Способ слежения за движущимися объектами радиостанцией с радиометром

Изобретение относится к системам слежения за движущимися воздушными объектами с помощью приемопередающей радиостанции, обрабатывающей сигналы отражения от объектов. Технический результат изобретения заключается в обеспечении устранения ошибок классификации объектов за счёт совместного использования с радиостанцией сканирующего радиометра. В отличие от прототипа, в котором по результатам обнаружения нескольких объектов осуществляется слежение за объектами - их траекторное сопровождение без учета энергетических характеристик объектов, в предлагаемом способе при траекторном сопровождении объектов измеряется их радиояркостная температура с помощью совмещенного с радиостанцией радиометра, что позволяет классифицировать объекты по их энергетическим характеристикам.

 

Изобретение относится к системам слежения за движущимися воздушными объектами с помощью приемопередающей радиостанции, обрабатывающей сигналы отражения от объектов.

При слежении за движущимися объектами с помощью радиостанции находят оценки угловых координат источников сигналов амплитудным, моноимпульсным или фазовым методами [1], а также определяют радиальные дальности до объектов и осуществляют слежение за ними (сопровождение) во времени путем построения траекторий их движения. При этом дополнительную информацию об объектах извлекают из характеристик принимаемых сигналов, например, амплитуд.

Вместе с тем для повышения вероятности обнаружения объектов, а также для распознавания типов объектов по их энергетическим характеристикам сигнальной информации недостаточно. Энергетическую характеристику в виде температуры могут давать тепловизоры, работающие в оптическом диапазоне длин волн. Однако их работа ограничена условиями наблюдения. Радиометры измеряют радиояркостную температуру объектов в радиодиапазоне длин волн и позволяют проводить измерения в любых условиях [2, 3]. Однако они обладают большим временем накопления сигнала (от 0,1 до 1 с), что не позволяет применять их для слежения за движущимися объектами.

Возникает задача использования радиометров в составе радиостанции для слежения за объектами. Известны способы сопровождения объектов с помощью построения траекторий их движения в последовательности периодов радиолокационного обзора [1, 4, 5].

Рассмотрим в качестве прототипа способ обнаружения и траекторного сопровождения объектов [4, с. 108] в последовательности периодов обзора, который алгоритмически может быть реализован следующим образом.

1. В первых двух периодах обзора принимаемые сигналы подвергают первичной обработке, по результатам которой определяют векторы оценок пространственных координат источников отраженных сигналов и амплитуды сигналов. Векторы оценок, найденные в соседних периодах обзора, соединяют в пары векторов, дающих начальную линейную модель траектории.

2. В третьем и последующих периодах обзора каждой полученной в предыдущем периоде траектории ставят в соответствие вновь определенные векторы, попавшие в доверительную область, построенную относительно экстраполированных координат траектории. Экстраполяцию осуществляют с учетом модели траектории и длительности периода обзора.

3. Все векторы, попавшие в доверительную область ранее полученной траектории, дают продолжения траектории путем их присоединения к траектории и уточнения оценок параметров ее принятой модели (линейной или более высокого порядка). Вычисляют показатель правдоподобия каждой траектории в виде суммы квадратов невязок - отклонений всех присоединенных векторов относительно модели траектории. Дополнительно в составе показателя могут включают квадраты невязок амплитуд сигналов.

4. Если в доверительной области не оказывается ни одного вектора, то для ранее полученной траектории фиксируют пропуск. Для такой траектории строят доверительную область на следующий период обзора с учетом ошибки экстраполяции. При заданном числе пропусков подряд траекторию сбрасывают с рассмотрения как ложную или делают заключение о выходе объекта за пределы видимости.

5. Векторы, не вошедшие в состав траекторий, рассматривают как начальные векторы для образования новых траекторий. К ним в следующем периоде обзора присоединяю парные векторы и тем самым задают начальные линейные траектории, которые в последующих периодах обрабатывают в соответствии с пп. 2-4 для принятой модели траектории.

6. Все сформированные в текущем периоде обзора траектории и не присоединенные векторы (с определенной меткой) получают новую нумерацию. Запоминают присоединенные к траекториям векторы (или их номера в общем списке), параметры траекторий и показатели правдоподобия.

7. При наличии определенного количества присоединенных к траекториям векторов последовательно выбирают группы с наименьшими суммарными квадратами невязок и не имеющие общих векторов (допускается малое количество пересечений). Такие группы считают обнаруженными и передают на сопровождение их траекторий.

8. Далее на этапе сопровождения траекторий распознают принадлежность объекта определенному классу по скорости, маневренности (изменении положения вектора скорости) и характеристикам сигнала отражения.

Данный способ обладает следующим недостатком. Он не учитывает при сопровождении энергетических характеристик объектов, что может приводить к ошибкам классификации и неверным последующим решениям.

Предлагаемое техническое решение направлено на устранение этого недостатка, а именно, на использование совместно с радиостанцией сканирующего радиометра для измерения радиояркостной температуры объектов, подлежащих траекторному сопровождению, с целью более эффективного распознавания типа объектов.

Технический результат предлагаемого технического решения достигается применением способа слежения за движущимися объектами радиостанцией с радиометром, который заключается в первичной обработке принимаемых сигналов в периодах обзора радиостанции, определении по результатам первичной обработки векторов оценок координат источников сигналов, соединении векторов, найденных в соседних периодах обзора в группы по принадлежности траекториям и передаче на сопровождение траекторий с непересекающимися группами и наименьшими суммарными квадратами невязок векторов, отличающийся тем, что совмещают с радиостанцией сканирующий радиометр и на этапе сопровождения объектов ранжируют объекты по степени важности и в порядке ранжирования последовательно переводят линию визирования антенны радиометра в направлении экстраполированного положения каждого объекта с угловой скоростью, равной угловой скорости движения объекта по траектории, и измеряют радиояркостную температуру за время перемещения объекта в экстраполированное положение, после чего классифицируют объекты по принадлежности определенным классам с учетом измеренной радиояркостной температуры и траекторных параметров.

Алгоритмически способ осуществляют следующим образом.

1. Выполняют операции пп. 1-7 способа прототипа.

2. Ранжируют подлежащие сопровождению траектории по степени важности в зависимости от дальности и направления вектора скорости.

3. В порядке ранжирования находят упрежденное положение каждого объекта в виде вектора экстраполированных координат на момент времени tii, где τi - длительность промежутка времени, необходимого для вывода линии визирования радиометра в упрежденную точку , и осуществляют перевод линии визирования антенны радиометра с угловой скоростью движения объекта по траектории (относительно радиометра) в направлении. .

4. Для этого определяют угол между ортами векторов направлений на текущее и экстраполированное положения объекта (с помощью скалярного произведения векторов) и делят угол на время движения объекта из текущего в экстраполированное положение. Принимается прямолинейное движение объекта за время накопления сигнала радиометром, не превышающее долей секунды или секунды.

5. Измеряют с помощью радиометра радиояркостную температуру объекта за время его перемещения в экстраполированное положение и запоминают. Повторяют подобные операции измерения радиояркостной температуры для каждого объекта в порядке ранжирования.

6. Классифицируют объекты по принадлежности определенным классам с учетом измеренной радиояркостной температуры и траекторных параметров.

Заключение

Применение предложенного способа позволит повысить вероятность правильной классификации обнаруженных объектов при их сопровождении за счет измерения радиояркостной температуры за время перемещения объектов в экстраполированные положения. Способ может быть использован в существующих радиотехнических системах пеленгации объектов.

Литература

1. Бакулев П.А. Радиолокационные системы: учебник для вузов. М.: Радиотехника, 2007. 376 с.

2. Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т./ Т. 1. ИКИ РАН, 2014. 544 с.

3. Пассивная радиолокация: методы обнаружения объектов / Под ред. Р.П. Быстрова и А.В. Соколова. М: Радиотехника, 2008. 320 с.

4. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: Радио и связь, 1986. 352 с.

5. Фарина А., Студер Ф. Цифровая обработка радиолокационной информации. Сопровождение целей: пер. с англ. / Под ред. А.Н. Юрьева, A.M. Бочкарева. М.: Радио и связь, 1993. 319 с.

Способ слежения за движущимися объектами радиостанцией с радиометром, заключающийся в первичной обработке принимаемых сигналов в периодах обзора радиостанции, определении по результатам первичной обработки векторов оценок координат источников сигналов, соединении векторов, найденных в соседних периодах обзора в группы по принадлежности траекториям и передаче на сопровождение траекторий с непересекающимися группами и наименьшими суммарными квадратами невязок векторов, отличающийся тем, что совмещают с радиостанцией сканирующий радиометр и на этапе сопровождения объектов ранжируют объекты по степени важности и в порядке ранжирования последовательно переводят линию визирования антенны радиометра в направлении экстраполированного положения каждого объекта с угловой скоростью, равной угловой скорости движения объекта по траектории, и измеряют радиояркостную температуру за время перемещения объекта в экстраполированное положение, после чего классифицируют объекты по принадлежности определенным классам с учетом измеренной радиояркостной температуры и траекторных параметров.



 

Похожие патенты:

Изобретение относится к области радионавигации и может быть использовано для однозначного определения углового положения в азимутальной плоскости наземного радиомаяка фазовым пеленгатором, размещенным на квадрокоптере. Техническим результатом является обеспечение возможности определения направления на источник излучения фазовым пеленгатором с квадрокоптера за счет снижения массы и габаритов пеленгатора, а также расширение сектора одновременного наблюдения до 360°.

Изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств идентификации воздушных целей. Техническим результатом является повышение достоверности идентификации воздушных целей.

Изобретение относится к сельскому хозяйству. Автоматический регулятор глубины почвенной обработки для сельскохозяйственной техники, в частности фронтального прокалывателя-щелереза, содержит объединенные общей электрической схемой и включенные в состав георадара передающую антенну, приемную антенну, аттенюатор, усилитель высокой частоты, твердотельный генератор, приемное устройство, сельсин-датчик.

Изобретение относится к области радиотехники и может быть использовано при создании и модернизации средств контроля работоспособности бортового приемоиндикатора спутниковой радионавигационной системы (СРНС). Техническим результатом изобретения является повышение вероятности правильного контроля работоспособности бортового приемоиндикатора СРНС.

Изобретение относится к области радиотехники и может быть использовано при создании средств идентификации воздушных целей. Техническим результатом изобретения является повышение вероятности правильной идентификации воздушных целей в условиях многоцелевой обстановки.

Изобретение относится к области вторичной цифровой обработки сигналов и может быть использовано в бортовой цифровой вычислительной машине (БЦВМ) беспилотного летательного аппарата (БПЛА) при его самонаведении на объект. Техническим результатом является повышение достоверности распознавания варианта тактической ситуации и оценки фазовых координат взаимного перемещения объекта и БПЛА.

Изобретение относится к области радиолокации и может быть использовано в импульсных радиолокационных станциях (РЛС) различных типов (обзорных, многофункциональных и др.), использующих радиоимпульсы длительностью единицы-десятки наносекунд, для решения задачи обнаружения среднеразмерных воздушных объектов при произвольных ракурсах их наблюдения.

Изобретение относится к бортовой многопозиционной технике и может быть использовано в системах комплексной цифровой обработки локационной информации. Техническим результатом изобретения является получение комплексного локационного изображения земной поверхности, а также повышение точности и помехозащищенности получаемого комплексного изображения земной поверхности в режиме реального времени.

Изобретение предназначено для решения проблем частотной адаптации систем загоризонтной радиолокации (ЗГРЛ) к нестационарности ионосферы при ионосферно-пространственном распространении радиоволн (ИПРРВ). Техническим результатом является создание способа оперативного определения текущих значений оптимальной рабочей частоты (ОРЧ) при нестационарном в общем по условиям функционирования случае ионосферно-пространственном распространении радиоволн инвариантно к географии, сезонно-суточным-солнечным циклам гелиогеофизических условий ионосферы, её динамике и стохастичности.

Изобретение относится к радарному датчику для автоматизации производства и логистики. Техническим результатом является обеспечение миниатюризации измерительной системы в сочетании с высоким разрешением радара.
Наверх