Способ диагностирования воздушно-газового тракта двигателей внутреннего сгорания с наддувом

 

Сущность: проводят предварительные испытания двигателя по серии нагрузочных характеристик, по которым определяют численные значения информативных параметров в поле допускаемых для длительной эксплуатации режимов, строят инвариантный относительно характеристик потребителя энергии эталон в виде степенного комплекса, который преобразуют в прямую-эталон, измеряют в процессе эксплуатации двигателя информативные параметры на произвольных режимах, принадлежащих названному полю, определяют численные величины левой и правой частей степенного комплекса и строят линию, по отношению которой от эталона судят о фактическом состоянии воздушно-газового тракта, при этом степенной комплекс строят в виде = 1,0 (x1 ба1+ x2 ба2+x3 ба3+ ... +xn баn), где - относительные значения информативных параметров; ба1; ба2; ба3 ... баn - относительные погрешности измерения информативных параметров, а преобразование эталонного комплекса в прямую-эталон осуществляют посредством его представления в виде . Способ позволяет повысить достоверность диагностирования. 4 ил.

Изобретение относится к двигателестроению, в частности к способам диагностирования качества функционирования воздушно-газового тракта двигателей с наддувом.

Известен способ диагностирования качества функционирования воздушно-газового тракта дизелей с наддувом, при котором измеряют текущие значения частоты вращения ротора туpбокомпрессора, давления наддува, температуры газов перед турбиной, температуры газов за турбиной и на основе сравнения измеренных значений параметров со значениями, полученными при стендовых испытаниях на соответствующем режиме, судят о состоянии проточных частей тракта.

Недостатком описанного способа диагностирования является его недостаточно высокая достоверность.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ диагностирования качества функционирования воздушно-газового тракта двигателей с наддувом, при котором за эталон принимаются зависимости к = f (Gпр.ai.r) и к.ад= f (Gпр.ai.r), где к - степень повышения давления в компрессоре.

Gaпрi.r - приведенный к стандартным условиям расход воздуха через компрессор; к.ад - адиабатный КПД компрессора.

Недостатком данного способа является низкая достоверность диагноза в тех случаях, когда двигатель работает на потребителя с нестабильными характеристиками, так как численные значения диагностических параметров зависят от качества функционирования воздушно-газового тракта и режима работы.

Целью изобретения является повышение достоверности диагностирования качества функционирования воздушно-газового тракта и, в конечном счете, эксплуатационной экономичности и надежности двигателей внутреннего сгорания с наддувом.

Указанная цель достигается тем, что в способе диагностирования качества функционирования воздушно-газового тракта двигателя внутреннего сгорания с наддувом используется новый эталон и новый диагностический параметр.

За эталон принимается поле допустимых для длительной работы режимов нового двигателя. В координатной плоскости Ре - n названное поле ограничено сверху верхней ограничительной характеристикой, снизу - нижней ограничительной характеристикой или координатной осью n, слева и справа - вертикалями nmin = cоnst и nн = const. Ограниченное таким образом поле включает всю совокупность режимов, которыми определяются условия протекания термодинамических процессов в элементах воздушно-газового тракта ДВС с наддувом. Положение границ поля не зависит от того, какую характеристику имеет потребитель энергии.

Диагностическим параметром является численное значение правой части комплекса a a a ... a = С0, (1) который строится на основе параметров аi, характеризующих термодинамические процессы, протекающие в элементах воздушно-газового тракта ДВС с наддувом.

Рациональное значение постоянной С0 определяется посредством перехода от абсолютных значений параметров к относительным = ; = ; = ... = , (2) где индексом "н" обозначены значения параметров, соответствующие номинальному режиму работы нового двигателя.

Тогда ... = 1,0 (3) поскольку номинал принадлежит полю допустимых для длительной работы режимов и при любых показателях степени значение комплекса на этом режиме может быть равно только единице.

Если выражение (3) представить в виде x1ln + x2 ln + x3ln + ... + xnln = 0 (4) то становится ясно, что комплекс типа (3) может быть образован только из линейно зависимых параметров, а их минимальное количество должно быть равно трем, поскольку следует задать положение плоской поверхности.

Заявляемый способ отличается от известных тем, что за эталон принимается поле допустимых для длительной эксплуатации режимов нового двигателя и диагностический параметр не зависит от режима работы двигателя, т.е. обладает свойством инвариантности относительно характеристик потребителя энергии.

Именно благодаря свойству инвариантности относительно характеристик потребителя энергии предлагаемый способ позволяет обнаружить возникающие неисправности на ранней стадии, а следовательно, повысить экономичность и надежность двигателя.

Предлагаемый способ поясняется графическими материалами.

На фиг.1 показаны результаты стендовых испытаний двигателя 6 ЧН 25/34-3 по серии нагрузочных характеристик; на фиг. 2 - изменение собственных чисел и матриц АтА и в зависимости от степени переопределенности матрицы А; на фиг. 3 - изменение решений системы х = f в зависимости от степени переопределенности матрицы А; на фиг. 4 - результаты практического диагностирования воздушно-газового тракта двигателя 6ЧН 25/34-3.

Реализация заявляемого способа поясняется на конкретном примере.

На фиг. 1 приведены результаты стендовых испытаний нового двигателя 6ЧН 25/34-3 по серии нагрузочных характеристик. В данном примере замеры параметров произведены не в поле допустимых для длительной эксплуатации режимов, а в определенной области этого поля, которая в координатной плоскости Ре - n ограничена сверху ограничительной характеристикой = н = соnst: справа и слева - вертикалями nн = 500 мин-1 и n = 350 мин-1; снизу - горизонталью Ре = 100 кВт. Примем эту область за эталон и перейдем к количественным оценкам.

Положим, что для построения степенного комплекса отобраны следующие параметры: tg1 - температура отработавших газов перед турбиной; n - частоты вращения двигателя; Рb - давление воздуха за компрессором. На основе замеров этих параметров в области, принятой за эталон, образуем по выражению (4) систему условных однородных уравнений Ах = 0 и эквивалентную ей систему нормальных уравнений АтАх = 0. Переопределенность условной системы последовательно увеличивается, начиная с m = 5. Следовательно, на первом шаге вычислений условная система будет содержать пять уравнений, на втором - десять и т.д. На каждом шаге вычислений для количественной оценки свойств матрицы АтА используется спектр ее собственных чисел. Результаты вычислений собственных чисел матрицы АтА по описанной схеме приведены на фиг. 2.

Если расстояния до ближайшей вырожденной матрицы оценивать величиной собственных чисел, то в диапазоне 10 m 20 матрица АтА по своим свойствам близка к вырожденной, так как 1 и 2 заведомо больше предполагаемого максимального уровня погрешностей в ее элементах, а 3заведомо меньше этого уровня.

Из однородного характера системы АтАх = 0 следует, что вектор х можно целесообразно нормировать. Например, полагая х = -1,0, запишем ее в неоднородной форме x = f.

Зависимости = f(m) = f (m) собственных чисел матрицы приведены, наряду с собственными числами , на фиг. 2. Видно, что в диапазоне 10 m 20 матрица является невырожденной, так как и заведомо больше максимального уровня погрешностей в ее элементах.

Изложенный анализ показывает, что на основе параметров tg1, Pb,n может быть построен комплекс типа (3), т.е. определены устойчивые значения показателей степени х.

Действительно, как следует из фиг. 3, при m > 10 изменения Х1 и Х2сопоставимы с погрешностями исходных данных, поэтому их можно считать достаточно хорошим приближением к решению системы уравнений x = f. Например, при m = 20 получаем: Х1 = 0,32; Х2 = -0,42; Х3 = -1,0.

С учетом относительных погрешностей измерения параметров tg1, Pb и n, величина предельной невязки между левой и правой частями комплекса составит -0,42 = 1,0 (0,32 Pb + 0,42 n + tg1), (6) где Рb, n, tg1 - относительные погрешности измерения параметров.

Посредством комплекса (6) диагностирование качества функционирования воздушно-газового тракта производится по следующему алгоритму: 1) посредством представления -0,42 = f() область, принятая за эталон, преобразуется в прямую - эталон; 2) в произвольный период эксплуатации регистрируются значения параметров Рb, tg1, а на 3-4 режимах в диапазоне изменения (0,5-1,0)и по (2) определяются их относительные величины;
3) с учетом реальных отклонений линий от эталона и относительных погрешностей измерения параметров делается заключение о качестве функционирования воздушно-газового тракта.

Результаты практического диагностирования воздушно-газового тракта двигателя 6ЧН 25/34 приведены на фиг. 4, где эталону соответствует прямая 1. Если значения параметров Рbn, nн, tg1н, посредством которых осуществляется переход от абсолютных величин к относительным, зафиксировать, то при увеличении противодавления за турбиной до 0,05 бар режимы укладываются на прямую 2, смещенную вниз от эталона (на фиг. 4 эти режимы обозначены ). Такое же смещение от эталона вызывает уменьшение проходного сечения воздушного фильтра компрессора, примерно, на 65% (на фиг. 4 (прямая 2) эти режимы обозначены х ).

Приведенные результаты практического диагностирования свидетельствуют о том, что посредством заявляемого способа может быть дана общая оценка качества функционирования воздушно-газового тракта дизелей с наддувом независимо от того, на какой потребитель энергии работает двигатель. Другими словами, заявляемый способ диагностирования воздушно-газового тракта двигателей с наддувом обладает свойством инвариантности относительно характеристик потребителя.

Свойство инвариантности комплекс типа (6) сохраняет только при диагностировании на режимах, расположенных внутри области, принятой за эталон. Если диагностирование производится на режимах, расположенных вне этой области, то неизбежно изменяются показатели степени комплекса и снижается достоверность диагноза. По этой причине наиболее подходящими исходными данными для построения комплексов типа (6) является те, которые соответствуют всему полю допустимых для длительной работы режимов нового двигателя.

Использование заявляемого способа диагностирования позволит обнаруживать возможные изменения структуры проточных частей воздушно-газового тракта на ранней стадии их проявления и повысить эксплуатационные показатели экономичности на 2-3% и надежность двигателей с наддувом.


Формула изобретения

СПОСОБ ДИАГНОСТИРОВАНИЯ ВОЗДУШНО-ГАЗОВОГО ТРАКТА ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ С НАДДУВОМ, заключающийся в определении диагностических параметров и сопоставлении их текущих значений с эталонами, отличающийся тем, что, с целью повышения достоверности диагностирования, проводят предварительные испытания нового двигателя по серии нагрузочных характеристик, по которым определяют численные значения информативных параметров в поле допустимых для длительной эксплуатации режимов, строят инвариантный относительно характеристик потребителя энергии эталон в виде степенного комплекса, который преобразуют в прямую-эталон, измеряют в процессе эксплуатации двигателя информативные параметры на произвольных режимах, принадлежащих названному полю, определяют численные величины левой и правой частей степенного комплекса и строят линию, по отклонению которой от эталона судят о фактическом состоянии воздушно-газового тракта, при этом степенной комплекс строят в виде
,
где - относительные значения информативных параметров;
a1, a2, a3 ... an - относительные погрешности измерения информативных параметров,
а преобразование степенного комплекса в прямую-эталон осуществляют посредством его представления в виде
.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к диагностированию дизельных двигателей и может применяться при их испытаниях и эксплуатации

Изобретение относится к вентиляторостроению, а именно к способам настройки на резонансную частоту колебаний испытываемых лопаток рабочего колеса осевых вентиляторов

Изобретение относится к машиностроению и может быть использовано в двигателестроении для оценки работоспособности динамически нагруженных шатунных подшипников двигателей внутреннего сгорания (ДВС)

Изобретение относится к энергомашиностроению и может быть использовано в системах диагностики турбин и других энергетических машин

Изобретение относится к электрооборудованию, в частности к устройствам для режимных испытаний взаимно нагружающих электрических машин

Изобретение относится к авиации, в частности к измерению тяги авиадвигателей в составе самолета в эксплуатации, в аэродромных условиях

Изобретение относится к технической физике, а более конкретно к испытаниям реактивных двигателей, и может быть использовано в способах и устройствах для измерения тяги для повышения их точности

Изобретение относится к теплоэнергетике и может быть использовано при контроле работоспособности элементов системы регулирования и защиты паровых турбин

Изобретение относится к области двигателестроения и может быть использовано в системах автоматического управления и диагностики дизельных и карбюраторных двигателей внутреннего сгорания

Изобретение относится к области диагностики технического состояния машин, а конкретно, к способам диагностики и прогнозирования технического состояния машин, и может быть использовано для диагностики технического состояния машин, образующих машинные комплексы, путем анализа данных вибрации, потребления тока, его напряжения, расхода рабочего тела, температуры машины, обеспечивая своевременное отклонение действительного состояния машин от рабочего состояния и бесперебойную работу всего комплекса

Изобретение относится к испытаниям двигателей внутреннего сгорания

Изобретение относится к обкатке и испытанию вновь изготовленных и отремонтированных двигателей внутреннего сгорания и может быть использовано для обкатки других механизмов, например, коробок передач, ведущих мостов автомобилей

Изобретение относится к ракетостроению и может быть использовано при стендовых испытаниях жидкостных ракетных двигателей (ЖРД)
Изобретение относится к двигателестроению и может быть использовано при усовершенствовании условий смазки и оптимизации конструктивных параметров деталей цилиндро-поршневой группы ДВС
Наверх