Теплопроводный адгезив

 

Использование: при монтаже в электронике. Сущность изобретения: теплопроводный адгезив содержит адгезивную смолу и наполнитель. В качестве наполнителя адгезив содержит углеродные волокна трехмерной структуры из каменноугольного мезофазного пека при предпочтительном отношении длины волокна к ширине более 10 и при распределении ширины волокна от 1 до 10 мкм, взятые в количестве 29 - 56 мас.%. Адгезив может быть выполнен в форме пасты или в форме пленки. Адгезивная смола выбрана из группы, содержащей термопластичную, термореактивную и эластомерную смолу или их комбинации. 3 з. п. ф-лы, 2 табл.

Изобретение относится к теплопроводным адгезивам. Оно касается адгезивной матрицы, наполненной углеродными волокнами на базе мезофазного пека с трехмерной структурой. Теплопроводные с допустимым СТЕ (коэффициентом теплового расширения) адгезивы на базе органических соединений (в виде паст или пленок) играют важную роль в тепловом управлении в электронных компоновках.

Ближайшим техническим решением по технической сущности и достигаемому результату являются адгезивы, наполненные металлическими наполнителями, такими как серебро, или неорганическими наполнителями, такими как глинозем или нитрид бора [1] Глиноземные наполнители, которые электрически изолирующие, увеличивают теплопроводность примерно в 3-5 раз, в зависимости от типа наполнителя, его геометрии и размера. Серебряные хлопья используются в случае, когда требуются максимальные теплопроводность и электропроводность, так как это увеличивает теплопроводность основного (базового) полимера примерно в 3-5 раза в зависимости от наполнения.

Все эти наполнители имеют ряд недостатков. Требуются высокие проценты серебра (например, в некоторых адгезивов используется 79 мас.) для достижения требуемых эксплуатационных характеристик), и стоимость этих наполнителей становится значительной. Требуются высокие проценты неорганических наполнителей, которые также относительно дороги. Серебро подвержено явлению, именуемому металлической электромиграцией.

Цель изобретения снижение стоимости и повышение теплопроводности.

Поставленная цель достигается тем, что теплопроводный адгезив, содержащий адгезивную смолу и наполнитель, в качестве наполнителя содержит углеродные волокна трехмерной структуры из каменноугольного мезофазного пека при предпочтительном отношении длины к ширине >10 и при распределении ширины волокна от 1 до 10 мкм, взятые в количестве 29-56 мас. Адгезив выполнен в форме пасты или пленки. Адгезивная смола выбрана из группы, содержащей термопластичную, термореактивную и эластомерную смолу или их комбинации.

Адгезив имеет теплопроводность 7,44-14,88 (калсм)/(см2 оС ч). Адгезивный материал разработан для содействия тепловому управлению в электронном монтаже. Адгезив показывает ценную эффективную комбинацию необходимых свойств, включая высокие теплопроводности, равномерные в плоскости СТЕ, низкую плотность и высокую жесткость. Этот материал содержит адгезив, наполненный 29-56 мас. углеродных волокон на базе мезофазного пека трехмерной структуры. Углеродные волокна имеют переменные длину и ширину. Предпочтительно волокна имеют отношение длины к ширине больше 10 и ширину примерно 1-10 мкм [2] Соответствующими адгезивными смолами являются синтетические адгезивы, такие как термореактивные, термопластичные, эластомерные или комбинации этих типов. Основные типы адгезивов: жидкостные, пастообразные, лентообразные и пленкообразные, и порошкообразные или гранулированные. Наиболее общими типами адгезивов для структурных и электронных применений являются пасты и пленки. Чтобы сделать пасту, наполненную углеродными волокнами на основе мезофазного пека с трехмерной структурой, волокна добавляются в пасту по возможности и компоненты перемешиваются до образования однородной смеси. Реология пасты с наполнителем будет четко управляться путем изменения химии пасты и количества волокна, которое добавляется в качестве наполнителя (пасты обычно имеют высокие вязкости).

Чтобы сделать адгезивную пленку с наполнителем из углеродных волокон на основе мезофазного пека с трехмерной структурой, имеется два способа. Если адгезивная смола была в жидкой форме, волокна добавляются по возможности равномерно, и компоненты будут перемешиваться до получения однородной смеси. Этот способ способствует капсулированию волокон и содействует равномерности и однородности пленки. Реология паст четко управляется путем изменения химии смолы и количества добавляемых волокон. Для образования адгезивной пленки однородная смесь должна формоваться способом литья с использованием оборудования для литья пленок.

П р и м е р 1. 87,5 г отвердителя НТ9679 фирмы "Сиба-Гейги" и 12,5 г отвердителя НТ939 "Сиба-Гейги" добавляют в смесь 60 г смолы "Катрекс" 1010 фирмы "Дау кемикал", 160 г "Катрекс" 2010 "Дау кемикал" и 280 г смолы ЕРL-4206 фирмы "Юрион карбайд". Результирующую смесь перемешивают до полной однородности. 40 г углеродного волокна трехмерной структуры из мезофазного пека добавляют к 60 г результирующей смеси для образования эпоксидной смолы, армированной волокном в количестве 40 мас. Эту содержащую наполнитель смесь пропускают через трехвалковую мельницу пять раз, разливают по полиэфирной пленке, покрытой силиконом, толщиной 5 мм, используя шпатель. После отверждения при 160оС в течение 1 ч адгезивную пленку с наполнителем изымают из полиэфирной пленки и полируют, используя наждачную бумагу 500 и 1200.

Полированная пленка испытывалась в отношении теплопроводности через толщину с использованием способа защищенного теплового потока для тонкого материала. Теплопроводность этого адгезива, приведенная в табл. 1, была эквивалентна теплопроводности адгезивов "Дитак КЛ Риббон", наполненных серебряными хлопьями, промышленно выпускаемых "Дюпоном". Волокна составляли только 29% П р и м е р 2. 27,5 ч феноксисмолы "UCAR" РКН фирмы "Юнион карбайд" и 1,7 ч. резольной смолы "UCAR" BRL-2741 фирмы "Юнион карбайд" растворяют в 53,2 ч. метилэтилкетона и 17,6 ч. толуола. 22,7 г этого раствора смешивают с 5 г углеродного волокна трехмерной структуры на базе мезофазного пека для получения однородной дисперсии. Раствор, наполненный наполнителем адгезивной смолы, разливают по пленке Милара 2 мм толщины, используют докторский нож и сушат в печи при 120оС в течение 5 мин. Пленка Милара устраняется, и остается адгезивная пленка, армированная волокном в количестве 45 мас. толщиной 4 мм. Пленки толщиной 4 мм наслаивались вместе при 150оС и 1378815 н/м2 в течение 15 мин для образования адгезивной пленки толщиной 6-8 мм. Ненаполненный наполнителем образец феноксифенолформальдегидной смолы и пленка, армированная волокном в количестве 56 мас. были получены аналогичным способом.

Три образца испытывались в отношении теплопроводности через толщину с использованием защищенного теплового потока для тонких материалов. Результаты испытаний приведены в табл. 1 и показывают, что теплопроводность наполненных наполнителем адгезивов в два раза больше теплопроводности адгезивов "Дитак КЛ Риббон", наполненных серебряными хлопьями в размере 79 мас. Наполнение волокон составляло только 56 мас. или меньше.

П р и м е р 3. Пленки, наполненные углеродными волокнами трехмерной структуры на базе мезофазного пека, содержащие 29 и 39 мас. (20 и 28 об. соответственно), готовят следующим образом. Три отдельных смеси волокон и порошкового сополиимида К (представляющие три волоконных загрузки) приготавливают путем помещения требуемых навесок волокон и порошка в полиэтиленовые мешки, завязывания мешков и затем встряхивания и перемешивания смесей, чтобы сделать результирующую смесь однородной насколько это возможно. Порошковый сополиимид К основан на пиромеллитовом диангидриде и смеси 70/30 по весу 1,3-бис(3-аминофенокси)бензола и 2-фенил-1,4-бис-(4-аминофенокси)бензола. Готовят примерно 600 г каждой смеси.

Примерно 150-200 г смеси было распылено между двумя листами полиамидной пленки Каптон на ремне, и слоеная конструкция (сандвич) пропускалась через пресс для конвейерных лент с нагретыми плитами (345оС). Покрывающие листы снимались, и пленка, наполненная волокном, оставалась. Когда одна смесь была приготовлена и несколько кусков пленки было изготовлено, операция повторялась в отношении остальных двух смесей.

После этого начального пропускания через пресс (при скорости ремня 15,24 м/мин), куски пленки пропускались через пресс еще два раза (с покрывающими листами Каптон, которые были тогда сняты), но при скорости 0,304 м/мин для дальнейшего снижения толщины пленки. Результирующие пленки были примерно длиной 0,9-0,12 м, шириной 15,2-20,3 см и толщиной 10-19 мм.

Не наполненные наполнителем пленки изготавливались аналогичным способом. Результирующие пленки были примерно 13,6 м длины, 25,4 см ширины и 8-14 мм толщины.

Куски пленок испытывались в отношении свойств растяжения в плоскости и коэффициентов теплового расширения, а также теплопроводности через толщину. Так как измерения теплопроводности проводились с использованием разнообразных способов и устройств, теплопроводность измерялась посредством четырех разных способов.

В табл. 2 приведены результаты, которые показывают, что свойства пленки зависят от наполнения волокон. Когда наполнение волокон увеличивается, оба модуля теплопроводности вне плоскости (через толщину) и прочности на разрыв увеличиваются, тогда как СТЕ в плоскости снижается. Самая высоконаполненная пленка имела равномерный СТЕ (10 ч. на 1 млн. оС), близкий к показателю глинозема (6-8 ч. на 1 млн. оС), типичный материал для электронного монтажа, имеющий целевой СТЕ. По сравнению с данными об адгезиве "Дитак КЛ Риббон" теплопроводность и модули самой высоконаполненной пленки являются по крайней мере эквивалентными, и СТЕ в 4 раза ниже, чем у адгезивов, наполненных серебром. Наполнение волокон составляло только 39%

Формула изобретения

1. ТЕПЛОПРОВОДНЫЙ АДГЕЗИВ, содержащий адгезивную смолу и накопитель, отличающийся тем, что в качестве наполнителя он содержит углеродные волокна трехмерной структуры из каменноугольного мезофазного пека при предпочтительном отношении длины волокна к ширине > 10 и при распределении ширины волокна от 1 до 10 мкм, взятые в количестве 29-56% мас.

2. Адгезив по п.1, отличающийся тем, что адгезив выполнен в форме пасты.

3. Адгезив по п.1, отличающийся тем, что адгезив выполнен в форме пленки.

4. Адгезив по п. 1, отличающийся тем, что адгезивная смола выбрана их группы, содержащей термопластичную, термореактивную и эластомерную смолу или их комбинации.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Клей // 1838355

Изобретение относится к получению строительных материалов и может быть использовано при проведении электротехнических и специальных отделочных работ

Изобретение относится к токопроводящим клеевым композициям на основе синтетических смол, предназначенных для насадки кристаллов в производстве полупроводниковых приборов, интегральных схем и изделий пьезоэлектроники

Изобретение относится к получению электропроводящих клеевых компо зиций и может быть использовано в ттриборои агрегатостроении для удаления остаточного заряда и пр

Изобретение относится к токопроводящим клеевым композициям и может быть использовано для монтажа чувствительных элементов полупроводниковых приборов и больших интегральных схем

Клей // 398590

Изобретение относится к высокотемпературному составу холодного отверждения и может быть использовано в изделиях космической техники для устранения дефектов, ремонта теплозащитных покрытий, заделки стыков
Изобретение относится к полимерным клеящим веществам, в частности к полимерному клеящему веществу на основе полиметил(мет)акрилата и его применению

Изобретение относится к бумажной промышленности, в частности к обоям со слоем клеящего вещества на оборотной стороне
Изобретение относится к полимерной дисперсии для маркировки дисперсионных клеев

Изобретение относится к клеевой композиции, в частности для производства ламинированного картона
Изобретение относится к улучшенной двухкомпонентной адгезивной системе, набору, включающему указанные два адгезивных компонента, его применению и способу получения изделий из древесных материалов для внутренней отделки, а именно прессованных изделий, элементов паркетного пола и мебельного щита с очень низким выделением формальдегида и к изделиям из древесных материалов для внутренней отделки с улучшенными свойствами. Двухкомпонентная адгезивная система включает адгезивный компонент I, включающий 50-70 мас.% смолы меламин-формальдегидного (MF) типа в 25-40 мас.% воды и адгезивный компонент II, включающий 20-40 мас.% дисперсии адгезива на водной основе, 15-40 мас.% поглотителя формальдегида, кислотное соединение в таком количестве, что pH адгезивного компонента II составляет 1,5-6,5, и 25-40 мас.% воды. Причем адгезивный компонент I и II наносят в массовом соотношении I:II в пределах от 1:0,5 до 1:1,5 и адгезивная система имеет молярное соотношение формальдегида (F) ко всем аминогруппам (F/NH2) в пределах от 0,2 до 0,7. Адгезивная система обладает как очень низким уровнем выделения формальдегида, так и хорошими клеящими свойствами. 7 н. и 20 з.п. ф-лы, 10 табл., 6 пр.
Изобретение относится к связующему материалу для соединения камня, для заполнения пространства между камнями, керамическими и другими строительными материалами. Связующий материал содержит, по меньшей мере, 100 масс.ч. высушенной на воздухе ненасыщенной сложнополиэфирной смолы, от 0 до 5 масс.ч. гидрированного касторового масла, от 1 до 20 масс.ч. нанопорошка, выбранного из группы, состоящей из нанопорошков диоксида кремния, карбоната кальция, силиката магния, оксида кальция, оксида алюминия или смеси, от 0 до 100 масс.ч. наполнителя, выбранного из группы, состоящей из микродисперсного диоксида кремния, прозрачного порошка талька или их смеси, и 1 до 15 масс.ч. противоусадочного вещества, выбранного из группы, которую составляют полипропилацетат, сложный полиэфир адипиновой кислоты и пропантриола, поливинилацетат, полиакрилат полистирол, полиэтилен, поливинилхлорид, полиметилметакрилат. Средний размер частиц наполнителя составляет от 300 до 1250 меш. Изобретение позволяет преодолеть недостатки традиционного связующего материала, состоящего из обычного клея для мрамора, такие как низкая скорость высыхания на воздухе, низкая противоусадочная способность, низкая проникающая способность и т.п. Связующий материал для соединения камня по изобретению обладает преимуществами в высокой проникающей способности, отсутствии липкости после отверждения, в высокой противоусадочной способности, блеска после полирования. 6 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к промежуточной пленке для многослойного стекла, которую используют для многослойного стекла в автомобилях, зданиях и т.п. Пленка включает теплоизоляционный слой и экранирующий ультрафиолетовое излучение слой. Теплоизоляционный слой включает поливинилацетальный полимер, теплоизоляционные частицы оксида металла, и по меньшей мере один компонент, выбранный из фталоцианинового соединения, нафталоцианинового соединения и антрацианинового соединения. Экранирующий ультрафиолетовое излучение слой включает поливинилацетальный полимер и экранирующий ультрафиолетовое излучение материал, где количество экранирующего ультрафиолетовое излучение материала составляет не менее 0,1 мас.% на 100 мас.% экранирующего ультрафиолетовое излучение слоя. Также предложено многослойное стекло, включающее первый компонент многослойного стекла и второй компонент многослойного стекла и указанную промежуточную пленку, расположенную между первым и вторым компонентами многослойного стекла. Предложенная промежуточная пленка придает превосходные теплоизоляционные свойства многослойному стеклу и сохраняет эти свойства в течение продолжительного периода времени. 2 н. и 8 з.п. ф-лы, 2 ил., 5 табл., 12 пр.

Изобретение относится к области акриловых клеев термического отверждения для прочного соединения металлических поверхностей, в том числе алюминиевых субстратов. Термоотверждаемая акриловая клеевая композиция содержит 52,0-59,0 мас.ч. глицидилметакрилата, 29,0-37,0 мас.ч. полиэфирполиуретана марки Десмоколл-400, 0,5-0,6 мас.ч. форполимера диаллилизофталата, 1,0-1,4 мас.ч. N,N′-(1,3-фенилен)дималеимида, 0,5-0,6 мас.ч. третбутилпербензоата, 0,01-0,03 мас.ч. п-метоксифенола, 2,0-3,0 мас.ч. метакрилированного силана, 1,0-3,0 мас.ч. акриловой кислоты, 3,0-5,0 мас.ч. диоктилфталата и 15,0-18,0 мас.ч. диоксида кремния с размером частиц 10-500 нм на 100,0 мас.ч. композиции. Технический результат - создание термоотверждаемой акриловой клеевой композиции с высокими прочностными характеристиками по отслаиванию и сдвигу на алюминиевых и других металлических субстратах, обладающей повышенной теплостойкостью. 1 ил., 2 табл.,8 пр.
Изобретение относится к токопроводящим клеевым композициям на основе эпоксидиановых смол и металлического наполнителя, предназначенным для низкоомного контактного соединения отдельных элементов, деталей или узлов приборных конструкций
Наверх