиперазинил, индолинил, изоиндолинил, хинуклидинил, морфолинил, оксазолидинил, бензотриазолил, бензизоксазолил, оксиндолил, бензоксазолинил и изатиноил.
Карбоциклические группы включают насыщенное или ненасыщенное кольцо, имеющее от 3 до 7 атомов углерода в качестве моноцикла, или от 7 до 12 атомов углерода в качестве бицикла. Моноциклические карбоциклы имеют от 3 до 6 атомов на кольце, а обычно 5 или 6 атомов на кольце. Бициклические карбоциклы имеют от 7 до 12 атомов на кольце, например, расположенных в виде бицикло-[4,5]-, [5,5]-, [5,6]- или [6,6]-системы, или 9 или 10 атомов на кольце, расположенных в виде бицикло-[5,6]- или [6,6]- системы. Примерами моноциклических карбоциклов являются циклопропил, циклобутил, циклопентил, 1-циклопент-l-енил, l-циклопент-2-енил, l-циклопент-3-енил, циклогексил, 1-циклогекс-l-енил, l-циклогекс-2-енил, l-циклогекс-3-енил, циклогептил и циклоoктил.
Следует отметить, что во всех репрезентативных вариантах ADC формулы I, таких как соединения II-VI, даже если они не указаны конкретно, от 1 до 4 молекул лекарственного средства связаны с антителом (р=1-4), в зависимости от числа введенных цистеиновых остатков.
Репрезентативным удлиняющим компонентом является компонент формулы II, происходящий от малеимидо-капроила (МС), где R17 представляет собой (СН2)5-:
Репрезентативным удлиняющим компонентом является компонент формулы II, происходящий от малеимидо-пропаноила (МР), где R17 представляет собой (СН2)2-:
Другим репрезентативным удлиняющим компонентом является компонент формулы II, где R17 представляет собой -(СН2СН2О)r-СН2-, а r равно 2:
Другим репрезентативным удлиняющим компонентом является компонент формулы II, где R17 представляет собой -(СН2)rС(О)NRb(СН2СН2О)r-СН2-, где Rb представляет собой Н, а каждый из r равен 2:
Другим репрезентативным удлиняющим компонентом является компонент формулы III, где R17 представляет собой -(СН2)5-:
В другом варианте изобретения указанный удлиняющий компонент связан со сконструированным на основе цистеина анти-CD79b антителом посредством дисульфидной связи, находящейся между атомом серы цистеина антитела и атомом серы удлиняющего компонента. Репрезентативный удлиняющий компонент данного варианта изобретения показан в формуле IV, где R17, Ab-, -W-, -Y-, -D, w и y определены выше.
В еще одном варианте изобретения реакционноспособная группа удлиняющего компонента содержит реагирующую с тиолом функциональную группу, которая может образовывать связь со свободным тиолом цистеина антитела. Примерами реагирующих с тиолом функциональных групп являются, но не ограничиваются ими, малеимид, α-галогенацетил, активированные сложные эфиры, такие как сукцинимидоэфиры, 4-нитрофениловые эфиры, пентафторфениловые эфиры, тетрафторфениловые эфиры, ангидриды, хлорангидриды, сульфонилхлориды, изоцианаты и изотиоцианаты. Репрезентативные удлиняющие компоненты данного варианта изобретения показаны в формулах Va и Vb, где R17, Ab-, -W-, -Y-, -D, w и y определены выше.
В другом варианте изобретения указанным линкером может быть линкер дендритного типа для ковалентного связывания более чем одной молекулы лекарственного средства с антителом посредством ветвящейся многофункциональной линкерной молекулы (Sun et al. (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al. (2003) Bioorganic & Medicinal Chemistry 11:1761-1768; King (2002) Tetrahedron Letters 43:1987-1990). Дендритные линкеры могут повышать молярное отношение лекарственного средства к антителу, т.е. при загрузке, которая соответствует эффективности ADC. Таким образом, если сконструированное на основе цистеина антитело имеет только одну реакционноспособную тиоловую группу цистеина, то множество молекул лекарственного средства могут быть ковалентно связаны посредством дендритного линкера.
Аминокислотный компонент
Линкер может содержать аминокислотные остатки. Аминокислотный компонент (-Ww-), если он присутствует, связывает антитело (Ab) с молекулой лекарственного средства (D) сконструированного на основе цистеина конъюгата «антитело-лекарственное средство» (ADC) согласно изобретению.
-Ww- представляет собой дипептидный, трипептидный, тетрапептидный, пентапептидный, гексапептидный, гептапептидный, октапептидный, нонапептидный, декапептидный, ундекапептидный или додекапептидный компонент. Аминокислотными остатками, составляющими указанный аминокислотный компонент, являются природные остатки, а также небольшие аминокислоты, и неприродные аминокислотные аналоги, такие как цитруллин. Каждый из компонентов -W- независимо имеет формулу, представленную ниже в квадратных скобках, а w означает целое число от 0 до 12:
,
где R19 представляет собой водород, метил, изопропил, изобутил, втор-бутил, бензил, п-гидроксибензил, -СН2ОН, -СН(ОН)СН3, -СН2СН2SСН3, -СН2СОNH2, -СН2СООН, -СН2СН2СОNH2, -СН2СН2СООН, -(СН2)3NНС(=NН)NH2, -(СН2)3NH2, -(СН2)3NНСОСН3, -(СН2)3NНСНО, -(СН2)4NНС(=NН)NH2, -(СН2)4NH2, -(СН2)4NНСОСН3, -(СН2)4NНСНО, -(СН2)3NНСОNН2, -(СН2)4NНСОNН2, -СН2СН2СН(ОН)СН2NH2, 2-пиридилметил, 3-пиридилметил, 4-пиридилметил, фенил, циклогексил,
Если R19 не является водородом, то атом углерода, к которому присоединен R19, является хиральным. Каждый атом углерода, к которому присоединен R19, независимо присутствует в (S)- или (R)-конфигурации, или в виде рацемической смеси. Таким образом, аминокислотные компоненты могут быть энантиомерно чистыми, рацемическими или диастереомерными.
Примерами аминокислотных компонентов -Ww- являются дипептид, трипептид, тетрапептид или пентапептид. Примерами дипептидов являются валин-цитруллин (vc или val-cit), аланин-фенилаланин (af или ala-phe). Примерами трипептидов являются глицин-валин-цитруллин (gly-val-cit) и глицин-глицин-глицин (gly-gly-gly). Аминокислотными остатками, составляющими линкерный компонент, являются природные аминокислотные остатки, а также небольшие аминокислоты и неприродные аминокислотные аналоги, такие как цитруллин.
Аминокислотный компонент может быть ферментативно расщеплен одним или несколькими ферментами, включая опухолеассоциированную протеазу, с высвобождением молекулы лекарственного средства (D), которая, в одном из вариантов изобретения, после высвобождения подвергается протонированию in vivo с образованием лекарственного средства (D). Аминокислотные линкерные компоненты могут быть сконструированы и оптимизированы по их селективности к ферментативному расщеплению конкретными ферментами, такими как, например, опухолеассоциированная протеаза, катепсин В, С и D, или плазминовая протеаза.
Спейсерный компонент
Спейсерный компонент (-Y-), если он присутствует (y=1 или 2), связывает аминокислотный компонент (-Ww-) c молекулой лекарственного средства (D), если такой аминокислотный компонент присутствует (w=1-12). Альтернативно, если такой аминокислотный компонент отсутствует, то указанный спейсерный компонент связывает удлиняющий компонент с молекулой лекарственного средства. Если отсутствуют аминокислотный компонент и удлиняющий компонент (w, y=0), то указанный спейсерный компонент также связывает молекулу лекарственного средства с молекулой антитела. Спейсерными компонентами являются компоненты двух общих типов: самоэлиминирующиеся и несамоэлиминирующиеся. Несамоэлиминирующийся спейсерный компонент представляет собой компонент, где часть спейсерного компонента или весь этот компонент остаются связанными с молекулой лекарственного средства после отщепления, а в частности, ферментативного отщепления аминокислотного компонента от конъюгата “антитело-лекарственное средство” или от конъюгата “лекарственное средство-линкер”. Если ADC, содержащий глицин-глициновый спейсерный компонент или глициновый спейсерный компонент, подвергаются ферментативному расщеплению протеазой, ассоциированной с опухолевыми клетками, протеазой, ассоциированной с раковыми клетками, или протеазой, ассоциированной с лимфоцитами, то молекула «глицин-глицин-лекарственное средство» или молекула «глицин-лекарственное средство» отщепляется от Ab-Aа-Ww. В одном из вариантов изобретения независимая реакция гидролиза происходит в клетках-мишенях и приводит к расщеплению связи в молекуле глицин-лекарственное средство с высвобождением лекарственного средства.
В другом варианте изобретения -Yу- представляет собой п-аминобензилкарбамоиловый компонент (РАВ), фениленовая часть которого замещена Qm, где Q представляет собой -С1-С8алкил, -О-(С1-С8алкил), галоген, нитро или циано, а m равно целому числу от 0 от 4.
Репрезентативными вариантами несамоэлиминирующихся спейсерных компонентов (-Y-) являются -Gly-Gly-; -GIy-; -AIa- Phe-; -Val-Cit-.
В одном из своих вариантов настоящее изобретение относится к конъюгату “лекарственное средство-линкер” или ADC, в которых отсутствует спейсерный компонент (y=0), или к их фармацевтически приемлемой соли или сольвату.
Альтернативно ADC, содержащий самоэлиминирующийся спейсерный компонент, может высвобождать молекулу D. В одном из вариантов изобретения -Y- представляет собой группу PAB, которая связана с -Ww- посредством атома азота аминогруппы PAB, и непосредственно связана с молекулой -D через карбонатную, карбаматную или эфирную группу, где ADC имеет нижеследующую репрезентативную структуру:
,
где Q представляет собой С1-С8алкил, О-(С1-С8алкил), галоген, нитро или циано; m равно целому числу от 0 до 4; а p равно 1-4.
Другими примерами самоэлиминирующихся спейсеров являются, но не ограничиваются ими, ароматические соединения, которые по своим электронным свойствам, аналогичны группе РАВ, такие как производные 2-аминоимидазол-5-метанола (Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237), гетероциклические аналоги РАВ (US 2005/0256030), бета-глюкуронид (WO 2007/011968) и орто- или пара-аминобензилацетали. Могут быть использованы спейсеры, которые подвергаются циклизации после гидролиза амидной связи, такие как замещенные и незамещенные амиды 4-аминомасляной кислоты (Rodrigues et al. (1995) Chemistry Biology 2:223), соответствующим образом замещенные кольцевые бицикло[2.2.1]- и бицикло[2.2.2]-системы (Storm et al. (1972) J. Amer. Chem. Soc. 94:5815) и амиды 2-аминофенилпропионовой кислоты (Amsberry, et al. (1990) J. Org. Chem. 55:5867). Примерами самоэлиминирующихся спейсеров, используемых в ADC, являются аминосодержащие лекарственные средства, замещенные в положении глицина (Kingsbury et al. (1984) J. Med. Chem. 27:1447).
Репрезентативные спейсерные компоненты (-Yу-) представлены формулами Х-ХII:
Дендритные линкеры
В другом варианте изобретения линкером L может быть линкер дендритного типа, используемый для ковалентного связывания более чем одной молекулы лекарственного средства с антителом посредством ветвящейся многофункциональной линкерной молекулы (Sun et al. (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215; Sun et al. (2003) Bioorganic & Medicinal Chemistry 11:1761-1768). Дендритные линкеры могут повышать молярное отношение лекарственного средства к антителу, то есть нагрузку, которая соответствует эффективности ADC. Таким образом, если сконструированное на основе цистеина антитело содержит только одну реакционноспособную тиоловую группу цистеина, то посредством дендритного линкера может быть присоединено большое количество молекул лекарственного средства. Репрезентативными вариантами разветвленных дендритных линкеров являются дендримерные компоненты, такие как 2,6-бис(гидроксиметил)-п-крезол и 2,4,6-трис(гидроксиметил)-фенол (WO 2004/01993; Szalai et al. (2003) J. Amer. Chem. Soc. 125:15688-15689; Shamis et al. (2004) J. Amer. Chem. Soc. 126:1726-1731; Amir et al. (2003) Angew. Chem. Int. Ed. 42:4494-4499).
В одном из вариантов изобретения спейсерным компонентом является разветвленный бис(гидроксиметил)стирол (BHMS), который может быть использован для введения и высвобождения множества лекарственных средств, и имеет структуру:
,
содержащую 2-(4-аминобензилиден)пропан-1,3-диоловый дендримерный компонент (WO 2004/043493; de Groot et al. (2003) Angew. Chem. Int. Ed. 42:4490-4494), где Q представляет собой -С1-С8алкил, -О-(С1-С8алкил), галоген, нитро или циано; m равно целому числу от 0 до 4, n равно 0 или 1; а р равно 1-4.
Репрезентативными вариантами соединений-конъюгатов “антитело-лекарственное средство” формулы I являются соединения XIIIa (МС), XIIIb (val-cit), XIIIc (MC-val-cit) и XIIId (MC-val-cit-PAB):
<