Насос-теплогенератор

 

Использование: для прямого преобразования механической энергии в тепло, уносимое к потребителям прокачиваемой жидкостью. Сущность изобретения: насос-теплогенератор выполнен одно- или многоступенчатым в зависимости от мощности привода вращения и требуемой скорости нагрева. В каждой ступени он имеет полый корпус 1 и консольно подвешенный в корпусе на валу 4 привода вращения полый ротор 5, оснащенный по меньшей мере одним средством 7 воздействия на жидкость для ее нагрева. Для исключения блокирования выхода нагретой жидкости в широком диапазоне скоростей вращения, повышения технологичности, надежности и удобства обслуживания насос-теплогенератор имеет корпус 1, подобный корпусу центробежного насоса, с центральным всасывающим тангенциальным нагнетательным патрубками 2 и 3, полость ротора 5 выполнена состоящей из двух сообщающихся между собой и с полостью корпуса частей: из глухого со стороны вала привода центрального отверстия 8 и, по меньшей мере, одного направленного от центра к периферии ротора канала 6, выход которого имеет угловое смещение относительно входа в направлении, противоположном вращению ротора, а средство 7 воздействия на жидкость для ее нагрева выполнено в виде, по меньшей мере, одного углубления в периферийной части тела ротора, отходящего от каждого канала 6 и в направлении, противоположном направлению вращения ротора. 4 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции насосов-теплогенераторов, которые могут быть использованы преимущественно в автономных замкнутых системах теплоснабжения жилых, общественных и промышленных зданий в местностях, богатых источниками даровой механической энергии, в частности энергии ветра и водных потоков. В особенности такие насосы-преобразователи механической энергии в тепловую пригодны для отопления зданий, в которых в довольно широких пределах допустимы суточные и сезонные колебания температуры, например: коровников или свинарников, хранилищ продукции растениеводства и т.п.

В общем проблема освоения упомянутых источников даровой энергии в последнее время сильно обострилась в связи с истощением доступных и хорошо обустроенных и освоенных месторождений минеральных энергоносителей: угля, нефти и природного газа. Применительно же к указанному классу теплопотребителей эта проблема стоит особенно остро еще и потому, что их количество велико, они рассредоточены на значительных территориях и обычно удалены от месторождений минеральных топлив и узловых пунктов транспортной сети их распределения.

До недавних пор при освоении энергии ветра и малых рек основное внимание уделялось конструированию ветро- и гидроэнергетических установок, которые должны были бы работать совместно с электрогенераторами. На этом пути уже достигнуты впечатляющие результаты, связанные выравниванием мощности, отдаваемой в локальные электросети, при колебаниях нагрузки на ветровые или водяные колеса и с защитой электрогенераторов от перегрузок при скачкообразных увеличениях напора ветра или водного потока.

Но в тех случаях, когда потребителям нужна именно тепловая энергия, двойное преобразование (механической энергии ветра или воды в электрическую и электрической в тепловую энергию) сопряжено с нежелательными энергетическими потерями и с непропорциональным достигаемому результату увеличением капитальных затрат.

Поэтому все чаще появляются технические решения, предусматривающие прямое преобразование механической энергии в тепловую. Эти решения при их практической реализации оказываются тем более эффективными, чем больше масса и теплоемкость теплоносителя, циркулирующего в локальных сетях теплоснабжения, ибо именно запас теплоносителя в таких сетях в силу существенной инерционности теплообменных процессов позволяет простейшим и экономически выгодным путем выравнивать колебания нагрузки на входе в механические теплогенераторы.

Однако эффективность таких теплогенераторов, оцениваемая по критериям простоты и, соответственно, удельной материалоемкости, технологичности в изготовлении, удобства обслуживания и надежности в эксплуатации, существенно зависит от их конструкции.

Например, из описания изобретения к авт. свид. СССР N 1627790 известен фрикционный нагреватель, имеющий корпус-бак с нагреваемой жидкой средой, неподвижный диск, жестко прикрепленный к днищу корпуса, и подвижный диск, установленный с возможностью вращения от ветроэнергетического привода и осевого перемещения относительно неподвижного диска и снабженный по периметру установленными наклонно к оси вращения лопастями.

Выработка тепла в описанном механическом теплогенераторе происходит преимущественно вследствие трения подвижного диска о неподвижный и отчасти вследствие трения лопастей о воду или иную заполняющую бак жидкую среду.

Будучи весьма прост по конструкции, такой нагреватель громоздок и потому с трудом "вписывается" в замкнутые системы теплоснабжения, недостаточно надежен из-за износа контактирующих поверхностей дисков и малоэффективен, хотя и работоспособен, при незначительной ветровой нагрузке.

Из описания изобретения к авт. свид. СССР N 1703924 известен механический теплогенератор "Рязань", имеющий эжектор ("струйный аппарат") и центробежный насос, центральный всасывающий патрубок к нагнетательному патрубку эжектора, а нагнетательный патрубок к разветвляющемуся трубопроводу. Одна из ветвей этого трубопровода подключена к соплу эжектора, а вторая (через поверхностный теплообменник) к всасывающему патрубку эжектора.

Описанный теплогенератор также весьма прост по гидравлической схеме и может быть изготовлен с использованием стандартных комплектующих узлов. Однако генерирование тепла вследствие потерь гидравлической энергии на вихреобразование и трение в потоке оборотной жидкости вынуждает к использованию высокооборотного привода центробежного насоса и эксплуатации насоса при максимальной производительности, обеспечивающей наибольшую турбулизацию оборотной жидкости. Естественно, что малые ветро- или гидроэнергетические установки практически не могут быть использованы без мультипликатора для привода центробежного насоса при осуществлении указанного принципа генерирования тепла.

В связи с изложенным наиболее перспективными представляются теплогенераторы, изготовленные непосредственно на основе насосов и генерирующие тепло внутри корпусов таких насосов преимущественно вследствие попеременного воздействия на нагреваемую жидкость повышенного давления и разрежения.

Из числа таких теплогенераторов наиболее близок к предлагаемому насос-нагреватель текучей среды, известный из описания изобретения к патенту СССР N 1329629 по кл. F 24 J 3/00.

Этот, по меньшей мере, одноступенчатый насос-теплогенератор имеет: полый цилиндрический (дискообразный в одноступенчатом исполнении) корпус, имеющий периферийный торцевой всасывающий патрубок для подвода нагреваемой и центральный торцевой нагнетательный патрубок для отвода нагретой жидкости; ротор, выполненный в виде полого барабана, который консольно подвешен к валу привода вращения внутри корпуса и снабжен средствами воздействия на жидкость для ее нагрева, которые выполнены в виде ребер, размещенных в полости этого барабана с интервалами между собой; (статорный) диск, жестко связанный с корпусом, имеющий кольцевой направляющий канал и, по меньшей мере, один радиальный всасывающий канал для гидравлического подключения направляющего канала к полости корпуса, радиальный напорный канал, у которого входная горловина открыта в кольцевой направляющий канал, а выходное отверстие в осевую полость диска, переходящую в центральный торцевой патрубок корпуса для отвода нагретой жидкой среды, и несущий на периферии, по меньшей мере, одну расширяющуюся в направлении вращения головку.

В теле диска может быть выполнен дополнительный "карбюраторный" канал, сообщающий направляющий канал диска с атмосферой и обеспечивающий подсос воздуха в нагреваемую жидкую среду для повышения ее сжимаемости. При этом в кольцевом направляющем канале между входной горловиной радиального напорного канала и выходом из "карбюраторного" канала может быть предусмотрен пережим, а вблизи выходов из всасывающих каналов в кольцевой направляющий канал в последнем могут быть предусмотрены расширенные участки.

Согласно изобретательскому замыслу нагрев жидкости в описанном насосе-теплогенераторе должен происходить преимущественно вследствие чередования ее сжатия-расширения в зазоре между фигурными ребрами вращающегося ротора и головками на (статорном) диске и отчасти вследствие трения между частями насоса и перекачиваемой нагреваемой жидкостью.

Однако поскольку в описанном насосе-теплогенераторе выходы из радиальных всасывающих каналов открыты в кольцевой направляющий канал, поскольку входная горловина напорного радиального канала начинается оттуда же и, наконец, поскольку упомянутые выходы и вход находятся на примерно одинаковом расстоянии от геометрической оси насоса, постольку центробежная сила, действующая на жидкость при вращении ротора-барабана и порождающая относительное разрежение в кольцевом направляющем канале диска, будет практически одинаково действовать на жидкость во всех радиальных каналах. И если на всасывание этот технический эффект будет оказывать положительное влияние, то на нагнетание отрицательное, причем тем в большей степени, чем больше будет число оборотов ротора-барабана (вплоть до полного прекращения прокачивания жидкости через насос-теплогенератор и аварийного перегрева жидкости, "заблокированной" внутри его корпуса). Поэтому известный насос-теплогенератор способен работать только на малых скоростях вращения с соответствующей невысокой теплопроизводительностью.

Далее, сжатие-расширение нагреваемой жидкости между ребрами ротора-барабана и головками неподвижного диска неизбежно будет приводить к кавитации и, соответственно, к разрушению указанных деталей.

И, наконец, известный насос-теплогенератор весьма сложен по конструкции, а потому нетехнологичен в изготовлении и трудоемок в ремонте при эксплуатации.

Поэтому в основу изобретения положена задача путем усовершенствования формы ротора и гидравлической связи его полости со всасывающим и нагнетательным патрубками корпуса создать такой насос-теплогенератор, который исключал бы блокирование нагнетания в широком диапазоне скоростей вращения ротора, имел бы повышенную теплопроизводительность, был бы более прост в изготовлении, надежен и удобен в эксплуатации.

Поставленная задача решена тем, что в насосе-теплогенераторе, имеющем полый корпус со всасывающим патрубком для подвода нагреваемой и нагнетательным патрубком для отвода нагретой жидкости и консольно подвешенный внутри корпуса на валу привода вращения полый ротор, оснащенный, по меньшей мере, одним средством воздействия на жидкость для ее нагрева, согласно изобретению, всасывающий патрубок расположен соосно ротору и присоединен к корпусу со стороны, противоположной валу привода вращения, нагнетательный патрубок присоединен к корпусу тангенциально, полость ротора выполнена из двух сообщающихся между собою и с полостью корпуса частей, первая из которых по ходу жидкости представляет собою глухое центральное отверстие, ориентированное напротив выхода из всасывающего патрубка, а вторая имеет вид по меньшей мере одного направленного от центра к периферии ротора канала, выход которого имеет угловое смещение относительно входа в направлении, противоположном направлению вращения ротора, а средство для воздействия на жидкость для ее нагрева выполнено в виде, по меньшей мере, одного углубления ("кармана") в периферийной части тела ротора, отходящего от каждого канала.

Изобретение соответствует условию патентоспособности "новизна", поскольку по имеющимся данным не известно из общедоступных источников информации. Соответствует оно и условию патентоспособности "изобретательский уровень", поскольку только указанная совокупность существенных признаков, включая новую форму выполнению ротора и средства воздействия на жидкость для ее нагрева и новое взаиморасположение всех каналов для прохода нагреваемой жидкости обеспечивает новый технический эффект. Действительно, нагреваемая жидкость имеет единственным препятствием для свободного выхода из каналов в роторе только углубления, отходящие от этих каналов. Именно колебания жидкости в этих углублениях под отсасывающим действием центробежной силы и вдавливающим действием силы инерции при вращении ротора приводят к ее нагреву, не препятствуя при этом оттоку жидкости из зон нагрева при среднем и высоком числе оборотов ротора.

Первое дополнительное отличие заключается в том, что каналы в роторе выполнены прямыми, что наиболее технологично при изготовлении роторов путем механической обработки цельных заготовок.

Второе дополнительное отличие состоит в том, что каналы в роторе выполнены дугообразными, что технологически безразлично при изготовлении роторов литьем, но способствует повышению КПД вследствие уменьшения внутреннего гидросопротивления потоку жидкости через насос-теплогенератор и повышению его эксплуатационной надежности вследствие уменьшения опасности кавитации.

Третье дополнительное отличие предусматривает, что углубления ("карманы"), выполненные в теле ротора, отходят от каналов в направлении, противоположном направлению вращения ротора, а четвертое дополнительное отличие предусматривает, что такие углубления отходят от каналов в направлении по ходу вращения ротора. Первая форма выполнения углублений ("карманов") предпочтительна для высокооборотных роторов мощных насосов-теплогенераторов, поскольку способствует оттоку нагретой жидкости из полости ротора, а вторая предпочтительна для низкооборотных роторов насосов-теплогенераторов средней и малой мощности.

Далее сущность изобретения поясняется подробным описанием конструкции и работы предлагаемого насоса-теплогенератора со ссылками на прилагаемые чертежи, где изображены: на фиг. 1 предлагаемый насос-теплогенератор в продольном разрезе; на фиг. 2 то же, что на фиг. 1, в поперечном разрезе по срединной плоскости ротора; на фиг. 3 ротор насоса-теплогенератора с криволинейными каналами и углублениями ("карманами") по ходу вращения (в поперечном разрезе по срединной плоскости).

Предлагаемый насос-теплогенератор (см. фиг. 1) имеет полый корпус 1 с центральным всасывающим патрубком 2 и тангенциальным нагнетательным патрубком 3. Эта часть насоса-теплогенератора настолько подобна по форме корпусам серийно выпускаемых одно- или многоступенчатых центробежных насосов, что упомянутые корпуса можно без доработок использовать в практике реализации изобретательского замысла.

Однако в отличие от корпусов центробежных насосов корпуса 1 насосов-теплогенераторов целесообразно снабжать снаружи слоем подходящей теплоизоляции.

В корпусе 1 консольно на валу 4 привода вращения установлен ротор 5 с фигурной проточной внутренней полостью, входная часть которой имеет вид ориентированного напротив выхода из всасывающего патрубка глухого (со стороны вала 4) центрального отверстия, а выходная часть представляет собой, по меньшей мере, один прямо- (как на фиг. 2) или криволинейный (как на фиг. 3) канал 6 с углублением ("карманом") 7 в теле ротора 5, ориентированным против (как на фиг. 2) или по ходу (как на фиг. 3) направления вращения ротора. Указанное углубление 7 служит средством воздействия на жидкость для ее нагрева.

В действительности целесообразно иметь, по меньшей мере, два противоположно выполненных в теле ротора канал 6 с углублениями 7, что упрощает балансировку ротора 5 перед заводскими испытаниями насосов-теплогенераторов. Реально же число каналов 6 и углублений ("карманов") 7 определяет теплопроизводительность. Поэтому их максимальное количество при фиксированных габаритах конкретного ротора 5 определяют из условий прочности и устойчивости ротора 5.

Независимо от (прямо- или криволинейной) формы каналов 6 выходы из них должны быть смещены относительно входов в направлении, противоположном направлению вращения ротора 5. Применительно к прямолинейным каналам (см. фиг. 2) это условие улучшения перетекания подаваемой на нагрев жидкости в зону нагрева и из нее на выход из корпуса 1 может быть легко выполнено ориентированием таких каналов 6 по хордам, а применительно к криволинейным (см. фиг. 3) по дугам эвольвент, начальные точки которых имеют угловое "опережение" в сравнении с конечными.

Углубления ("карманы") 7 также могут быть как прямыми (см. фиг. 2), так и изогнутыми (см. фиг. 3). При этом очевидно, что показанные на упомянутых фигурах варианты сочетаний каналов 6 и углублений 7 не являются обязательными и что, следовательно, возможны комбинации прямолинейных каналов 6 с криволинейными углублениями 7, и наоборот.

Целесообразно также для частичной гидравлической разгрузки обычного сальникового или иного уплотнения 8 вала 4 в корпусе 1 насоса-теплогенератора выполнить в ступице ротора 5 отверстия 9.

Как уже выше было сказано, насос-теплогенератор может быть выполнен как одно- так и многоступенчатым. Тогда все сказанное выше применительно к одной ступени будет иметь силу и для каждой из ступеней с теми очевидными уточнениями, которые касаются передачи жидкости из ступени в ступень по переточным каналам в корпусе, выполнения ротора 5 многосекционным, продления консольного участка вала 4 до последней секции ротора 5 и т.п.

Работает описанный насос-теплогенератор следующим образом.

После его подключения к приводу вращения (например, ветро- или гидроколесу с соответствующими преобразователями крутящего момента и другими обычными приспособлениями) и к потребителю тепла (например, включения в замкнутую локальную систему теплоснабжения непосредственно или через теплоаккумулятор) и заливки полости корпуса 1 жидкостью включают привод.

Вал 4 раскручивает ротор 5, охлажденная (у потребителя тепла) вода или иная жидкость-теплоноситель (например, антифриз) через всасывающий патрубок 2 поступает внутрь корпуса 1 и через центральное отверстие в роторе 5 устремляется в каналы 6, заполняя попутно углубления ("карманы") 7.

При этом жидкость, попавшая в упомянутые углубления, оказывается под действием двух основных сил: центробежной силы, стремящейся "отсосать" содержимое каждого из углублений 7, и силы инерции вращения, стремящейся "закупорить" это жидкое содержимое в углублениях 7. Поскольку мимо углублений 7 при работающем роторе постоянно течет жидкость, содержимое углублений 7 обновляется в колебательном режиме, что сопровождается интенсивным генерированием тепла вблизи выходов из каналов 6.

Нагретая таким образом жидкость выходит через нагнетательный патрубок 3 к теплопотребителю или в теплоаккумулятор.

Незначительная часть общего потока жидкости, просачивающаяся через отверстия 9 в ступице ротора 5, уменьшает подпор на уплотнение 8 со стороны зазора между корпусом 1 и ротором 5, и тем самым снижает нагрузку на уплотнение 8.

Формула изобретения

1. Насос-теплогенератор, имеющий полый корпус с всасывающим патрубком для подвода нагреваемой и нагнетательным патрубком для отвода нагретой жидкости и консольно подвешенный внутри корпуса на валу привода вращения полый ротор, оснащенный по меньшей мере одним средством воздействия на жидкость для ее нагрева, отличающийся тем, что всасывающий патрубок расположен соосно ротору и присоединен к корпусу со стороны, противоположной валу привода вращения, нагнетательный патрубок присоединен к корпусу тангенциально, полость ротора выполнена из двух сообщающихся между собой и с полостью корпуса частей, первая из которых по ходу жидкости представляет собой глухое центральное отверстие, ориентированное напротив выхода из всасывающего патрубка, а вторая имеет вид по меньшей мере одного, направленного от центра к периферии, ротора, канала, выход которого имеет угловое смещение относительно входа в направлении, противоположном направлению вращения ротора, а средство воздействия на жидкость для ее нагрева выполнено в виде по меньшей мере одного отходящего от каждого канала углубления "кармана" в периферийной части тела ротора.

2. Насос-теплогенератор по п.1, отличающийся тем, что каналы в роторе выполнены прямыми.

3. Насос-теплогенератор по п.1, отличающийся тем, что каналы в роторе выполнены дугообразными.

4. Насос-теплогенератор по п. 1, отличающийся тем, что углубления "кармана" отходят от каналов в тело ротора в направлении, противоположном направлению вращения ротора.

5. Насос-теплогенератор по п. 1, отличающийся тем, что углубления "кармана" отходят от тела ротора по ходу его вращения.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области использования подземного тепла и касается устройств, использующих жидкий теплоноситель

Изобретение относится к теплоэнергетике и может быть использовано как в системах отопления, так и в аппаратах нагрева различного назначения

Изобретение относится к геотермальным устройствам и может быть использовано в системах теплоснабжения и энергоснабжения населенных пунктов

Изобретение относится к энергетике, в частности к энергетике сильных взаимодействий элементарных частиц

Изобретение относится к технике использования солнечной энергии, а более конкретно к конструкции устройства для получения воды из влажного воздуха

Изобретение относится к энергетике, в частности, к установкам тепло- и хладоснабжения, с применением реверсивных компрессионных термотрансформаторных установок

Изобретение относится к области энергомашиностроения и может быть использовано для теплоснабжения на основе геотермальных источников

Изобретение относится к энергомашиностроению и может быть использовано для теплоснабжения на основе геотермальных источников

Изобретение относится к способам нагрева жидкости и может применяться для нагрева воды в системах отопления и горячего водоснабжения

Изобретение относится к теплоэнергетике, более конкретно к средствам для нагрева жидкого теплоносителя

Изобретение относится к устройствам теплогенераторов для нагрева окружающей среды

Изобретение относится к теплоэнергетике и может быть использовано в качестве элемента теплооборудования как в системах отопления, так и в аппаратах нагрева различного назначения
Наверх