Углеродный фильтрующий материал

 

Изобретение относится к технологии очистки водных и паромасленных сред от механических и токсичных продуктов, газовоздушных смесей от сажи, абразивных частиц, химических парообразных и газообразных соединений и используется для экологической защиты на промышленных предприятиях, являющихся источником промышленных стоков и выбросов в атмосферу газообразных продуктов. Углеродный фильтрующий материал получают из вискозного волокна методом термохимической обработки с последующим осаждением на каждый филамент углеродного волокна из газовой фазы слоя карбида кремния и слоя карбида титана с общей толщиной слоев 100-500 нм. Текстильная (гибкая) структура волокна сохраняется, материал приобретает термическую и химическую стойкость, что позволяет использовать его для высокотемпературной (до 600oС) очистки газообразных и паромасленных сред непосредственно, без предварительного охлаждения.

Изобретение относится к технологии очистки водных и паромасленных сред от механических примесей газовоздушных смесей, от сажи, абразивных частиц, токсичных парообразных и газообразных примесей.

В настоящее время имеются многочисленные антропогенные источники жидких и газообразных выбросов. Практически каждая область технологии является производителем отходов: предприятия цветной металлургии, химической и целлюлозо-бумажной промышленности, промышленности строительных материалов, стекольные и асфальтобетонные заводы, сталелитейная промышленность, топливно-энергетическое хозяйство, предприятия нефтехимического комплекса.

Отходы, производимые этими отраслями, имеют различный химический и фазовый состав, поэтому чрезвычайно трудно подобрать универсальный материал, позволяющий одинаково эффективно задерживать как твердые частицы, так и химически растворенные примеси. При этом наиболее приемлемые материалы для целей фильтрации различных сред содержат основу из углеродных волокон, подвергнутых модификации и дополнительной химической обработке.

Известен углеродный материал на основе углеродного волокна, подвергнутого карбонизации и пироуплотнению с осаждением пироуглерода в поровом пространстве волокон с образованием углеродной матрицы, с последующим силицированием с образованием каркаса из SiC. При этом масса осажденного карбида кремния составляет 35-80% от массы углеродных волокон. Удельная поверхность полученного материала составляет 1,0 кв.м/г, он имеет структуру с пределом прочности на изгиб 12 кг/кв. мм. Материал используют как конструкционный (Пат. РФ 2084425, C 04 B 35/51, 1997 г.).

Недостатком известного материала является невозможность его использования в качестве фильтрующего материала вследствие отсутствия пористости.

Наиболее близким аналогом по технологической сущности и достигаемому результату является углеродный фильтрующий материал, содержащий основу из углеродного волокна с нанесенной на него пористой пленкой из неорганического соединения, в частности диоксида кремния. (Пат. РФ 2019291, В 01 D 29/48, 1994 г.). Удельная поверхность такого материала достигает 1800 кв.м/г.

Недостатком известного материала являются невозможность его использования для фильтрации газовоздушных пылесодержащих сред вследствие забивания мелкодисперсных пор, низкой способности к регенерации, а также невозможность использования его при высоких температурах в агрессивных средах из-за термического растрескивания покрытия из диоксида кремния и выгорания углеродных волокон основы.

Техническим эффектом, достижением которого обеспечивается использование данного изобретения, является возможность использования фильтрующего материала для очистки пылегазовоздушных и паромасленных сред от пыли и органических примесей, возможность длительной работы при высоких температурах.

Этот эффект достигается тем, что углеродный фильтрующий материал содержит волокнистый углерод с нанесенными на него слоями покрытия из неорганического соединения. Согласно изобретению материал в качестве неорганического соединения содержит карбид кремния и карбид титана с толщиной слоя 100-500 нм.

Возможность применения углеродного фильтрующего материала в различных областях фильтрации возникает благодаря его структуре. При получении материала карбид кремния и карбид титана осаждаются из газовой фазы на подложку, которой служат углеродные волокна, и обволакивают каждый филамент волокна с исходным размером 5-7 мкм слоем толщиной 100-500 нм.

Благодаря этому сохраняется текстильная (гибкая) структура углеродного материала, не теряющая эксплуатационных качеств до температуры 600oC, тогда как диоксид кремния образует пленочное покрытие на материале, в результате чего материал теряет свою волокнообразную структуру и превращается в композит.

Исходную углеродную ткань, полученную из вискозного волокна методом термохимической обработки, подвергают дополнительной термообработке в газовой среде.

Первую стадию проводят при температуре 1200-1400oC в газовой среде, содержащей природный газ, водород и газообразный хлорид кремния в отношении 1: 2: 0,5, в течение 10-30 минут. В результате на каждом филаменте (5-7 мкм) углеродного волокна образуется покрытие из карбида кремния с толщиной слоя 100-300 нм.

Вторую стадию процесса проводят при температуре 1300-1500oC в среде, содержащей природный газ, водород и газообразный хлорид титана, взятых в отношении 1:1:0,5, в течение 10-20 минут.

Образующийся слой карбида титана на углеродном волокне имеет толщину покрытия 100-200 нм. Общий привес карбидов (кремния и титана) составляет 1,5-6,5% по массе. Таким образом получают углеродный волокнистый материал плотностью 1,45-1,5 г/см.куб. с разрушающим напряжением нити при растяжении, МПа (кгс/кв. мм) 600-800 (60-80) и модулем упругости нити, МПа (кгс/кв.мм) 25-32 (2500-3200) с удельной поверхностью 10-15 кв.м/г.

В зависимости от технических характеристик по использованию углеродного волокнистого материала на него наносится либо один слой, состоящий из карбида кремния либо из карбида титана, либо их смеси, либо двумя слоями с общей толщиной слоя 100-500 нм.

Полученный таким образом материал использовали для создания рукавного углеродного фильтра для очистки горячих отходящих газов асфальтобетонного завода, имеющих температуру 450oC, содержащих пылевые частицы дисперсностью до 10 мкм и смолистые продукты пиролиза, степень очистки пылегазовоздушной смеси составляет 98%, забивание материала фильтра пылевыми частицами отсутствует, смолистые продукты пиролиза (гудрон) вместе с абразивными и пылевыми частицами транспортировались в приемник для дальнейшей утилизации.

Углеродный фильтрующий материал является масло- и кислотостойким, он может использоваться как маслоуловитель при крекинге нефтепродуктов, а также для улавливания паров серной, соляной и азотной кислот при их производстве.

Таким образом, углеродный фильтрующий материал предложенного состава может быть использован для создания фильтрующих элементов различной конфигурации благодаря своей волокнистой структуре с развитой удельной поверхностью, защищенной от воздействия химически агрессивных сред с температурой до 600oC.

С использованием указанного углеродного волокнистого материала могут быть очищены от токсичных примесей пыле- и сажегазовые, а также паромасленные выбросы без их предварительного охлаждения благодаря высокой хемо- и термостойкости материала.

Материал эффективен для задержания абразивных пылевых и сажевых частиц вплоть до 4 мкм.

Комплекс свойств полученного материала позволяет использовать его в качестве высокотемпературного теплоизоляционного материала, предназначенного для изоляции газовых и нефтяных трубопроводов и компрессорных станций, а также трубопроводов и аппаратов АЭС, ТЭЦ, котельных для замены концерогенного асбеста и малоэффективного базальтового волокна и стеклоткани.

Формула изобретения

Углеродный фильтрующий материал, содержащий волокно из углерода с нанесенным на поверхность волокон покрытием из неорганического соединения, отличающийся тем, что покрытие нанесено в два слоя, причем один из слоев выполнен из карбида кремния, а другой из карбида титана при суммарной толщине слоев 100 - 500 нм.



 

Похожие патенты:
Изобретение относится к области неорганической химии, а именно способу получения карбида бора B12C3, который может быть использован в качестве поглотителя нейтронов в ядерной энергетике, абразива для шлифовки, а спеченный в виде резцов для обработки твердых материалов, химически стойкого материала в металлургии и химическом аппаратуростроении, высокоомных сопротивлений, полупроводниковых термопар и т.д., а также к новому интеркалированному соединению оксида графита с додекагидро-клозо-додекаборатной кислотой и способу его получения

Изобретение относится к технологии осаждения слоев карбида из газовой фазы для получения карбида кремния стехиометрического состава, высокой чистоты с теоретической плотностью
Изобретение относится к неорганической химии и касается способа получения карбида кремния, который может быть использован при получении высокотемпературной керамики

Изобретение относится к получению особо чистых веществ и может быть в частности, использовано для очистки от примесей порошка карбида кремния, применяемого в качестве материала для труб диффузионных печей, используемых при производстве полупроводников

Изобретение относится к неорганической химии тугоплавких соединений, в частности к способам получения материала на основе кремния, азота и углерода

Изобретение относится к способам получения порошкообразного карбида кремния, применяемого в порошковой металлургии для изготовления жаропрочных и стойких к агрессивным средам керамических изделий и абразивных паст, и позволяет повысить однородность продукта по гранулометрическому составу

Изобретение относится к сорбционной технике, в частности к способам получения гранулированных активных углей, и может быть использовано для получения активных углей, применяемых для очистки газов и жидкостей от вредных примесей и токсичных веществ, а также для других индустриальных и природоохранных целей

Изобретение относится к инженерной защите окружающей среды и касается переработки промышленных отходов (преимущественно производства ацетилена), содержащих карбид кальция, в сорбент для связывания экологически вредных веществ
Изобретение относится к технологии получения активного угля, используемого для очистки питьевой воды, и может быть использовано в химико-фармацевтической и пищевой промышленности

Изобретение относится к области адсорбционной техники и может быть использовано для получения активного угля с повышенными показателями адсорбционной емкости по органическим веществам с крупными размерами молекул (1,0 - 1,5 нм) и может использоваться для поглощения токсинов и диоксинов при лечении животных и очистке пищевых продуктов и воды

Изобретение относится к лесохозяйственной отрасли и может быть использовано при извлечении драгоценных металлов, водоподготовке, а также в химической, пищевой, медицинской промышленности

Изобретение относится к лесохозяйственной отрасли и может быть использовано при извлечении драгоценных металлов, водоподготовке, а также в химической, пищевой, медицинской промышленности

Изобретение относится к медицине и медицинской химии, может быть использовано для лечения экзо- и эндогенной интоксикаций

Изобретение относится к получению пористых углеродных материалов, содержащих два вида пор - поры с размером более 100 нм, обеспечивающие транспорт целевого компонента к порам, активно участвующим в процессе адсорбции, и поры размером менее 10 нм, обеспечивающие собственно адсорбирующую способность

Изобретение относится к получению пористых углеродных материалов, содержащих два вида пор - поры с размером более 100 нм, обеспечивающие транспорт целевого компонента к порам, активно участвующим в процессе адсорбции, и поры размером менее 10 нм, обеспечивающие собственно адсорбирующую способность

Изобретение относится к производству изделий и покрытий, проектируемых так, чтобы иметь заранее выбранные удельные теплопроводности и коэффициенты температурного расширения (КТР), согласующиеся с такими же характеристиками тех материалов, к которым эти изделия и покры- тия прикрепляются
Наверх