Ракетный двигатель твердого топлива

 

Двигатель предназначен для использования в ракетной технике. Он содержит бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, образующее застойную зону, газодинамически сообщенную с камерой сгорания. При этом площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения. Площадь поперечного сечения на входе в кольцевой зазор (Fвх) определяется из соотношения Fвх < Fкр, где Fкр - площадь критического сечения двигателя. Конструкция двигателя позволяет избежать прогаров и уноса бронепокрытия с заряда, уменьшить толщины бронепокрытия и теплоизоляции внутренней поверхности камеры сгорания, а следовательно, уменьшить дымообразование на начальном участке работы двигателя и повысить коэффициент заполнения камеры сгорания зарядом. 1 ил.

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива (РДТТ) с вкладным бронированным пороховым зарядом.

Известен РДТТ, содержащий камеру сгорания с вкладным бронированным зарядом, описанный в [1]. К недостаткам такой конструкции относится возможное нарушение целостности бронепокрытия заряда и стенок камеры сгорания в процессе работы РДТТ вследствие сквозного течения пороховых газов в зазоре между внутренней стенкой камеры сгорания и бронированной поверхностью заряда, и как следствие - аномальная работа РДТТ (его разрушение).

Указанный недостаток частично устраняется в конструкции РДТТ, описанной в [2]. РДТТ содержит бронированный по наружной поверхности заряд, установленный в камере сгорания с кольцевым зазором, имеющим постоянную площадь поперечного сечения по всей длине, уплотнение, выполненное в кольцевом зазоре и образующее застойную зону. Застойная зона на входе газодинамически сообщена с камерой сгорания, а уплотнение препятствует перетеканию газа через кольцевой зазор.

Однако при срабатывании РДТТ газы, имеющие высокую температуру и скорость, при заполнении кольцевого зазора с постоянной площадью поперечного сечения будут не только прогревать, но и частично размывать бронепокрытие практически на всей длине застойной зоны, что может ухудшить управление ракетой в полете из- за повышенной задымленности трассы. При этом чем больше длина застойной зоны, тем интенсивнее воздействие газов не только на бронепокрытие, но и стенки камеры сгорания. Увеличение толщины бронепокрытия заряда, а также теплозащитного покрытия внутренней поверхности камеры сгорания проблемы не разрешает, однако уменьшает коэффициент заполнения камеры сгорания зарядом и увеличивает пассивную массу двигателя, а соответственно и ракеты.

Целью настоящего изобретения является уменьшение дымообразования на начальном участке работы РДТТ и повышение коэффициента заполнения камеры сгорания зарядом.

Указанная цель достигается тем, что в РДТТ, содержащем бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, выполненное в кольцевом зазоре и образующее застойную зону, газодинамически сообщенную на входе с камерой сгорания, площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения, причем площадь поперечного сечения на входе в кольцевой зазор Fвх определяется из соотношения Fвх > Fкр, где Fкр= (d2кр)/4 - площадь критического сечения двигателя (сопла); dкр - диаметр критического сечения двигателя (сопла).

РДТТ, представленный на чертеже, содержит бронированный по наружной поверхности заряд 1, установленный с кольцевым зазором 2 в камеру сгорания 3, площадь поперечного сечения которого увеличивается в сторону уплотнения 4. Уплотнение 4 образует застойную зону, газодинамически сообщенную на входе 5 с камерой сгорания 3.

РДТТ работает следующим образом. При срабатывании РДТТ газы от воспламенителя и заряда 1 устремляются в кольцевой зазор 2. Из теории газодинамики известно, что, во-первых, при расширении газа его скорость и температура уменьшаются, во-вторых, наиболее теплонапряженный участок двигателя создается в его критическом сечении (в критическом сечении сопла), где образуются максимальная температура и теплопоток, а также критическая (местная) скорость звука (см. В. В. Рожков. Ракетные двигатели твердого топлива. - М.: Воениздат, 1963, стр. 46, рис. 18). Поэтому выполнение кольцевого зазора 2 с увеличивающейся площадью поперечного сечения в сторону уплотнения 4, а также условие, чтобы площадь поперечного сечения на входе 5 (Fвх) в кольцевой зазор 2 была больше площади критического сечения двигателя (Fкр) (т.е. параметры газа в нем были докритическими), позволяют избежать прогаров и унос бронепокрытия с заряда 1, уменьшить толщины бронепокрытия и теплоизоляции внутренней поверхности камеры сгорания 3, а следовательно, уменьшить дымообразование на начальном участке работы РДТТ и повысить коэффициент заполнения камеры сгорания 3 зарядом 1.

Источники информации 1. Рожков В. В. Ракетные двигатели твердого топлива. - М.: Воениздат, 1963, с. 30, рис. 9.

2. Патент ФРГ N 2442082, F 02 K, 1976.

Формула изобретения

Ракетный двигатель твердого топлива, содержащий бронированный по наружной поверхности заряд, установленный с кольцевым зазором в камеру сгорания, уплотнение, образующее застойную зону, газодинамически сообщенную с камерой сгорания, отличающийся тем, что площадь поперечного сечения кольцевого зазора выполнена с увеличением в сторону уплотнения, причем площадь поперечного сечения на входе в кольцевой зазор (Fвх) определяется из соотношения Fвх > Fкр, где Fкр= (d2кр)/4 - площадь критического сечения двигателя (сопла), dкр - диаметр критического сечения двигателя (сопла).

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано при создании многоразовых транспортных космических систем

Изобретение относится к ракетной технике и может быть использовано при создании РДТТ многоразового включения с отсечкой тяги

Изобретение относится к области ракетной техники

Изобретение относится к области газодинамических устройств и может быть использовано для летательных аппаратов, при проведении монтажных работ по закреплению нефте- и газопроводов на местности при постановке в грунт на глубину до 10 метров анкерных устройств с телескопическим соединительным звеном, в горнодобывающей отрасли при добыче строительных материалов в карьерах или на других участках открытой местности (для прошивки шпуров и скважин), в строительной отрасли для установки в грунт крепежных и фундаментных свай или даже при необходимости при проходке (выработке) тоннелей, для переброски средств пожаротушения непосредственно в сам очаг пожара (особенно при пожарах лесных массивов, пожарах на нефтепромыслах или других крупномасштабных очагов пожара), для переброски и одновременного закрепления в грунте несущих тросовых канатов при наведении временных переправ, для быстроходных тележек испытательных треков, для эффективного использования периода последействия гладкоствольных систем

Изобретение относится к ракетным двигателям твердого топлива, в частности к РДТТ с зарядами из высокоимпульсных смесевых твердых топлив, прочно скрепленными с корпусом, и может быть использовано в ракетах (реактивных снарядах) с твердотопливными двигателями, топлива которых склонны к вибрационному горению

Изобретение относится к области ракетной техники и учитывается все возрастающие требования по повышению совершенства конструкции ракетных двигателей и надежности их работы

Изобретение относится к области ракетной техники и может быть использовано при ликвидации пороховых зарядов двигателей ракет и некондиционных зарядов

Изобретение относится к области аэрокосмической техники, а именно к ракетным реактивным двигателям твердого топлива

Изобретение относится к ракетостроению и учитывает все возрастающие требования по повышению совершенства конструкций ракетных двигателей и надежности их работы

Изобретение относится к новым высокомолекулярным химическим веществам, которые могут быть использованы для получения пластмасс, клеев, лаков, красок, рулонных покрытий, твердых топлив с пониженной скоростью горения

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива (ТРТ) в зависимости от давления

Изобретение относится к новому высокомолекулярному химическому веществу - сложному смешанному азотнокислому эфиру целлюлозы с фталатными группами, которое используют в качестве полимерной основы клеев, лаков, красок, полимерных покрытий и твердых ракетных топлив общей формулы где X = 2,0 - 2,9; Y = 0 - (3 - x); (X1 + X) = 0,1 - 1,0; n = 350 - 1007, с повышенной скоростью горения и воспламеняемостью, с повышенной адгезионной прочностью и лучшей растворимостью в органических растворителях, нитраты целлюлозы с содержанием азота 11,8 - 13,5% или нитраты целлюлозы пироксилиновых порохов конденсируют с фталевым ангидридом в растворителе при 50 - 110oC, перемешивая в течение 1 - 6 ч при соотношении 0,5 - 2 моль ангидрида на каждую нитратную группу в элементарном звене нитроцеллюлозы, высаживают, фильтруют, промывают водой и сушат
Наверх