Способ определения гидрохинона и диоксимпарахинона в растворах

 

Использование: аналитическая химия, а именно способ количественного определения гидрохинона (ГХ) и диоксимпарахинона (ДОХ) в водном растворе при их совместном присутствии. Сущность: раствор пробы делят на две части, к первой части добавляют раствор уксуснокислого натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о содержании в пробе диоксимпарахинона. Ко второй части пробы добавляют раствор гидроксида натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о суммарном содержании в пробе гидрохинона и диоксимпарахинона. 1 табл.

Изобретение относится к области аналитической химии, а именно к способу количественного определения гидрохинона (ГХ) и диоксимпарахинона (ДОХ) в растворах при их совместном присутствии.

Известны титриметрические способы определения хинонов с использованием в качестве титранта тетрабутиламмония [1, с. 49] солями хрома [1, с. 499] Недостатком способов является их неспецифичность, низкая чувствительность, высокая стойкость, дефицитность и токсичность применяемых реактивов.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ суммарного определения гидрохинона и диоксимпарахинона (оксимов) заключающийся в том, что в раствору пробы добавляют соль трехвалентного железа, проводят реакцию восстановления трехвалентного железа определяемыми веществами, добавляют к полученному раствору цветореагент на двухвалентное железо и регистрируют оптическую плотность окрашенного раствора, по величине которой судят о содержании указанных веществ в пробе [2, 1970, с. 243] Способ непригоден для раздельного определения ГХ и ДОХ.

Сущностью изобретения является то, что раствор пробы делят на две части, к первой части пробы добавляют раствор уксуснокислого натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о содержании в пробе диоксимпарахинона, ко второй части пробы добавляют раствор гидроксида натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о суммарном содержании в пробе гидрохинона и диоксимпарахинона.

Благодаря тому, что ГХ окрашивает раствор гидроксида натрия, но не окрашивает раствор уксуснокислого натрия, тогда как ДОХ окрашивает оба раствора, содержание ДОХ вычисляют по результатам фотометрирования раствора с уксуснокислым натрием, а содержание ГХ по разности между результатом фотометрирования раствора гидроксидом натрия и его долей, соответствующей содержанию ДОХ.

Предварительно строят три градуировочных графика зависимости: а) оптической плотности раствора от содержания ГХ, обработанного гидроксидом натрия, б) оптической плотности раствора от содержания ДОХ, обработанного гидроксидом натрия, в) оптической плотности раствора от содержания ДОХ, обработанного уксуснокислым натрием.

График по п. "в" используют для вычисления содержания ДОХ. По графику "б" определяют долю оптической плотности пробы, обработанной гидроксидом натрия, соответствующую содержанию ДОХ. График "а" используют для вычисления содержания ГХ по разности оптической плотности пробы, обработанной раствором щелочи, и ее доли, соответствующей содержанию ДОХ.

Определение ДОХ и ГХ обработкой одной порции пробы раствором уксуснокислого натрия, другой порции раствором гидроксида натрия с последующим фотометрированием окрашенных растворов является отличительным признаком и не обнаружены в аналогичных технических решениях.

Заявляемое техническое решение позволяет раздельно определять ДОХ и ГХ в растворе ингибиторов при их совместном присутствии. Хорошая растворимость уксуснокислого натрия и гидроксида натрия не только в воде, но и в спирте позволяет анализ многих органических растворителей проводить путем растворения пробы в спирте, исключая трудоемкий процесс экстракции.

Наличие отличительных признаков подтверждает новизну изобретения и изобретательский уровень.

Простота анализа, экспрессность, доступность реактивов и оборудования, применяемых в заявляемом способе, а также необходимость способа для аналитического контроля узла приготовления раствора ингибитора производства стирола подтверждают соответствие его критерию "промышленная применимость".

Изобретение осуществляется следующим образом: В две мерные колбы вместимость 50 см3 вносят 1 3 см3 исследуемой пробы, содержащей по 0,15 0,3 мг ГХ и ДОХ, в одну из колб вносят 25 см3 раствора уксуснокислого натрия в спирте с концентрацией 1 мас. а в другую 25 см3 раствора гидроксида натрия в спирте с концентрацией 1% мас. содержимое обеих колб доливают до метки этиловым спиртом и замеряют оптические плотности раствором = 41010 нм..

Массовую долю ДОХ в исследуемой пробе в процентах вычисляют, используя градуировочный график зависимости оптической плотности раствора от содержания ДОХ, обработанного уксуснокислым натрием.

Массовую долю ГХ в исследуемой пробе вычисляют в следующей последовательности: а) вычисляют Cд2ох количество мг ДОХ, содержащееся в объеме пробы Y2, взятом на измерение с гидроксидом натрия по формуле: где Y1, Y2 объемы пробы, взятые на обработку с уксуснокислым натрием и гидроксидом натрия, соответственно; C1 количество ДОХ в фотометрируемом растворе, соответствующее оптической плотности пробы, обработанной уксуснокислым натрием.

б) по градуировочному графику зависимости оптической плотности раствора от содержания ДОХ, обработанного гидроксидом натрия, определяют долю оптической плотности Дд2ох, соответствующую значению Cl2j[.

в) определяют долю оптической плотности Дu2[, соответствующую содержанию ГХ в пробе, взятой на обработку с гидроксидом натрия:
Дu2[ = Д2l2j[,
где Д2 оптическая плотность пробы, обработанной гидроксидом натрия.

г) массовую долю ГХ в исследуемой пробе в процентах вычисляют по формуле:

где Cг2х количество ГХ в фотометрируемом растворе, полученном обработкой пробы гидроксидом натрия, мг; m масса пробы, взятая на обработку с гидроксидом натрия, г.

Изобретение иллюстрируется следующими примерами.

Пример 1.

Построение градуировочного графика зависимости оптической плотности от ДОХ, обработанного уксуснокислым натрием.

В мерные колбы вместимостью 50 см3 вносят 0,5 1,0 1,5 2,0 - 2,5 3,0 см3 стандартного раствора ДОХ в спирте с концентрацией 0,3 мг/см3, приливают 25 см3 раствора уксуснокислого натрия с концентрацией 10 г/дм3, доливают до метки спиртом, перемешивают и замеряют оптическую плотность раствора с синим светофильтром в кюветах с толщиной слоя 50 мм по отношению к раствору контрольного опыта, который готовят аналогичным образом, но без стандартного раствора. По результатам измерений (0,09 0,2 0,3 0,38 0,47 0,54) строят градуировочный график откладывая по оси абсцисс содержание ЖОХ в фотометрируемом растворе в мг, а по оси ординат соответствующие им оптические плотности.

Пример 2.

Построение градуировочного графика зависимости оптической плотности от ДОХ, обработанного гидроксидом натрия.

В мерные колбы вместимостью 50 см3 вносят 0,1 0,2 0,4 0,6 - 0,8 1,0 см3 стандартного раствора ДОХ в спирте с концентрацией 0,3 мг/см3, приливают 25 см3 раствора гидроксида натрия с концентрацией 10 г/дм3, доливают до метки спиртом, перемешивают и измеряют оптическую плотность растворов с синим светофильтром в кюветах с толщиной слоя 50 мм по отношению к раствору контрольного опыта, который готовят в аналогичных условиях, но без стандартного раствора. По результатам измерений (0,12 0,21 0,34 0,43 0,50 0,56) строят градуировочный график, откладывая по оси абсцисс содержание ДОХ в фотометрируемом растворе в мг, а по оси ординат соответствующие им оптические плотности.

Пример 3.

Построение градуировочного графика зависимости оптической плотности от ГХ, обработанного гидроксидом натрия.

График строят аналогично примеру 2, с той лишь разницей, что вместо стандартного раствора ДОХ используют стандартный раствор ГХ в спирте с концентрацией 0,3 мг/см3. Для построения графика результаты измерений (0,07 0,11 0,17 0,25 0,32 0,37) откладывают по оси ординат, а соответствующие этим значениям количества ДОХ в фотометрируемом растворе в мг откладывают по оси абсцисс.

Пример 4.

Анализируют искусственную смесь состава: ДОХ 0,109 ГХ 0,219 в этаноле.

5,0 см3 смеси разбавляют до 50 см3 этанолом и перемешивают.

В мерную колбу вместимостью 50 см3 (N 1) вносят 2,0 см3 разбавленной смеси, приливают 25 см3 раствора уксуснокислого натрия в спирте с концентрацией 10 г/дм3, доливают до метки этиловым спиртом, перемешивают и фотометрируют по отношению к раствору контрольного опыта (25 см3 уксуснокислого натрия доливают до 50 см3 этанолом) в кювете с толщиной слоя 50 мм при = 410 10 нм. Результат измерений Д=0,19.

В мерную колбу вместимостью 50 см3 (N 2) вносят 2,0 см3 разбавленной пробы, приливают 25 см3 раствора гидроксида натрия в этаноле с концентрацией 10 г/дм3, доливают до метки спиртом, перемешивают и замеряют оптическую плотность раствора в кювете с толщиной слоя 50 мм при = 410 10 нм по отношению к контрольному раствору (25 см3 раствора гидроксида натрия доливают до 50 см3 этанолом). Результат измерения - Д=0,515.

Вычисления.

1. По графику из примера 1 находят количество ДОХ в фотометрируемом растворе (C=0,23 мг) и вычисляют содержание ДОХ в пробе:

2. Рассчитывают содержание ДОХ в объеме, взятом на обработку гидроксидом натрия, мг:

3. По графику из примера 2 находят долю оптической плотности Ддох, соответствующую содержанию ДОХ; Д=0,29.

4. Рассчитывают оптическую плотность, соответствующую содержанию ГХ:
Дгх=0,515 0,29 0,225
5. По графику из примера 3 находят количество Cгх в мг, соответствующее оптической плотности Дгх. Cгх=0,165 мг.

6. Рассчитывают содержание ГХ в исследуемой пробе:

Пример 5.

Анализируют производственный раствор ингибиторов, используемый при производстве окиси пропилена со стиролом.

2,5 г пробы разбавляют до 50 см3 этанолом. В мерную колбу N 1 вместимостью 50 см3 вносят 3,0 см3 разбавленной пробы, приливают 25 см3 спиртового раствора уксуснокислого натрия с концентрацией 10 г/дм3, доливают до метки этанолом и замеряют оптическую плотность, как указано в примере 4. Результат измерения: Д=0,095.

В мерную колбу N 2 вместимостью 50 см3 вносят 1,0 см3 спиртового раствора гидроксида натрия, доливают до метки этанолом и фотометрируют, как указано в примере 4. Результат измерения Д=0,3.

Вычисления проводят в последовательности, описанной в примере 4. Результаты анализа
ДОХ 0,063 мас.

ГХ 0,165 мас.

Пример 6.

С целью определения метрологических характеристик методики проводят пять определений ГХ и ДОХ в одной и той же пробе. Результаты определений и вычислений для n=5 и p=0,95 представлены в таблице, где среднее арифметическое значение результатов определений; S воспроизводимость метода (стандартное отклонение); XtS доверительный интервал; W - относительное стандартное отклонение; n число определений; p доверительная вероятность.


Формула изобретения

Способ фотометрического определения гидрохинона и диоксимпарахинона в растворах, отличающийся тем, что раствор пробы делят на две части, к первой части пробы добавляют раствор уксуснокислого натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о содержании в пробе диоксимпарахинона, к второй части пробы добавляют раствор гидроксида натрия, измеряют оптическую плотность окрашенного раствора и по ее величине судят о суммарном содержании в пробе гидрохинона и диоксимпарахинона.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к аналитической химии, а именно к способам определения бензола и его метильных производных, и может быть использовано в практике центральных заводских лабораторий, аналитических лабораторий химических предприятий, санитарно-эпидемиологической службы

Изобретение относится к аналитической химии, а именно к способам определения оксибензолов, и может быть применено в практике контрольно-аналитической службы химических заводов, при проведении санитарно-гигиенических и химико-токсикологических исследований

Изобретение относится к области аналитической химии, а именно к способам количественного определения лекарственных препаратов, и может быть использовано в работе контрольно-аналитических лабораторий химико-фармацевтических заводов и производственных объединений "Фармация"

Изобретение относится к аналитической химии, а именно к способам определения N-(2,3-диметилфенил)-антраниловой кислоты, и может быть применено в практике центральных заводских лабораторий, контрольно-аналитических лабораторий химических предприятий, химико-токсикологических лабораторий

Изобретение относится к аналитической химии

Изобретение относится к аналитической химии, а именно к контролю содержания сероуглерода в воздухе при проведении гигиенических исследований, и может быть использовано в практике санитарных лабораторий промышленных предприятий и центров госсанэпиднадзора

Изобретение относится к способам аналитического определения концентрации ионов металлов в растворе, в которых исследуемый материал возбуждается электромагнитным излучением и в результате этого испускает свет

Изобретение относится к калориметрическим способам контроля концентраций вредных веществ в воздухе и может быть использовано в экологии, а также в области обеспечения техники безопасности на промышленных предприятиях

Изобретение относится к аналитической химии, а именно к способам количественного определения гидразинового горючего в сточной воде, например в водоемах предприятий химической промышленности и др

Изобретение относится к аналитической химии и может быть использовано при анализе растворов, содержащих хлорокомплексы палладия

Изобретение относится к области аналитической химии, а именно индикации и анализу аммиака, его обнаружению и количественному определению в исследуемых пробах

Изобретение относится к спектрофотометрическим методам определения физиологически активных нитрилов алифатических предельных кислот

Изобретение относится к оптическим газоанализаторам и предназначено для определения различных газов в воздухе производственных помещений зернохранилищ, зерноперерабатывающих предприятий, а также в химической, фармацевтической промышленности и других отраслях

Изобретение относится к аналитическому контролю объектов окружающей среды на содержание компонентов ракетных топлив, обладающих токсичными свойствами

Изобретение относится к аналитической химии, а именно к способам экспресс-определения наличия несимметричного диметилгидразина (НДМГ) путем индикации на поверхностях, в частности, для контроля целостности емкостей, трубопроводов и агрегатов химических производств, объектов хранения и уничтожения химического оружия и компонентов ракетных топлив, а также для санитарно-химического контроля
Наверх