Компенсационный акселерометр

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что в компенсационный акселерометр дополнительно введены аналоговая и дискретная отрицательные обратные связи, причем аналоговая введена с выхода датчика угла на один из входов магнитоэлектрического преобразователя через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, дифференцирующее звено, а дискретная отрицательная обратная связь введена с выхода датчика угла на вход компаратора через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, пороговый элемент с зоной неоднозначности, интегратор, один из выходов генератора вспомогательной частоты соединен с входом порогового элемента с зоной неоднозначности и выход реверсивного двоичного счетчика является цифровым выходом компенсационного акселерометра. Технический результат – расширение полосы пропускания и повышение точности измерения. 1 ил.

 

Изобретение относится к измерительной технике и предназначено для использования в системах стабилизации, навигации, наведения и медицине.

Известен акселерометр (А.С. №742801, опубл. в БИ №23, 1980), содержащий чувствительный элемент, датчик угла, интегрирующий усилитель обратной связи, датчик момента, дополнительный интегрирующий усилитель, электронный ключ, пороговый элемент. Первый выход датчика угла подключен, через интегрирующий усилитель обратной связи, к датчику момента, а второй выход датчика угла, через пороговый элемент и дополнительный интегрирующий усилитель, к управляющему входу электронного ключа.

Недостатком акселерометра является низкая точность измерения, так как выбор коэффициента усиления с жесткой отрицательной обратной связью ограничен условием устойчивости системы. Точность работы акселерометра зависит от интегрирующих аналоговых усилителей, порогового элемента и электронного ключа, включенных в обратную связь. Основная погрешность устройства для измерения ускорений связана с конечностью времени заряда конденсатора интегрирующего усилителя. Эта погрешность приводит к апертурной ошибке, свойственной подобной схеме выборки и обработки информации.

Наиболее близким по техническому решению является компенсационный акселерометр для измерения ускорений (патент РФ №2513667 G01P 15/13, опубл. в БИ №11, 20.04.2014), содержащий чувствительный элемент, угловое положение которого фиксируется датчиком угла, усилитель, вход которого соединен с выходом датчика угла, фазовый детектор отрицательной обратной связи, интегрирующую отрицательную обратную связь с выхода компаратора на вход датчика момента через последовательно соединенные по информационным входам компаратор, преобразователь уровня, два ждущих синхронных генератора, реверсивный двоичный счетчик, схему сравнения, триггер, электронный ключ, вход которого соединен с выходом генератора тока, суммирующий двоичный счетчик, выход которого соединен с одним из входов схемы сравнения, а вход, с выходом генератора вспомогательной частоты, генератор опорного напряжения, выходы которого соединены с входами датчика угла и фазового детектора отрицательной обратной связи, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика соединены с генератором вспомогательной частоты, введена местная отрицательная обратная связь с выхода усилителя на вход фазового детектора отрицательной обратной связи через последовательно соединенные по информационным входам сумматор, пороговый элемент, интегро-дифференцирующее звено с передаточной функцией (где T1<T2 постоянные времени) и один из входов сумматора соединен с выходом интегро-дифференцирующего звена через звено запаздывания с передаточной функцией (где K и T - коэффициент передачи и постоянная времени звена запаздывания) и выход фазового детектора отрицательной обратной связи соединен с входом компаратором через дифференцирующее звено с передаточной функцией (где T1>T2 - постоянные времени звена запаздывания), и выход реверсивного двоичного счетчика является цифровым выходом компенсационного акселерометра.

Недостатком компенсационного акселерометра является малая полоса пропускания и невысокая точность измерения.

Технической задачей настоящего изобретения является расширение полосы пропускания и повышение точности измерения.

Это достигается тем, что в компенсационный акселерометр, содержащий чувствительный элемент, отклонение которого фиксируется датчиком угла, генератор опорного напряжения, один из выходов которого соединен с датчиком угла, а другой выход соединен с входом фазового детектора, интегрирующий усилитель, отрицательную обратную связь, компаратор, выход которого соединен с входом магнитоэлектрического преобразователя через последовательно соединенные по информационным входам преобразователь уровня, два ждущих синхронных генератора, реверсивный двоичный счетчик, схему сравнения, триггер, электронный ключ, один из входов которого соединен с выходом генератора тока, а выход соединен с входом магнитоэлектрического преобразователя, суммирующий двоичный счетчик, выход которого соединен с одним из входов схемы сравнения, а вход соединен с выходом генератора вспомогательной частоты, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика соединены с генератором вспомогательной частоты, введены аналоговая и дискретная отрицательные обратные связи, причем аналоговая введена с выхода датчика угла на один из входов магнитоэлектрического преобразователя через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, дифференцирующее звено, а дискретная отрицательная обратная связь введена с выхода датчика угла на вход компаратора через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, пороговый элемент с зоной неоднозначности, интегратор, один из выходов генератора вспомогательной частоты соединен с входом порогового элемента с зоной неоднозначности и выход реверсивного двоичного счетчика является цифровым выходом компенсационного акселерометра.

Введение в компенсационный акселерометр аналоговой и дискретной отрицательных обратных связей позволило создать автоколебательную систему с расширенной полосой пропускания и обеспечить астатизм по отклонению. Введение в аналоговую отрицательную обратную связь дифференцирующего звена обеспечивает устойчивость и стабилизацию параметров компенсационного акселерометра.

На фиг. изображена функциональная схема компенсационного акселерометра.

Компенсационный акселерометр содержит чувствительный элемент 1, угловое отклонение которого фиксируется датчиком угла 2. Выход датчика угла 2 соединен с входом интегрирующего усилителя 3, выход которого соединен с входом фазового детектора 4. Дополнительные входы датчика угла 2 и фазового детектора 4 соединены с выходом генератора опорного напряжения 5. Выход фазового детектора 4 соединен с входом нелинейного элемента с зоной насыщения 6. Один из выходов нелинейного элемента с зоной насыщения 6 соединен с входом дифференцирующего звена 7. Выход дифференцирующего звена 7 соединен с одним из входов магнитоэлектрического преобразователя 8. Другой выход нелинейного элемента с зоной насыщения 6 соединен с входом порогового элемента с зоной неоднозначности 9, выход которого соединен с входом интегратора 10. Выход интегратора 10 соединен с входом компаратора 11, выход которого соединен с входом преобразователя уровня 12. Выходы преобразователя уровня 12 соединены с входами двух ждущих синхронных генераторов 13 и 14. Выходы ждущих синхронных генераторов 13 и 14 соединены с входами реверсивного двоичного счетчика 15. Выход реверсивного двоичного счетчика 15 соединен с входом схемы сравнения 16. Другой вход схемы сравнения 16 соединен с выходом суммирующего двоичного счетчика 17. Выход схемы сравнения 16 соединен с входом триггера 18. Выход триггера 18 соединен с входом электронного ключа 19, другой вход которого соединен с выходом генератора тока 20. Выход электронного ключа 19 соединен с одним из входов магнитоэлектрического преобразователя 8. Магнитоэлектрический преобразователь 8 соединен с чувствительным элементом 1. Дополнительные входы порогового элемента с зоной неоднозначности 9, компаратора 11, ждущих синхронных генераторов 13 и 14, реверсивного двоичного счетчика 15 и суммирующего двоичного счетчика 17 соединены с выходами генератора вспомогательной частоты 21.

Внутреннее содержание порогового элемента с зоной неоднозначности, нелинейного элемента с зоной насыщения, компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика, схемы сравнения, суммирующего двоичного счетчика, преобразователя уровня описаны в книгах: П. Хоровиц, У. Хилл. Искусство схемотехники. М.: Мир, т. 1-3, 1993, Н.Т. Кузовков Динамика систем автоматического управления. М.: Машиностроение, 1968, С. - 428.

Компенсационный акселерометр работает следующим образом. При действии ускорения W/g отклонение чувствительного элемента 1 фиксируется датчиком угла 2, обмотки, возбуждения которого соединены с одним из выходов генератора опорного напряжения 5. Сигнал с датчика угла 2, после усиления интегрирующим усилителем 3, поступает на один из входов фазового детектора 4. Другой вход фазового детектора 4 соединен с выходом генератора опорного напряжения 5. Напряжение с выхода фазового детектора 4, в соответствии с фазой отклонения чувствительного элемента 1, поступает на вход нелинейного элемента с зоной насыщения 6. Сигнал с выхода нелинейного элемента с зоной насыщения 6 поступает как на вход дифференцирующего звена 7, так и на вход порогового элемента с зоной неоднозначности 9. Сигнал, в виде уровня, с выхода порогового элемента с зоной неоназначности 9 поступает на вход интегратора 10. Напряжение на выходе порогового элемента с зоной неоднозначности 9 фиксируется с приходом каждого импульса с генератора вспомогательной частоты 21 и поступает на вход интегратора 10. На выходе интегратора 10 сигнал, в виде ступенчатого напряжения, поступает на один из входов компаратора 11, в котором происходит сравнение сигнала с выхода интегратора 10 с сигналом выделенного из стабильного по частоте и амплитуде сигнала генератора вспомогательной частоты 21. Если сигнал с выхода интегратора 10 больше треугольного напряжения с выхода генератора вспомогательной частоты 21, то на выходе компаратора 11 будет высокий логический уровень, если меньше, то на выходе компаратора 11 - низкий логический уровень. Уровень сигнала с выхода компаратора 11, зависит от фазы отклонения чувствительного элемента 1. Сигнал с выхода компаратора 11, в виде уровня, поступает на вход преобразователя уровня 12, а затем на входы двух ждущих синхронных генераторов 13 и 14, которые, с помощью генератора вспомогательной частоты 21, выдают сигналы в виде импульса, на каждое воздействие входного сигнала (с выхода преобразователя уровня 12) равного "1". Реверсивный двоичный счетчик 15 производит подсчет единичных импульсов, поступающих с выхода ждущего синхронного генератора 13 и вычитание импульсов, поступающих с выхода ждущего синхронного генератора 14. Реверсивный двоичный счетчик 15 положительную информацию представляет в прямом коде, а отрицательную в дополнительном коде, и преобразование дополнительного кода осуществляется схемой сравнения 16 и суммирующим двоичным счетчиком 17. После логического сравнения сигналов в схеме сравнения 16, сигнал поступает на вход триггера 18. Сигнал с выхода триггера 18, в виде уровня, поступает на вход электронного ключа 19. Стабилизация параметров электронного ключа 19 осуществляется генератором тока 20. Число импульсов, с выхода электронного ключа 19, пропорционально двоичному коду, поступающему на вход схемы сравнения 16. Выход электронного ключа 19 соединен с входом магнитоэлектрического преобразователя 8, который компенсирует угловое отклонение чувствительного элемента 1, вызванное действием ускорения. Выход реверсивного двоичного счетчика 15 является выходом цифрового кода компенсационного акселерометра.

Введение в отрицательную обратную связь, порогового элемента с зоной неоднозначности и интегратора позволяет повысить точность измерения, создать автоколебательную систему с расширенной полосой пропускания и астатизмом по отклонению. Введение дифференцирующего звена в аналоговую отрицательную обратную связь позволяет обеспечить устойчивость и стабилизацию параметров компенсационного акселерометра.

Компенсационный акселерометр, содержащий чувствительный элемент, отклонение которого фиксируется датчиком угла, генератор опорного напряжения, один из выходов которого соединен с датчиком угла, а другой выход соединен с входом фазового детектора, интегрирующий усилитель, отрицательную обратную связь, компаратор, выход которого соединен с входом магнитоэлектрического преобразователя через последовательно соединенные по информационным входам преобразователь уровня, два ждущих синхронных генератора, реверсивный двоичный счетчик, схему сравнения, триггер, электронный ключ, один из входов которого соединен с выходом генератора тока, а выход соединен с входом магнитоэлектрического преобразователя, суммирующий двоичный счетчик, выход которого соединен с одним из входов схемы сравнения, а вход соединен с выходом генератора вспомогательной частоты, дополнительные входы компаратора, ждущих синхронных генераторов, реверсивного двоичного счетчика соединены с генератором вспомогательной частоты, отличающийся тем, что в него введены аналоговая и дискретная отрицательные обратные связи, причем аналоговая введена с выхода датчика угла на один из входов магнитоэлектрического преобразователя через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, дифференцирующее звено, а дискретная отрицательная обратная связь введена с выхода датчика угла на вход компаратора через последовательно соединенные по информационным входам интегрирующий усилитель, фазовый детектор, нелинейный элемент с зоной насыщения, пороговый элемент с зоной неоднозначности, интегратор, один из выходов генератора вспомогательной частоты соединен с входом порогового элемента с зоной неоднозначности и выход реверсивного двоичного счетчика является цифровым выходом компенсационного акселерометра.



 

Похожие патенты:

Группа изобретений относится к области приборостроения. Устройство измерения вертикального ускорения на оптическом разряде состоит из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде теневым методом состоит из сферической камеры, прозрачной для лазерного и видимого излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, снаружи сферической камеры установлены взаимно перпендикулярно два сферических зеркала, а с противоположной стороны сферической камеры, напротив каждого сферического зеркала расположен полупрозрачный экран для визуализации теневого изображения теплового потока, при этом на каждом полупрозрачном экране установлены не менее чем четыре фотодатчика.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с термоиндикаторной краской состоит из сферической камеры, прозрачной для лазерного и видимого излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры, вся внутренняя поверхность сферической камеры, свободная от лазерного излучения одного или нескольких лазеров и расположения металлических электродов, покрыта термоиндикаторной краской, а внешняя поверхность сферической камеры имеет разметку по горизонтали и вертикали.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с двумя тепловизорами состоит из сферической камеры, прозрачной для лазерного излучения применяемых лазеров, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры; с двух противоположных сторон сферической камеры вне зоны попадания лазерного излучения одного или нескольких лазеров установлены объективы тепловизоров, каждый из которых через отверстие в корпусе сферической камеры охватывает внутреннюю часть поверхности таким образом, что в объективы двух тепловизоров суммарно видна вся внутренняя поверхность сферической камеры.

Группа изобретений относится к измерительной технике и предназначено для измерения линейных широкополосных ускорений. Способ обработки сигнала при измерении широкополосных линейных ускорений заключается в применении узкополосной фильтрации сигнала с выхода линейного акселерометра.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с электродным поджигом состоит из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде электродным и теневым методом состоит из сферической камеры, прозрачной для лазерного и видимого излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с фотолюминофором состоит из сферической камеры, прозрачной для лазерного и видимого излучения, заполненной газовой смесью, одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых фокусируют в центре сферической камеры, двух металлических электродов, расположенных вблизи центра сферической камеры.

Группа изобретений относится к области приборостроения. Устройство измерения ускорения на оптическом разряде с лазерным поджигом состоит из сферической камеры, прозрачной для лазерного излучения, заполненной газовой смесью; одного или нескольких лазеров, расположенных снаружи сферической камеры, излучение которых сфокусировано в центре сферической камеры, при этом вся внутренняя поверхность сферической камеры, свободная от лазерного излучения одного или нескольких лазеров, имеет датчики теплового потока, при этом количество датчиков теплового потока, попадающих целиком в тепловое пятно теплового потока нагретого от оптического разряда газа на внутренней поверхности сферической камеры, должно быть больше или равно трём по любому из двух взаимно перпендикулярных направлений.

Изобретение относится к области измерительной техники и микросистемной техники. Интегральный микромеханический гироскоп дополнительно содержит восемь дополнительных торсионных элементов, выполненных из полупроводникового материала и расположенных с зазором относительно подложки по краям инерционной массы, четыре дополнительных неподвижных электрода электростатического привода, выполненные из полупроводникового материала, расположенные непосредственно на подложке и изолированные друг от друга вытравленным каналом, дополнительные металлические контактные площадки, расположенные на опорах и неподвижных электродах, четыре дополнительных подвижных электрода электростатического привода, выполненные из полупроводникового материала, и расположенные с зазором относительно подложки, и образующие с четырьмя дополнительными неподвижными электродами емкостных преобразователей перемещений плоские конденсаторы, а также дополнительный слой полупроводникового материала, выполненный из оксида кремния.

Изобретение относится к измерительной технике. В устройство для измерения ускорений дополнительно введены аналоговая отрицательная обратная связь с выхода интегрирующего усилителя на один из входов датчика момента через низкочастотный фильтр и дискретная отрицательная обратная связь с выхода интегрирующего усилителя на вход компаратора через последовательно соединенные по информационным входам сумматор, нелинейный элемент с зоной нечувствительности, и один из выходов нелинейного элемента с зоной нечувствительности соединен с входом сумматора через высокочастотный фильтр, кроме того, интегрирующий усилитель соединен с выходом датчика угла, выход схемы сравнения соединен с электронным ключом через триггер и выход реверсивного двоичного счетчика является цифровым выходом.
Наверх