Способ производства холоднокатаной электротехнической изотропной стали

 

Использование: получение холоднокатаной электротехнической изотропной стали с улучшенными электромагнитными свойствами. Техническим результатом является улучшение электромагнитных свойств стали. Сущность изобретения: выплавленную сталь с содержанием кремния 0,2 - 1,5%, алюминия 0,1 - 0,5%, углерода 0,02 - 0,05%, марганца 0,1 - 1,0%, фосфора 0,01 - 0,16% подвергают горячей и однократной холодной прокатке на конечную толщину, обезуглероживающему отжигу холоднокатаного металла в интервале температур 980 - 800°С, при этом отжиг холоднокатаной стали на начальной стадии начинают с нагрева и выдержки металла с атмосфере защитного газа при температуре, которую определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением tв= k1+ k2(Si+Al)5oC где tв - температура выдержки стали, °С; k1, k2 - экспериментально определенные коэффициенты, k1=915, k2=30. Si - содержание кремния в стали, %; Al - содержание алюминия в стали, %, а длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия: (Si+А1) = (0,30 - 1,0)% = 50 - 85 с; (Si+Аl) = (1,1 - 1,5)% = 90 - 125 с; (Si+ Аl) = (1,6 -2,0)% = 130 - 200 с. В процессе отжига происходит непрерывный переход от температуры выдержки стали 919 - 980°С на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере с понижением температуры отжига стали до 800-870°С на конечной стадии термообработки. 1 табл.

Изобретение относится к черной металлургии, конкретно к способам получения холоднокатаной электротехнической изотропной стали.

Известен способ обработки электротехнической изотропной стали, приведенный в авторском свидетельстве СССР N 840143, C 21 D, 1/26, от 31.05.79 г. Способ предусматривает травление горячекатаной полосы с содержанием кремния 0,8 - 3,5%, углерода 0,015 - 0,06% и алюминия 0,01 - 0,06%, однократную холодную прокатку на конечную толщину и обезуглероживающий отжиг стали. При этом способ предусматривает обезуглероживание во влажной атмосфере, которое начинают при высокотемпературной ступени 1000 - 1100oC в течениe 30 - 120 с, с последующим охлаждением со скоростью 300 - 580oC/мин до промежуточной температуры 800 40oC и непрерывном переходе со скоростью 30 - 60oC/мин от промежуточной температуры на заключительный интервал температур обезуглероживания 920 - 990oC.

Но обработка стали по данному способу с использованием на начальной стадии термообработки холоднокатаного проката обезуглероживающего отжига при температуре 1000 - 1100oC приводит к окислению металла по границам зерен во влажной атмосфере, глубина зоны внутреннего окисления при этом возрастает, а электромагнитные свойства ухудшаются.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения изотропной электротехнической стали, приведенный в патенте России N 2085598, C 21 D 8/12, от 31.04.94 г., который и принят в качестве прототипа. Способ предусматривает выплавку, горячую и однократную холодную прокатку полосы на конечную толщину стали с содержанием кремния 0,3 - 3,2%, алюминия 0,2 - 0,7% и углерода 0,02 - 0,05%, электронно-лучевой отжиг холоднокатаной полосы при температуре 600 - 1200oC и обезуглероживающе-рекристаллизационный отжиг металла в защитной атмосфере в диапазоне температур 800 - 1050oC. Однако обработка стали по этому способу с дополнительным радиационно-термическим отжигом металла усложняет технологию производства и существенно повышает себестоимость готовой продукции.

Технической задачей, на решение которой направлено изобретение, является улучшение электромагнитных свойств электротехнической изотропной стали. Поставленная задача достигается тем, что термообработку холоднокатаной стали с содержанием кремния 0,2 - 1,5%; алюминия 0,1 - 0,5%; углерода 0,02 - 0,05%; марганца 0,15 - 1,0%; фосфора 0,01 - 0,16%, и прошедшей горячую и однократную холодную прокатку на конечную толщину, начинают на начальной стадии с нагрева и выдержки металла в атмосфере защитного газа. Температуру выдержки определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением: tв = K1+K2(Si+Al) 5oC, где tв - температура выдержки стали, oC; K1, K2 - экспериментально определенные коэффициенты K1 = 915, K2 = 30; Si - содержание кремния в стали,%; Al - содержание алюминия в стали,%.

Длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия: (Si+Al) = (0,30 - 1,0)% = 50 - 85 с (Si+Al) = (1,1 - 1,5)% = 90 - 125 с (Si+Al) = (1,6 - 2,0)% = 130 - 200 с Необходимым условием получения в электротехнической изотропной стали высокого уровня электромагнитных свойств является формирование в металле оптимального размера микрозерна и увеличение полюсной плотности кубической { 200} и ребровой {220}ориентировок. Это достигается в процессе обезуглероживания стали до содержания углерода менее 0,005% во влажной азотоводородной атмосфере при непрерывном переходе от температуры выдержки 919 - 980oC с понижением температуры отжига до 800 - 870oC на конечной стадии термообработки. При температуре начала обезуглероживания 919 - 980oC в результате фазового превращения в металле при понижении температуры отжига от поверхности к середине толщины полосы происходит "столбчатый" рост ферритных зерен. Напряжения, возникающие в стали в локальных объемах при фазовом переходе стимулируют в поверхностных и средних слоях полосы рост зерен ориентировок {200}, {220}.

Проведенные исследования позволяют утверждать, что увеличение количества ориентировок { 200}, {220} в готовой стали связано с увеличением количества - фазы в металле перед началом обезуглероживания.

Количество - фазы в стали зависит в первую очередь от массовой доли кремния и алюминия, а также температуры выдержки стали перед началом обезуглероживания. Причем с ростом массовой доли легирующих элементов кремния и алюминия объем - фазы - уменьшается, а с ростом температуры - увеличивается.

Поэтому для получения в стали оптимального количества - фазы и соответственно максимального уровня электромагнитных свойств стали необходимо с повышением массовой доли легирующих элементов (кремния и алюминия) увеличивать температуру и длительность выдержки холоднокатаной полосы перед началом обезуглероживания.

Пример реализации.

Предлагаемый способ производства холоднокатаной электротехнической изотропной стали осуществляется следующим образом:
Выплавляют сталь с содержанием кремния 0,2 - 1,5%; алюминия 0,1 - 0,5%; углерода 0,02 - 0,05%; марганца 0,15 - 1,0%; фосфора 0,01 - 0,16% и подвергают горячей и однократной холодной прокатке на конечную толщину 0,50 - 0,65 мм.

Окончательная термообработка проводится в агрегате непрерывного отжига при нагреве и выдержке холоднокатаной стали в атмосфере защитного газа при температуре 919 - 980oC на начальной стадии с последующим непрерывным переходом на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере (H2 20%, остальное N2) с понижением температуры отжига до 800 - 870oC на конечной стадии термообработки.

Химический состав стали, температура и длительность отжига (выдержки перед началом обезуглероживания) холоднокатаных полос и магнитные свойства готовой стали представлены в таблице.


Формула изобретения

Способ производства холоднокатаной электротехнической изотропной стали, включающий ее выплавку, горячую и однократную холодную прокатку полосы на конечную толщину, обезуглероживающе-рекристаллизационный отжиг холоднокатаного металла в защитной атмосфере, отличающийся тем, что отжиг холоднокатаной стали, содержащей, мас.%: 0,2 - 1,5 кремния; 0,1 - 0,5 алюминия; 0,02 - 0,05 углерода; 0,15 - 1,0 марганца; 0,01 - 0,16 фосфора на начальной стадии начинают с нагрева и выдержки металла в атмосфере защитного газа при температуре, которую определяют в зависимости от содержания кремния и алюминия в соответствии с соотношением
tв = K1 + K2 (Si + Al) 5oC,
где tв - температура выдержки стали, oC;
K1, K2 - экспериментально определенные коэффициенты, K1 = 915, K2 = 30;
Si - содержание кремния в стали, %;
Al - содержание алюминия в стали, %,
а длительность выдержки выбирают в зависимости от суммы легирующих элементов кремния и алюминия:
(Si + Al) = (0,30 - 1,0)% = 50 - 85 c,
(Si + Al) = (1,1 - 1,5)% = 90 - 125 c,
(Si + Al) = (1,6 - 2,0)% = 130 - 200 c;
с последующим непрерывным переходом на обезуглероживание металла до содержания углерода менее 0,005% во влажной азотоводородной атмосфере с понижением температуры отжига стали до 800 - 870oC на конечной стадии термообработки.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способу изготовления электротехнической стали с ориентированной структурой с окончательной толщиной полосы в диапазоне от 0,1 до 0,5 мм из плоских заготовок с регламентированным составом сплава
Изобретение относится к металлургии, в частности к прокатному производству, и может быть использовано для производства анизотропной электротехнической стали средней степени легирования в рулонах
Изобретение относится к области металлургии, в частности к производству электротехнической холоднокатаной трансформаторной стали

Изобретение относится к металлургии, конкретно к производству анизотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры

Изобретение относится к производству текстурованных электросталей, а именно к получению доменной структуры сталей

Изобретение относится к области металлургии, в частности к получению магнитострикционного материала, обладающего лучшими характеристиками по сравнению с альфарами

Изобретение относится к способу получения ленты из магнитной стали с ориентированными зернами, имеющей толщину менее 5 мм и содержащей по массовому составу более 2% кремния, менее 0,1% углерода и элементы-ингибиторы вторичной рекристаллизации в соответствующем количестве, причем остальное является железом, получаемой непрерывным литьем на цилиндре или между двумя цилиндрами

Изобретение относится к области металлургии и может быть использовано для создания магнитострикционных сплавов

Изобретение относится к металлургии, в частности к способам термической обработки дисперсно упрочненных сплавов типа сендаст, предназначенных для сердечников магнитных головок

Изобретение относится к металлургии и может быть использовано при термической обработке сплавов на основе железа типа сендаст для магнитных головок

Изобретение относится к термической обработке материалов

Изобретение относится к удалению старых красок, в частности к термическим методам удаления лакокрасочных покрытий с поверхности деталей

Изобретение относится к удалению старых красок, в частности к термическим методам удаления лакокрасочных покрытий с поверхности деталей

Изобретение относится к технологии поверхностной термической обработки конструктивных сплавов и изделий из них концентрированными потоками энергии и может быть использовано в различных отраслях машиностроения для повышения коррозионной стойкости и износостойкости деталей машин, изготовленных преимущественно из нержавеющих сталей и алюминиевых сплавов

Изобретение относится к режущим инструментам и к термической обработке режущей части режущего инструмента импульсным электронным пучком и может быть использовано при изготовлении режущих инструментов, применяемых в пищевой, деревообрабатывающей и других отраслях промышленности

Изобретение относится к области металлургии, в частности к производству анизотропной электротехнической стали с электроизоляционным покрытием

Изобретение относится к области термической обработки, а именно к устройствам для закалки стальных деталей в электролите, и может быть использовано при закалке зубьев дисковых пил холодной резки труб и гнутого профильного проката

Изобретение относится к машиностроению и ремонту машин, в частности к восстановлению поршневых пальцев двигателей внутреннего сгорания из цементируемых марок стали

Изобретение относится к металлургии, в частности к способам поверхностной термической и химико-термической обработки металлов и сплавов, и может быть использовано для поверхностного упрочнения различных изделий

Изобретение относится к области плазменной термической обработки изделий сложной формы, преимущественно металлических

Изобретение относится к оборудованию для термической обработки металлов и сплавов и может быть использовано преимущественно для рекристаллизационного и сфероидизирующего отжига, а также закалки калиброванной стали из межкритического интервала температур (МКИ), используемой при изготовлении высокопрочных крепежных изделий методом холодной объемной штамповки (ХОШ) без завершающей термической обработки
Наверх