Способ обнаружения объекта

 

Изобретение относится к области радиолокации и может быть использовано для обнаружения объектов, содержащих в своем составе определенный химический элемент. Способ обнаружения объекта включает излучение радиоимпульсов в зону наблюдения пачек радиоимпульсов с частотой несущего колебания, кратной частоте облучения электронов для предполагаемой реализации запрещенного перехода или частоте, соответствующей энергии электрона в невозбужденном состоянии на одном из полностью заполненных энергетических уровней атомов заданного химического элемента, который несет обнаруживаемый объект, прием излученных радиоимпульсов в точках пространства, удаленных от точки излучения и измерение одной из энергетических характеристик принятых радиоимпульсов; решение о наличии объекта в зоне наблюдения принимают по результатам сравнения полученного распределения измеренных в точках приема значений энергетической характеристики радиоимпульсов с ее распределением, соответствующим отсутствию объекта, несущего заданный химический элемент.

Изобретение относится к области радиолокации и может быть использовано для обнаружения объектов, содержащих в своем составе определенный химический элемент.

Известен способ обнаружения объекта, включающий излучение радиоимпульсов в зону наблюдения, их прием и измерение в нескольких точках пространства, удаленных от точки излучения, одной из энергетических характеристик принятых радиоимпульсов и принятие решения о наличии объекта в зоне наблюдения [1] Однако этот способ не дает возможности выделить из обнаруженных объектов несущие заданный химический элемент.

Предлагаемый способ обеспечивает возможность обнаружения объекта, несущего заданный химический элемент, за счет того, что в способе обнаружения объекта, включающем излучение радиоимпульсов в зону наблюдения, их прием и измерение хотя бы в одной точке пространства, удаленных от точки излучения, одной из энергетических характеристик принятых радиоимпульсов и принятие решения о наличии объекта в зоне наблюдения, при обнаружении объекта, несущего заданный химический элемент, производят излучение пачек радиоимпульсов с частотой несущего колебания, кратной частоте облучения электронов для предполагаемой реализации запрещенного перехода, или частоте, соответствующей энергии электрона в невозбужденном состоянии на одном из полностью заполненных энергетических уровней атомов заданного химического элемента, мощностью излученной пачки радиоимпульсов Р, определяемой из соотношения где P' значение энергетической характеристики электромагнитной волны, прошедшей сквозь объект, без искажения фронта, L' безразмерная величина, численно равная длине замкнутой траектории прохождения радиоимпульса на облучаемом объекте, диэлектрическая проницаемость покрытия объекта, m, магнитная проницаемость покрытия объекта, e1 диэлектрическая проницаемость материала корпуса объекта, 1 магнитная проницаемость материала корпуса объекта, m масса предполагаемой части объекта, на которую осуществляют воздействие со значением энергетической характеристики не менее (P-), E энергия, соответствующая выбранной частоте, необходимая для предполагаемой реализации запрещенного перехода, или невозбужденного состояния электрона на полностью заполненном энергетическом уровне,
e число "e",
i число радиоимпульсов в пачке,
k номер гармоники несущего колебания, соответствующий выбранной частоте,
число "пи",
Na число Авогадро,
t длительность радиоимпульса,
M атомарная масса вещества, включающего заданный химический элемент,
Q электрическая добротность вещества, включающего заданный химический элемент,
A характеристика огибающей радиоимпульса в пачке,
Pн единичная, нормированная энергетическая характеристика,
c затухание радиосигнала на трассе распространения до объекта, длительностью радиоимпульса в пачке не менее одного периода несущего колебания, периодом следования радиоимпульсов в пачке, равным времени прохождения радиоимпульса по замкнутой траектории на облучаемом объекте, сравнивают полученное распределение измеренных в точках приема значений энергетической характеристики радиоимпульсов с ее распределением, соответствующим отсутствию объекта, несущего заданный химический элемент, и принимают решение о его наличии в зоне наблюдения при выполнении условий:
(Pn+Pn)<Pn-Pn<Pn-(Pn+Pn), (2)
где Pn значение энергетической характеристики пачки радиоимпульсов, измеренное при отсутствии объекта в n-ой точке пространства,
Pn' значение энергетической характеристики пачки радиоимпульсов, измеренное в процессе обнаружения объекта в n-ой точке пространства,
Pn, Pn погрешности измерения величин Pn и Pn' соответственно.

Обнаружение объекта, несущего заданный химический элемент, осуществляют следующим образом. С помощью радиопередающего устройства излучают пачки радиоимпульсов в область пространства, в которой ожидается появление объекта, несущего заданный химический элемент. При этом производят сканирование излучением по азимуту и углу места по заранее выбранному закону.

Параметры излучения выбирают следующим образом. Частота несущего колебания радиоимпульсов должна быть кратной частоте облучения электронов для предполагаемой реализации запрещенного перехода, или частоте, соответствующей энергии электрона в невозбужденном состоянии на одном из полностью заполненных энергетических уровней атомов заданного химического элемента. Период следования радиоимпульсов в пачке должен равняться времени прохождения радиоимпульса по замкнутой траектории на облучаемом объекте, т.к. является заранее заданной величиной, определяемой конструкцией обнаруживаемого объекта. Мощность (или другая энергетическая характеристика) излученной пачки радиоимпульсов Р определяется из соотношения (1). Она выбирается таким образом, чтобы энергия, инжектированная в электроны выбранного (определяемого частотой излучения) энергетического уровня, была достаточной только для их перехода на следующий, более высокий, но заполненный энергетический уровень. Вследствие принципа Паули такие электроны не могут находиться на заполненной орбите. Возвратиться на прежнюю орбиту они не могут из-за инжектируемой энергии, а энергии для перехода на более высокий уровень недостаточно. Т.к. названные электроны все же вынуждены перемещаться на все более высокие уровни до достижения незаполненного уровня, то возникающий в месте нахождения объекта энергетический дефицит будет гаситься за счет энергии внешнего поля (радиолокационного сигнала). Происходящее при этом перераспределение энергии по фронту падающей волны будет носить необратимый характер. Таким образом возникает локализованное по фронту падающей волны "пятно" с меньшим энергетическим уровнем, чем в остальных точках волнового фронта (В.И.Сергеев. Принцип нулевой энтропии. Эффект черной дыры. Теория и техника радиосвязи, 1993, вып. 2; Протокол N 2-2 от 31.01.94 лабораторных испытаний, ЦНИИИ-5 МО РФ по НИЭР "Оксид").

Излученные радиоимпульсы принимают несколькими разнесенными в пространстве радиоприемными устройства. Сравнивая полученное распределение измеренных в точках приема значений энергетической характеристики радиоимпульсов с ее распределением, соответствующим отсутствию объекта, несущего заданный химический элемент, принимают решение о его наличии в зоне наблюдения при выполнении условий (2).


Формула изобретения

Способ обнаружения объекта, включающий излучение радиоимпульсов в зону наблюдения, их прием и измерение хотя бы в одной точке пространства, удаленной от точки излучения, одной из энергетических характеристик принятых радиоимпульсов и принятие решения о наличии объекта в зоне наблюдения, отличающийся тем, что при обнаружении объекта, несущего заданный химический элемент, производят излучение пачек радиоимпульсов с частотой несущего колебания, кратной частоте облучения электронов для предполагаемой реализации запрещенного перехода, или частоте, соответствующей энергии электрона в небозбужденном состоянии на одном из полностью заполненных энергетических уровней атомов заданного химического элемента, мощностью излученной пачки радиоимпульсов Р, определяемой из соотношения


где Р'- значение энергетической характеристики электромагнитной волны, прошедшей сквозь объект, без искажения фронта;
L'- безразмерная величина, численно равная длине замкнутой траектории радиоимпульса на облучаемом объекте;
- диэлектрическая проницаемость покрытия объекта;
,- магнитная проницаемость покрытия объекта;
1- диэлектрическая проницаемость материала корпуса объекта;
1- магнитная проницаемость материала корпуса объекта;
m масса предполагаемой части объекта, на которую осуществляют воздействие со значением энергетической характеристики не менее (P-);
Е энергия, соответствующая выбранной частоте, необходимая для предполагаемой реализации запрещенного перехода или невозбужденного состояния электрона на полностью заполненном энергетическом уровне;
е число "е";
i число радиоимпульсов в пачке;
k номер гармоники несущего колебания, соответствующий выбранной частоте;
N0 число Авогадро;
- длительность радиоимпульсов;
М атомарная масса вещества, включающего заданный химический элемент;
Q электрическая добротность вещества, включающего заданный химический элемент;
А характеристика огибающей радиоимпульса в пачке;
Рн единичная нормированная энергетическая характеристика;
- затухание радиосигнала на трассе распространения до объекта;
длительностью радиоимпульса в пачке не менее одного периода несущего колебания, периодом следования в пачке, равным времени прохождения радиоимпульса по замкнутой траектории на облучаемом объекте, сравнивают полученное распределение измеренных в точках приема значений энергетической характеристики радиоимпульсов с ее распределением, соответствующим отсутствию объекта, несущего заданный химический элемент, и принимают решение о его наличии в зоне наблюдения при выполнении условий

где Рп значение энергетической характеристики пачки радиоимпульсов, измеренное при отсутствии объекта в n-ой точке пространства,
Рп'- значение энергетической характеристики пачки радиоимпульсов, измеренное в процессе обнаружения объекта в n-ой точке пространства,
Pп, Pп- погрешности измерения величин Рп и Рп' соответственно.



 

Похожие патенты:

Изобретение относится к локационным устройствам и может использоваться в системах обнаружения квазидетерминированных сигналов

Изобретение относится к радиолокационной технике, а более конкретно к вертолетным радиолокационным станциям с синтезированной апертурой, предназначенным для обнаружения и определения координат объектов, расположенных под поверхностью земли, снегового или ледового покрова

Изобретение относится к способам и устройству для передачи электромагнитных сигналов в землю через конденсатор

Изобретение относится к радиосистемам, в которых разделенные во времени моноколебания создаются из импульсов постоянного тока и передаются в пространство, в котором суммарные всплески энергии рассеяны в термах частоты, где спектральная плотность сливается с шумом окружающей среды, и информация, относящаяся к этим всплескам, является восстанавливаемой

Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства

Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства

Изобретение относится к радиолокации и может быть использовано для радиотехнической навигации, в частности для судовождения

Изобретение относится к области радиолокации и может быть использовано в перспективных РЛС для управления воздушным движением и для контроля воздушного пространства

Изобретение относится к радиолокации и может быть использовано в перспективной радиолокационной системе управления воздушным движением и для контроля воздушного пространства

Изобретение относится к радиолокации и может быть использовано для обнаружения объектов, содержащих в своем составе определенный химический элемент

Изобретение относится к области радиолокации и может быть использовано для решения задачи обнаружения сигналов при стабилизированном уровне ложной тревоги

Изобретение относится к радиолокации и может быть использовано в РЛС для управления воздушным движением и для контроля воздушного пространства
Наверх