Способ преобразования лазерного излучения

 

Использование: квантовая электроника. Сущность изобретения: получение многочастотного излучения в ультрафиолетовой области спектра путем воздействия на парамагнитную среду из паров переходных металлов бигармоникой оптической частоты, резонансной частоте магнитного дипольного перехода используемого образца. Обычно ее величина находится в диапазоне 8 - 30 ГГц. 1 ил.

Изобретение относится к квантовой электронике и может использоваться при создании перестраиваемых лазеров, работающих в ультрафиолетовом диапазоне длин волн.

Широкое распространение получил способ преобразования лазерного излучения с использованием в качестве активной среды органических красителей [1]. Важнейшее преимущество органических красителей как потенциальных лазеров заключается в таком их многообразии, что оказывается возможным перекрыть весь диапазон видимого света.

Наиболее близким по технической сущности к предлагаемому является способ преобразования лазерного излучения и видимого диапазона в ультрафиолетовую область, основанный на резонансном возбуждении вращений молекул среды бигармоническим световым полем [2].

В предлагаемом способе в качестве активной среды используют парамагнитную среду - пары металлов переходной группы, например железа, которая под действием оптической накачки - бигармоники 1, 2, (1, 2, - оптические частоты), резонансной типичным частотам электронного парамагнитного резонанса (ЭПР), переводится в высоковозбужденное энергетическое состояние. Переход возбужденных таким образом атомов паров металлов в нормальное состояние сопровождается когерентным высвечиванием поглощенной энергии в ультрафиолетовую область спектра. Коэффициент преобразования увеличивается при этом на 3-4 порядка.

На чертеже представлена схема экспериментальной установки, на которой осуществлен предлагаемый способ.

Схема включает лазер 1, "кювету" с парамагнитной средой 2, приемный объектив 3, спектральный прибор 4.

Способ осуществляется следующим образом.

Излучение второй гармоники Nd - лазера 1 с двумя центрами 1 и 2 (разность частот которых 1 - 2 =8-30 ГГц), выделяемыми с помощью, например, интерферометра Фабри-Перо в резонаторе лазера 1, направляется на "кювету" с парамагнитным веществом - пары атомов и ионов железа при давлении 760 Тор и Т=300 К, образуемых при взаимодействии лазерного излучения лазера 1 с краями железной прямоугольной диафрагмы. Преобразованное излучение с помощью объектива 3 направляется на входную щель спектрального прибора 4 с дифракционной решеткой 1200 шт/мм ДФС-452 и регистрировалось на рентгеновскую пленку РМ-8 чувствительностью 900 обр/рентген. Продолжительность лазерного импульса составляла около 300 мкс, энергия в импульсе - 0,03 Дж. Положение линий в получаемом спектре контролиpовалось с помощью эталонных линий ртутной лампы низкого давления ПРК-100.

Экспериментально установлено, что преобразованное излучение направлено только по ходу лучей исходного лазерного излучения. Согласно существующим теоретическим представлениям это свидетельствует о его когерентности. Таким образом, предлагаемое изобретение позволяет повысить коэффициент преобразования исходного лазерного излучения видимого диапазона за счет выбора парамагнитной среды, в которой сечение рассеяния процессов поглощения и излучения увеличивается на 3-4 порядка.

Формула изобретения

СПОСОБ ПРЕОБРАЗОВАНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, включающий воздействие оптической накачки на активную среду, отличающийся тем, что, с целью повышения коэффициента преобразования излучения за счет получения многочастотного излучения в ультрафиолетовой области спектра путем рассеяния частоты света на спиновых волнах, генерируемых в активной среде, воздействуют на активную среду на основе паров металлов переходной группы оптической накачкой на двух частотах оптического диапазона, разность которых равна резонансной частоте магнитного дипольного перехода активной среды и находится в диапазоне 8 - 30 Ггц.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к лазерной технике, предназначенной для обработки металлов: резки, сварки, пробивки отверстий, гравирования и других видов обработки

Изобретение относится к квантовой электронике, а именно к газовым лазерам, и может быть использовано в качестве источника когерентного излучения в двухканальных измерительных системах, а также в устройствах наведения либо прокладки трассы по лучу

Изобретение относится к квантовой электронике, а именно к газовым лазерам, и может быть использовано в качестве источника когерентного излучения в двухканальных измерительных системах

Изобретение относится к лазерной технике, в частности к угловым селекторам лазерного излучения

Изобретение относится к оптотехнике и может быть использовано для модуляции световых потоков, в частности для модуляции добротности резонатора лазера

Изобретение относится к квантовой радиофизике, включая нелинейную оптику, и касается вопросов получения генерации лазерного излучения с высокой направленностью излучения

Изобретение относится к квантовой электронике, а именно к лазерам с движущейся активной средой и непрерывным или квазинепрерывным возбуждением, и может быть использовано для получения мощного импульсно-периодического излучения для технологических применений, систем оптической локации и физических исследований, а также для расширения возможностей и повышения эффективности технологических лазерных установок

Изобретение относится к квантовой электронике, а именно к лазерам с движущейся активной средой и непрерывным или квазинепрерывным возбуждением, и может быть использовано для получения мощного импульсно-периодического излучения для технологических применений, систем оптической локации и физических исследований, а также для расширениия возможностей и повышения эффективности технологических лазерных установок

Изобретение относится к лазерной технике и может быть использовано в различных областях науки и техники, требующих перестраиваемого по частоте спектрально чистого лазерного излучения, в том числе в спектральных приборах

Изобретение относится к импульсным твердотельным лазерам, работающим в режиме с электрооптической модуляцией добротности, и может быть использовано для получения мощных импульсов лазерного излучения в наносекундном диапазоне длительностей импульса с частотами повторения импульсов до 100 Гц в видимом и ближнем инфракрасном, в том числе безопасном для человеческого зрения, спектральных диапазонах для целей нелинейной оптики, лазерной дальнометрии, оптической локации и экологического мониторинга окружающей среды

Изобретение относится к лазерной технике, а более конкретно к неодимовым лазерам, генерирующим в области 1,060,1 и 1,320,1 мкм

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов

Изобретение относится к лазерной технике и может использоваться в системах лазерной локации, связи, обработки, передачи и хранения информации, а также при создании лазерных технологических установок для высокоточной обработки материалов и медицинской техники

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике

Изобретение относится к лазерной технике и может быть использовано в технологических, медицинских, метрологических, других лазерных установках и установках для научных исследований

Изобретение относится к лазерно-интерферометрическим детекторам гравитационно-индуцированного сдвига частоты генерации и может быть использовано для измерения первой производной потенциала гравитационного поля Земли, например напряженности гравитационного поля, или, что то же, ускорения свободного падения
Наверх