Способ подачи жидкости и центробежный гидронасос для его осуществления

 

Способ подачи жидкости и центробежный гидронасос для его осуществления могут быть использованы при подаче воды в трубопроводы теплосетей. Способ заключается в том, что гидронасос встраивают в прямолинейный участок трубопровода и поток в линии конфузорного всасывания поворачивают на 90o с транспортированием его из конусообразного в сужающийся тороподобный. Равномерности распределения скоростей перед колесом достигают разгоном его слоев, более удаленных от центра тора, и торможением менее удаленных путем прямолинейного ориентирования первых и криволинейного - вторых при одностороннем плоскостном воздействии на входе и пропорциональным подтормаживанием тех и других на выходе. При создании напора в линии диффузорного нагнетания дополнительно разгоняют поток двусторонним плоскостным воздействием при одновременном торможении его осевого вращения. Для достижения равномерности скоростей на всем пути потока от входа его в трубопровод и до выхода из насоса конфузорный входной патрубок 8 насоса выполнен тороподобным и имеет плоскую площадку 11, наклоненную под углом 30o к оси колеса, а в выходной его части предусмотрен разновысокий буртик 12, формирующий приемное отверстие 7 спирального канала. В линии нагнетания диффузорный выходной патрубок 10 снабжен двумя противорасположенными плоскими площадками 13 и 14, симметрично наклоненными к плоскости колеса 3. 2 с. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к области гидравлики и гидромашиностроения, а конкретно - к способам подачи жидкости и центробежным насосам.

Изобретение может быть использовано и в других устройствах, предназначенных для подачи жидкости или газа.

Известен способ подачи жидкости, заключающийся в создании вращающимся рабочим колесом центробежного гидронасоса разрежения в линии его конфузорного всасывания с равномерным распределением скоростей потока перед колесом, дальнейшем повороте потока и разгоне его в межлопаточных каналах колеса с повышением его давления при движении от центра к периферии колеса и выбросе жидкости через кольцевой спиральный канал в линию конфузорного нагнетания (Степанов А.И. Центробежные и осевые насосы. М., Машгиз, 1960, с. 28).

Недостатком этого известного способа является высокое гидравлическое сопротивление потоку жидкости и соответственное уменьшение напора нагнетаемой жидкости.

Известен центробежный гидронасос для подачи жидкости, содержащий корпус с консольно установленным на валу рабочим колесом с профилированными лопатками, закрепленными одним торцом на диске колеса, между которыми образуются межлопаточные каналы, сообщенные с полостью входного конфузорного патрубка, а на выходе - через кольцевой спиральный канал - с отводным диффузорным патрубком (авторское свидетельство СССР N 1430608, кл. F 04 D 29/44, 1988).

Недостатком этого известного центробежного насоса является конструкция подводящего всасывающего патрубка, создающая дополнительные гидравлические сопротивления в нем и соответственное снижение технологических характеристик по напору и подаче.

Известен также способ подачи жидкости, принятый за прототип и заключающийся в создании вращающимся рабочим колесом центробежного гидронасоса, встроенного в трубопровод, разрежения в линии его конфузорного всасывания с равномерным распределением скоростей по сечению потока перед колесом, повороте и разгоне потока в лопаточном аппарате последнего с возрастанием кинетической энергии и повышением давления в потоке в направлении его движения от центра к периферии колеса, выбросе из него жидкости в кольцевой спиральный канал и создании напора в линии диффузорного нагнетания с частичным преобразованием кинетической энергии жидкости в потенциальную (Михайлов А.К., Малюшенко В.В. Лопастные насосы. М.: Машиностроение, 1977, с. 117).

Существенным недостатком этого способа является то, что как на линии всасывания, так и на линии нагнетания имеют место значительные потери напора потока, идущие на преодоление гидравлического сопротивления, как в различных линиях его тока во входном канале, так и за счет недостаточной равномерности распределения его скоростей на входе в рабочее колесо и на выходе из него, особенно в линии нагнетания, что приведет к снижению всех выходных показателей, особенно напора и подачи, что значительно снижает экономические показатели способа, которые являются немаловажными при решении проблемы подачи жидкости в теплосетях с прямолинейными трубопроводами.

Известен также центробежный насос для подачи жидкости, содержащий корпус с консольно установленным на уплотненном валу рабочим колесом с профилированными лопатками, закрепленными по крайней мере одним торцом на диске колеса и образующими совместно межлопаточные каналы, сообщенные на входе через приемное отверстие с полостью входной камеры, выполненной в виде подводящего всасывающего патрубка конфузорного корпуса, а на выходе - через кольцевой спиральный канал - с полостью выходной камеры, выполненной в виде отводящего нагнетательного диффузорного патрубка. Колесо такого насоса установлено на валу консольно и снабжено торцовым уплотнением (Черкасский В.М. Насосы. Вентиляторы. М.: Энергия, 1977, с. 47 - 48).

Недостатком конструкции этого известного гидронасоса, во-первых, является то, что он не может быть встроен в прямолинейный трубопровод без необходимости установки в нем дополнительных колен для подвода потока к входной его части; во-вторых, при такой конструкции гидронасоса не обеспечивается требуемая равномерность скоростей на входе в колесо, а также возникают завихрения потока при его повороте, что приводит к значительному возрастанию гидравлического сопротивления и потерям, связанным с этим; в-третьих, аналогичным образом возникают потери и на выходе, связанные в основном с вращением потока. Таким образом, в известной конструкции насоса не предусмотрены мероприятия по исключению вышеперечисленных явлений, что, естественно, ведет к падению напора и подачи, снижению КПД агрегата. Кроме того, применяемое в таких насосах уплотнение вала колеса очень громоздко, сложно в изготовлении, а также увеличивает консольный участок вала, что вызывает перегрузки на подшипниках и опасность вибраций при даже незначительной неуравновешенности колеса.

Технический результат, создаваемый изобретением, состоит в уменьшении гидропотерь в потоке на всем протяжении от входа из трубопровода и до выхода из насоса за счет более равномерного распределения скоростей на входе потока в колесо, в увеличении преобразуемой части кинематической энергии жидкости, а также в улучшении конструктивной схемы, позволяющей без дополнительных операций встраивать насос в прямолинейный трубопровод, повысить антикавитационные качества и за счет его компактности исключить необходимость дополнительных элементов для крепления моноблочного насосного агрегата в трубопроводе, снизив при этом не только вес и габариты системы, но и улучшив вибрационные характеристики.

Этот результат достигается тем, что в предлагаемом способе подачи жидкости, преимущественно воды в теплосетях, заключающемся в создании вращающимся рабочим колесом центробежного гидронасоса, встроенного в трубопровод, разрежения в линии его конфузорного всасывания с равномерным распределением скоростей по сечению потока перед колесом, повороте и разгоне потока в межлопаточных каналах последнего с возрастанием кинетической энергии и повышением давления в потоке в направлении его движения от центра к периферии колеса, выбросе из него жидкости в кольцевой спиральный канал и создании напора в линии диффузорного нагнетания с частичным преобразованием кинетической энергии жидкости в потенциальную, гидронасос встраивают в прямолинейный участок трубопровода и поток в линии всасывания поворачивают на 90o с трансформированием его из конусообразного в сужающийся тороподобный, при этом равномерности распределения скоростей по сечению перед колесом достигают разгоном его слоев, более удаленных от центра тора, и торможением менее удаленных путем прямолинейного ориентирования первых и криволинейного - вторых при одностороннем плоскостном воздействии на поток на входе и пропорциональным подтормаживанием тех и других на выходе, а при создании напора в линии диффузорного нагнетания дополнительно разгоняют поток двухсторонним плоскостным воздействием при одновременном торможении его осевого вращения с увеличением преобразуемой части его кинетической энергии.

Указанный результат достигается также тем, что в центробежном насосе для подачи жидкости, преимущественно воды в трубопроводы теплосетей, содержащем корпус с консольно установленным на уплотненном валу рабочим колесом с профилированными лопатками, закрепленными по крайней мере одним торцом на диске колеса и образующими совместно межлопаточные каналы, сообщенные на входе через приемное отверстие с полостью входной камеры, выполненной в виде подводящего всасывающего конфузорного патрубка корпуса, а на выходе - через кольцевой спиральный канал - с полостью выходной камеры, выполненной в виде нагнетательного диффузора патрубка во встроенном в прямолинейный трубопровод корпуса насоса, всасывающий конфузорный патрубок выполнен тороподобным и с одной стороны снабжен плоской площадкой в виде наклонной поверхности, расположенной под углом 30o к входной части патрубка, а на выходе - профильным кольцевым выступом, выполненным в виде разновысокого буртика, формирующего приемное отверстие спирального канала, уменьшающегося по высоте в направлении к центру тора при плавном сопряжении по периметру с поверхностью последнего, при этом выходной диффузорный патрубок на выходе снабжен двумя плоскими площадками, выполненными с двух сторон напротив друг друга и симметрично наклоненными к плоскости колеса.

Уплотнение вала может быть выполнено торцовым и неподвижная его часть встроена в рабочее колесо, а подвижная - в корпус и поджата спиральной конической пружиной, при этом выполненные на их торцах антифрикционные вставки установлены с возможностью контакта друг другом в плоскости расположения диска колеса.

На фиг. 1 изображен центробежный гидронасос для подачи жидкости, продольный разрез; на фиг. 2 - корпус центробежного гидронасоса, продольный разрез; на фиг. 3 - вид по стрелке А на фиг. 2; на фиг. 4 - сечение Б-Б на фиг. 3; на фиг. 5 - сечение В-В на фиг. 3; на фиг. 6 - узел крепления и уплотнения рабочего колеса насоса, продольный разрез.

Подачу жидкости, например в теплосети, в частности в прямолинейный трубопровод, ведут встроенным в него центробежным гидронасосом, содержащим корпус 1 (см. фиг. 1 - 3) с консольно установленным на валу 2 рабочим колесом 3, имеющим профилированные лопатки 4, закрепленные одним торцом на диске 5 колеса и образующие совместно друг с другом и с диском колеса межлопаточные каналы 6, которые сообщаются на входе через приемное отверстие 7 с полостью входной камеры. Входная камера представляет собой всасывающий конфузорный патрубок 8 корпуса 1 насоса. На выходе подача жидкости осуществляется через кольцевой спиральный канал 9, сообщающийся с полостью выходной камеры, представляющей собой отводящий нагнетательный диффузорный патрубок 10.

Всасывающий конфузорный патрубок 8 выполнен тороподобным и с одной стороны снабжен плоской площадкой 11, наклоненной под углом 30o к оси колеса поверхности, расположенной во входной части патрубка. На выходе выполнен профильный кольцевой выступ в виде разновысокого буртика 12, формирующего приемное отверстие 7 спирального канала 9, уменьшающееся по высоте к центру тора "0" при плавном сопряжении по периметру с поверхностью последнего. Выходной диффузорный патрубок на выходе снабжен двумя плоскими площадками 13 и 14, выполненными с двух сторон напротив друг друга и симметрично наклоненными к плоскости I-I колеса 3.

Для осуществления подачи жидкости центробежным гидронасосом вращение рабочего колеса 3 осуществляется от электродвигателя (см. фиг. 1 и 6) через муфту с помощью вала 2, торцовое уплотнение 15 которого выполнено таким образом, что его неподвижная часть 16 встроена в рабочее колесо 3, а подвижная 17 - в корпус 1 и поджата спиральной пружиной 18. Антифрикционные вставки 19 и 20 выполнены из силицированного графита или ниграна и контактируют между собой в плоскости II-II диска колеса.

Применение предложенного технологического решения позволяет достичь равномерного распределения скоростей жидкости по всему сечению как во входной камере перед рабочим колесом, так и в выходной - за колесом. Равномерность распределения скоростей потока, в свою очередь, позволяет значительно снизить гидравлическое сопротивление в потоке, а следовательно, значительно повысить характеристики способа как по напору, так и по высоте подачи, что особенно важно в вертикальных прямолинейных трубопроводах теплосетей.

Возможность непосредственного встраивания прелагаемого насоса в прямолинейный участок трубопровода путем несложных операций, без необходимости введения дополнительных колен и т.п. элементов для подвода и поворота потока, как это имело место с ранее известными насосами, позволяет снизить вес и габариты системы, достичь экономии металла и трудозатрат.

Предлагаемое решение позволяет также значительно увеличить компактность моноблочного гидронасосного агрегата с электродвигателем и значительно улучшить его габаритные, ресурсные и виброакустические характеристики за счет конструкции торцового уплотнения вала.

Все вышеописанные преимущества позволяют просто и экономично осуществлять нагнетание жидкости со значительно увеличенным напором или подачей с помощью встроенного в прямолинейный участок трубопровода, в частности, теплосети, компактного моноблочного центробежного гидронасоса с электродвигателем.

Формула изобретения

1. Способ подачи жидкости, преимущественно воды в теплосетях, заключающийся в создании вращающимся рабочим колесом центробежного гидронасоса, встроенного в трубопровод, разрежения в линии его конфузорного всасывания с равномерным распределением скоростей по сечению потока перед колесом, повороте и разгоне потока в межлопаточных каналах последнего с возрастанием кинетической энергии и повышением давления в потоке в направлении его движения от центра к периферии колеса, выбросе из него жидкости в кольцевой спиральный канал и создании напора в линии диффузорного нагнетания с частичным преобразованием кинетической энергии жидкости в потенциальную, отличающийся тем, что гидронасос встраивают в прямолинейный участок трубопровода, и поток в линии всасывания поворачивают на 90o с трансформированием его из конусообразного в сужающийся тороподобный, при этом равномерности распределения скоростей перед колесом достигают разгоном его слов, более удаленных от центра тора, и торможением менее удаленных путем прямолинейного ориентирования первых и криволинейного - вторых при одностороннем плоскостном воздействии на входе и пропорциональным подтормаживанием тех и других на выходе, а при создании напора в линии диффузорного нагнетания дополнительно разгоняют поток двухсторонним плоскостным воздействием при одновременном торможении его осевого вращения с увеличением преобразуемой части кинетической энергии.

2. Центробежный гидронасос для подачи жидкости, преимущественно воды в теплосети, содержащий корпус с консольно установленным на уплотненном валу рабочим колесом с профилированными лопатками, закрепленными по крайней мере одним торцем на диске колеса и образующими совместно межлопаточные каналы, сообщенные на входе через приемное отверстие с полостью входной камеры, выполненной в виде подводящего всасывающего патрубка конфузорного корпуса, а на выходе - через кольцевой спиральный канал с полостью выходной камеры, выполненной в виде отводящего диффузорного патрубка, отличающийся тем, что во встроенном в прямолинейный трубопровод корпусе насоса, всасывающий конфузорный патрубок выполнен тороподобным и с одной стороны снабжен плоской площадкой в виде наклоненной под углом 30o к оси колеса поверхности, расположенной в входной части патрубка, а на выходе - профильным кольцевым выступом, выполненным в виде разновысокого буртика, формирующего приемное отверстие спирального канала, уменьшающегося по высоте в направлении к центру тора при плавном сопряжении по периметру с поверхностью последнего, при этом выходной диффузорный патрубок снабжен двумя плоскими площадками, выполненными с двух сторон напротив друг друга и симметрично наклоненными к плоскости колеса.

3. Гидронасос по п.2, отличающийся тем, что уплотнение вала выполнено торцевым, и неподвижная его часть встроена в рабочее колесо, а подвижная - в корпус и поджата спиральной конической пружиной, при этом выполненные на их торцах антифрикционные вставки установлены с возможностью контакта друг с другом в плоскости расположения диска колеса.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к области гидравлики и гидромашиностроения, а конкретно к способам подачи жидкости и центробежным гидронасосам

Изобретение относится к вентиляторостроению, в частности, к конструкции радиального вентилятора, и может быть использовано при проектировании вентиляторов и других нагнетателей общехозяйственного назначения

Изобретение относится к насосостроению, в частности к разделению напорной и входной полостей спиральных корпусов центробежных насосов при проведении гидроиспытаний

Изобретение относится к насосостроению, в частности к центробежным насосам и может быть применено в автомобильной промышленности, например, для очистки стекол автомобилей жидкостями, подаваемыми под давлением

Изобретение относится к гидромашиностроению и может быть использовано в конструкциях насосов для перекачки жидкостей

Изобретение относится к вентиляторостроению, в частности может быть использовано при проектировании спиральных корпусов центробежных вентиляторов, используемых в судовых системах вентиляции

Изобретение относится к компрессоростроению, в частности к конструкциям корпусов турбокомпрессоров высокого давления

Изобретение относится к компрессоростроению и позволяет повысить ШД

Изобретение относится к гидромашиностроению, а более конкретно к газосепарирующим устройствам

Изобретение относится к области гидравлики и гидромашиностроения, а конкретно к способам подачи жидкости и центробежным гидронасосам

Изобретение относится к насосостроению и может быть использовано в погружных центробежных насосах для добычи пластовой жидкости (нефти) из скважин

Изобретение относится к жидкостным ракетным двигателям (ЖРД) с раздельными турбонасосными агрегатами (ТНА), а более конкретно - к бустерным турбонасосным агрегатам (БТНА), преимущественно ЖРД

Изобретение относится к вакуумной технике, в частности к турбомолекулярным насосам, использующимися для создания вакуума в различных технологических системах

Изобретение относится к насосостроению и может быть использовано для перекачки газоводонефтяной смеси в системе внутрипромыслового сбора продукции нефтяных скважин

Изобретение относится к области добычи нефти и других пластовых жидкостей и может быть использовано в процессе эксплуатации скважин эпектропогружными насосами

Изобретение относится к вакуумной технике, в частности к молекулярным вакуумным насосам, использующимся для создания вакуума в различных технологических системах
Наверх