Ингибитор коррозии

 

Изобретение относится к области антикоррозионной защиты, касается, в частности, производства ингибиторов и может быть использовано для защиты от коррозии различных металлов и сплавов, работающих в агрессивных жидких и газовлажных средах, например морских судов, железнодорожного и автотранспорта, трубопроводов и оборудования газовой, химической и нефтехимической, энергетической и других отраслей народного хозяйства. Ингибитор коррозии содержит мелкодисперсную двуокись кремния и антикоррозионные компоненты, в качестве которых предложено использовать смесь оксида магния, гидрооксида и/или алюмосиликата кальция и порошкообразного металлического магния или магниевого сплава при следующем соотношении в пересчете на элементы, вес.%: Si 30 - 40%; Mg 10 - 15%; Ca 5 - 10%; Mg метал. 30 - 40%. Предложено двуокись кремния использовать с размером зерен до 300 мкм, в качестве магниевого сплава использовать алюмомагниевый сплав. Ингибитор коррозии защищает металлы и сплавы даже при наличии механических повреждений на защитном покрытии, устойчив в кислых и высокосолевых средах, термоустойчив (до 600oC в смеси с кремнийорганическими композициями); биологически неактивен (возможно его применение в пищевой промышленности) и срок хранения ингибитора не ограничен. 2 з.п. ф-лы. 5 табл.

Изобретение относится к области антикоррозионной защиты, касается в частности производства ингибиторов и может быть использовано для защиты от коррозии различных металлов и сплавов, работающих в агрессивных жидких и газовлажных средах, например морских судов, железнодорожного и автотранспорта, трубопроводов и оборудования газовой, химической и нефтехимической, энергетической и других отраслей народного хозяйства.

Для защиты металлов от коррозии в настоящее время широко применяют различные ингибиторы коррозии. В зависимости от того, на какую из электрохимических реакций коррозионного процесса воздействуют ингибиторы, их можно разделить на три группы: анодные - тормозят анодную реакцию ионизации металла, катодные - катодную реакцию восстановления кислорода или ионов водорода и смешанные, которые тормозят и анодную и катодную реакции. К анодным ингибиторам относятся ингибиторы окислительного типа, например нитрат натрия. Эта соль при введении в электролит в небольших количествах сдвигает потенциал стали в положительную сторону (до 0,7 В), переводя ее в пассивное состояние. К катодным ингибиторам относятся такие ингибиторы, которые при введении в электролит связывают деполяризатор или затрудняют его миграцию к поверхности металла, например бикарбонат кальция. К смешанным ингибиторам относятся, к примеру, хроматы, действующие по окислительному типу и тормозящие скорость как анодного, так и катодного процесса [1, 2]. Основным недостатком таких ингибиторов является то, что они могут быть использованы только при их непосредственном добавлении в коррозионную среду. В зависимости от типа среды, в которой работают ингибиторы, можно выделить ингибиторы атмосферной коррозии, ингибиторы для нейтральных, кислот или щелочных сред и т.д. Ингибиторы атмосферной коррозии в зависимости от упругости их паров подразделяются на летучие и контактные. Летучие ингибиторы применяются в виде ингибированной бумаги, ингибированных пористых носителей, таблеток, водных и спиртоводных растворов, ингибированного воздуха, порошков, а также вводятся в полимерные покрытия. Контактные ингибиторы применяются в виде водных, в том числе загущенных, растворов, а также вводятся в полимерные покрытия. Известна также протекторная защита от коррозии металлов и сплавов. Протекторная защита осуществляется при контакте защищаемого металла с металлом, находящимся в ряду активности левее (протектором). Технически протекторная защита выполняется либо электрохимическим покрытием защищаемого металла протектором (например, оцинкованное железо), либо нанесением на него полимерного покрытия с порошкообразным протектором (например, лак с алюминиевой пудрой). Для защиты металлов и сплавов от коррозии широко применяются различные полимерные композиции (масляные, водоэмульсионные, битумные, эпоксидные, каучуковые, кремнийорганические и другие краски). Защитное действие таких лакокрасочных покрытий определяется их водопроницаемостью и устойчивостью к "старению". Применяются также смеси этих полимерных композиций друг с другом (например: битумно-каучковые, битумно-этиленовые и пр.) или с какими-либо наполнителями. В качестве наполнителей или пигментов лакокрасочных композиций часто используют вещества с основными свойствами. Примерами таких основных наполнителей и пигментов являются карбонат кальция или магния, оксид цинка, карбонат цинка, фосфат цинка, оксид магния, оксид алюминия или их смеси. Кроме того, в качестве ингибитора коррозии в лакокрасочных покрытиях используют различные органические вещества. Так, например, смесь нефтебитума или битумного лака с ингибитором ИП-1 применяется для защиты стальных сооружений от коррозии в речной воде [3], полимерцементные краски марки ПВАЦ, СВМЦ, СВЭЦ представляют собой суспензии цемента, пигментов и наполнителей в пластифицированной дисперсии (ПВАЦ), в дисперсии сополимеров винилацетата с дибутилмалеином (СВМЦ) или с этиленом (СВЭМ) [4]. Данные краски предназначены для отделки и защиты бетонных поверхностей от слабоагрессивных газовлажных сред, содержащих, например, CO2 и NH3. С целью повышения эффективности защиты от коррозии в лакокрасочные композиции на основе акриловых, эпоксидных и виниловых смол добавляют фенольные производные меркаптобенэтиазола [5] . Основным недостатком таких красок является их малая устойчивость в водных растворах кислот, щелочей и солей. Другим аналогом заявляемого изобретения является ингибитор коррозии, использованный в полимерцементных материалах [4] . Полимерцементные материалы представляют собой смесь следующего состава,% Песок мелкозернистый - 30 - 32 Шлакопортландцемент М-300 - 20 - 31 Синтетический латекс СКС-65 - 32 - 40 Жидкое натриевое стекло ( = 1,42) - 0,3 - 0,5 Кремнефтористый натрий - 0,1 - 0,3 Эмульгатор - 0,1 - 0,2 Вода - 2,9 - 9,5 В представленной рецептуре в качестве основного антикоррозионного компонента (ингибитора) используют шлакопортланлцемент, мелкодисперсный песок используют в качестве наполнителя, а в качестве защитной композици, в которую добавляют ингибитор коррозии - синтетический латекс. Полимерцементные материалы используются для антикоррозионной защиты различных металлов и сплавов и бетонных конструкций. Они достаточно устойчивы в водных растворах кислот (до 2%), щелочей и солей (до 5%), теплостойкости до 140oC, имеют высокую адгезию к бетону (2,4 - 2,8 МПа, для сравнения: адгезия к бетону битумнолатексной композиции 0,2 МПа [5].

Наиболее близким аналогом заявляемого изобретения является Европейский патент EP 0316066 A1 "Коррозионно-ингибирующая композиция".

Данная композиция состоит из мелкодисперсного кварца с ингибирующими катионами (кальций, цинк, кобальт и др.) и без них. Массовое соотношение кварца с ингибирующими добавками к чистому кварцу находится в диапазоне от 20/80 до 60/40. Для нанесения на защищаемую поверхность композиция смешивается с пленкообразующими полимерами (эпоксидная смола, резина, полимеры на основе винила).

Основным недостатком данной композиции является узкая область ее применения. Композиция в смеси с конкретными пленкообразующими полимерами предназначена для антикоррозионной защиты только сплавов алюминия.

Задача, решаемая настоящим изобретением заключается в повышении эффективности действия ингибитора при введении его в любые антикоррозионные лакокрасочные или иные композиции, нанесенные на поверхность различных защищаемых материалов (стали, сплавы различных металлов, применяемые в качестве конструкционных материалов).

Сущность изобретения заключается в том, что в ингибиторе коррозии, содержащем мелкодисперсную двуокись кремния и антикоррозионные компоненты в качестве антикоррозионных компонентов предложено использовать смесь оксида магния, гидрооксида и/или алюмосиликата кальция и порошкообразного металлического магния или магниевого сплава при следующем содержании кремния, магния, кальция и металлического магния в ингибиторе, вес.%: Si - 35 - 55
Mg - 10 - 15
Ca - 5 - 10
Mg метал. - 30 - 40
Кроме того, предложено двуокись кремния взять с размером зерен до 30 мкм, в качестве магниевого сплава использовать алюмомагниевый сплав.

Оптимальное содержание элементов в ингибиторе коррозии определяется свойствами коррозионной среды, антикоррозионной активностью ингибитора и недопустимостью ухудшения физических свойств лакокрасочных композиций при смешении с ними ингибитора. Наличие в смеси кальция обусловлено необходимостью поддержания у поверхности защищаемого металла pH 9,0 - 9,5 (в этом диапазоне величин pH защищаемый металл находится в пассивном состоянии). При содержании кальция в смеси ниже 5 вес.% пассивации металла не происходит, а при содержании кальция выше 10 вес. % при контакте смеси с водой образуются прочные химические связи, приводящие к ухудшению физических свойств лакокрасочных покрытий. Наличие в ингибиторе оксида магния (более 10 вес.% в пересчете на магний) препятствует образованию в смеси прочных химических связей при контакте ингибитора с водой. Превышение верхней границы содержания магния в смеси (15 вес.% приводит к ухудшению физических свойств защитных покрытий. Добавление в лакокрасочные и иные композиции ингибиторов, содержащих оксиды магния и гидроксиды и/или алюмосиликаты кальция даже в оптимальных интервалах параметров приводит к некоторому ухудшению физических свойств покрытий. Для нейтрализации этого влияния в состав нашего ингибитора коррозии входит двуокись кремния в количестве 30 - 40 вес.% (в пересчете на кремний). Следует отметить, что наличие в нашем ингибиторе двуокиси кремния значительно повышает и износоустойчивость защитных покрытий. При использовании в ингибиторе двуокиси кремния с размером зерен более 300 мкм заметно нарушается сплошность лакокрасочного покрытия. Для протекторной защиты металла в составе антикоррозийных компонентов ингибитора используют порошок металлического магния или магниевого сплава, так как известное из публикации использование алюминиевой пудры в качестве протектора в диапазоне pH 9,0 - 9,5 не эффективно. Нижняя граница содержания металлического магния в ингибиторе (30 вес.%) определяется эффективностью защиты, верхняя (40 вес.% - пожароопасностью покрытия. В процессе эксплуатации металла с защитным покрытием металлический магний превращается в гидроксид магния, который уже имеется в ингибиторе и не ухудшает свойств покрытия. Следует особо отметить, что металлический магний в смеси с добавками, входящими в состав ингибитора коррозии, приобретает в качестве протектора новые качества. Если применяемый в настоящее время протектор в защитном покрытии (например, алюминиевая пудра в смеси с лаком) начинает окисляться у поверхности защищаемого металла и прекращает работать как только окислился приповерхностный слой протектора, то при применении предлагаемого ингибитора коррозии протектор начинает окисляться с поверхности защитного покрытия и прекращает работать только после окисления всей массы протектора.

Перед употреблением ингибитор добавляют в антикоррозионную защитную композицию до 25 вес.% и смесь наносят на защитную поверхность любым возможным способом (при использовании эжекционных аппаратов стадии смешивания и нанесения смеси на защищаемую поверхность совмещаются).

Пример 1. Для проведения коррозионных испытаний ингибитора используют образцы стали 20 по ГОСТу 380 - 91, размером 50х50х2 мм, с отверстием на одном конце диаметром 4 мм. Образцы покрывают лакокрасочным покрытием на основе алкидной смолы с добавлением ингибитора коррозии. Ингибитор коррозии готовят смешением двуокиси кремния марки "ч" ГОСТ 9428 - 73, оксида магния марки "ч" ТУ 6-09-4835-82 и гидроокиси кальция марки "ч" ГОСТ 9262-77. Массовое содержание ингибитора в лакокрасочной композиции - 20%.

На поверхности защитного покрытия наносят два крестообразных разреза длиной 2 см до металла. После этого образцы подвергают коррозионным испытаниям в 0,1 N водном растворе HCl в течение 48 ч, После окончания коррозионных испытаний оценивают состояние покрытия. Оценку проводили по стандарту ДИН 53210 по 6-ступенчатой шкале. Затем защитное покрытие удаляли путем обработки образцов концентрированным раствором едкого натра и оценивали состояние металла на крестообразном разрезе и на всей поверхности по стандарту ДИН 53167 по 6-ступенчатой шкале.

Сумма оценок лакокрасочного покрытия и металла дает показатель защиты от коррозии KS. Чем выше этот показатель, тем эффективнее ингибитор коррозии. Самая высшая достигаемая оценка - 12 (она означает полное отсутствие коррозии). В таблице 1 представлены результаты коррозионных испытаний.

Как видно из таблицы 1, оптимальным содержанием компонентов в ингибиторе коррозии являются следующие: Si 70 - 80%, Mg 15 - 20%, Ca 5 - 10%.

Аналогичные испытания проводились с использованием алюмосиликата вместо гидроокиси кальция. Эксперименты показали тождественность такой замены.

Пример 2. Для проведения коррозионных испытаний ингибитора используют образцы из стали 20 по ГОСТу 380-91, размером 50х50х2 мм, с отверстием на одном конце диаметром 4 мм. Образцы покрывают лакокрасочным покрытием на основе алкидной смолы с добавлением ингибитора коррозии. Ингибитор коррозии готовят смешением оксида магния марки "ч" ТУ 6-09-4835-82 и гидроокиси кальция марки "ч" ГОСТ 9262-77 (с элементным содержанием в смеси Mg - 60%, Ca - 40%) с порошком магния металлического из набора N 4 BC "Огнеопасные вещества" по ТУ 6-09-4247-80 и двуокись кремния марки "ч" ГОСТ 9428-73 (Si + Mg метал./Mg + Ca = 3/1, т.е. в ингибиторе коррозии оптимального состава часть двуокиси кремния замещается на порошок магния). Массовое содержание ингибитора в лакокрасочной композиции - 20%.

На поверхности защитного покрытия наносят два крестообразных разреза длиной 2 см до металла. После этого образцы подвергают коррозионным испытаниям в 0,1 N водном растворе HCl в течение 48 ч. После окончания коррозионных испытаний оценивают состояние покрытия. Оценку проводили по стандарту ДИН 53210 по 6-ступенчатой шкале. Затем защитное покрытие удаляют путем обработки образцов концентрированным раствором едкого натра и оценивают состояние металла на крестообразном разрезе и на всей поверхности по стандарту ДИН 53167 по 6-ступенчатой шкале. В таблице 2 представлены результаты коррозионных испытаний. Как видно из таблицы 2, магний металлический начинает работать как электрохимический протектор при его содержании в смеси 30%. При содержании магния в смеси 40% KS достигает максимальной величины 12,0, дальнейшее повышение содержания магния металлического в смеси нецелесообразно.

Пример 3. Для проведения коррозионных испытаний ингибитора используют образцы из стали 20 по ГОСТу 380-91, размером 50х50х2 мм с отверстием на одном конце диаметром 4 мм. Образцы покрывают различными лакокрасочными композициями (1 - на основе алкидной смолы, 2 - на основе эпоксидной смолы, 3 - на основе акриловой смолью):
- без ингибитора коррозии,
- с ингибитором, не содержащим порошкообразный металлический магний. Ингибитор коррозии готовят смешением двуокиси кремния марки "ч" ГОСТ 9428-73, оксида магния марки "ч" ТУ 6-09-4835-82 и гидроокиси кальция марки "ч" ГОСТ 9262-77 (Si/Mg/Ca = 75/15/10). Массовое содержание ингибитора в лакокрасочной композиции - 20%,
- и ингибитором, содержащим порошкообразный металлический магний (30 вес.%),
- с ингибитором, содержащим порошкообразный магний-алюминиевый сплав (30 вес.%). При добавлении порошка магния и магний-алюминиевого сплава в ингибитор не добавляли соответствующее количество двуокиси кремния.

На поверхности защитного лакокрасочного покрытия наносят два крестообразных разреза длиной 2 см до металла. После этого образцы подвергают коррозионным испытаниям в 0,1 N водном растворе HCl (в течение 48 ч) и в водопроводной воде (в течение 5 суток) при нормальной температуре и в термостате (t - 80oC). После окончания коррозионных испытаний оценивают состояние покрытия. Оценку проводили по стандарту ДИН 53210 по 6-ступенчатой шкале. Затем защитное покрытие удаляют путем обработки образцов концентрированным раствором едкого натра и оценивают состояние металла на крестообразном разрезе и на всей поверхности по стандарту ДИН 53167 по 6-ступенчатой шкале. В таблицах 3-5 представлены результаты коррозионных испытаний. Как видно из представленных таблиц 3-5, защитные покрытия с добавлением ингибитора коррозии достаточно эффективно защищают сталь 20 в широком диапазоне условий проведения коррозионных испытаний. Добавление в ингибитор коррозии порошкообразного магний-алюминиевого сплава (30 вес.%) приводит к полной защите металла от коррозии (12 баллов). При добавлении в ингибитор порошка магния и магний-алюминиевого сплава менее 30 вес.% KS не превышает 11,8 баллов.

Таким образом, заявляемый ингибитор коррозии удовлетворяет поставленной задаче и может быть использован для защиты металлов и сплавов от коррозии в широком диапазоне условий их эксплуатации в смеси с различными антикоррозионными защитными композициями.

Преимущества данного ингибитора коррозии, по сравнению с ближайшим аналогом, заключается в следующем:
- защищает металлы и сплавы даже при наличии механических повреждений на защитном покрытии,
- устойчив в кислых и высокосолевых средах,
- термоустойчив (до 600oC в смеси с кремнийорганическими композициями),
- биологически неактивен (возможно его применение в пищевой промышленности),
- срок хранения ингибитора не ограничен
Список использованной литературы
1. Справочное руководство "Коррозия под действием теплоносителей, хладоагентов и рабочих тел". Л.: Химия, 1988 г., с. 81.

2. А. И. Алцыбеева, П.А. Виноградов, В.Н. Кучинский "Ингибиторы атмосферной коррозии металлов" в сб. "Покрытия и ингибиторы - эффективные средства защиты металлов от коррозии", ИНХ АН ЛССР, Рига: Зинатне, 1985 г., с. 185.

3. Справочник "Коррозионная стойкость реакторных материалов", под ред. В.В. Герасимова. М.: Атомиздат, 1976 г., с. 452.

4. "Руководство по защите от коррозии лакокрасочными покрытиями строительных бетонных и железнодорожных конструкций, работающих в газовлажных средах", НИИЖБ ГОССТРОЯ СССР, М.: Стройиздат, 1978 г., с. 61, 63 (наиболее близкий аналог).

5. "Способ получения ингибирующего коррозию лакокрасочного материала", патент Российской Федерации N 2019550, C1.


Формула изобретения

1. Ингибитор коррозии, включающий мелкодисперсную двуокись кремния и антикоррозионные компоненты, отличающийся тем, что в качестве антикоррозионных компонентов использована смесь оксида магния, гидроксида и/или алюмосиликата кальция и порошкообразного металлического магния или магниевого сплава при следующем соотношении между компонентами ингибитора в пересчете на элементы, вес.%:
Si - 30 - 40
Mg - 10 - 15
Ca - 5 - 10
Mgметал - 30 - 40
2. Ингибитор коррозии по п.1, отличающийся тем, что двуокись кремния использована с размером зерен до 3000 мкм.

3. Ингибитор коррозии по пп.1 и 2, отличающийся тем, что в качестве магниевого сплава использован алюмомагниевый сплав.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7



 

Похожие патенты:

Изобретение относится к антикоррозионной защите, касается, в частности, производства ингибиторов и может быть использовано для защиты от коррозии различных металлов и сплавов, работающих в агрессивных жидких и газовлажных средах, например морских судов, железнодорожного и автотранспорта, трубопроводов и оборудования газовой, химической, нефтехимической, энергетической и других отраслей народного хозяйства

Изобретение относится к нефтедобывающей промышленности и может быть использовано для защиты нефтепромыслового оборудования от коррозии в водных и водонефтяных средах, содержащих кислород

Изобретение относится к способам получения ингибированной соляной кислоты, применяемой в нефтедобыче, а именно к производству в том числе ингибированной соляной кислоты, используемой для обработки призабойных зон нефтяных и водонагревательных скважин

Изобретение относится к способам получения ингибированной соляной кислоты, применяемой в нефтедобыче, а именно к производству в том числе ингибированной соляной кислоты, используемой для обработки призабойных зон нефтяных и водонагревательных скважин

Изобретение относится к нефтяной промышленности, в частности к защите трубопроводов, перекачивающих водонефтяную эмульсию

Изобретение относится к области защиты от кислотной коррозии черных металлов в однофазных и двухфазных средах типа нефть-минерализованная вода и может быть использовано для одновременной защиты поверхности нефтепромыслового оборудования систем сбора нефти и утилизации сточных вод от коррозии, вызванной действием CO2, H2S и CO2, а также для разрушения водонефтяных эмульсий в процессе перекачки и промысловой подготовки нефти

Изобретение относится к защите стальных деталей, машин, конструкций и сооружений, эксплуатируемых в водно-солевых средах (замкнутые системы охлаждения, технологические среды химических и других производств, резервуары для хранения углеводородных топлив), а также в почвах и морской воде, от коррозионного разрушения под воздействием среды и бактериальных клеток сульфатредуцирующих бактерий и предотвращения (уменьшения) водородного охрупчивания конструкций и деталей машин, выполняющих ответственные в них функции

Изобретение относится к защите от коррозии металлов в технологических средах, содержащих углекислый газ и сероводород, и может быть применено для борьбы с коррозией оборудования нефтяных и газовых промыслов, транспортных нефте- и газопроводов, систем по переработке углеводородного сырья

Изобретение относится к области защиты от коррозии черных металлов в однофазных и двухфазных средах, насыщенных углекислым газом, и может быть использовано для борьбы с коррозией оборудования нефтяных и газовых промыслов

Изобретение относится к способу защиты от коррозии скважинного стального оборудования и систем нефтесбора

Изобретение относится к антикоррозионной защите, касается, в частности, производства ингибиторов и может быть использовано для защиты от коррозии различных металлов и сплавов, работающих в агрессивных жидких и газовлажных средах, например морских судов, железнодорожного и автотранспорта, трубопроводов и оборудования газовой, химической, нефтехимической, энергетической и других отраслей народного хозяйства

Изобретение относится к лакокрасочным составам, применяемым в качестве покрытий для защиты металлических и неметаллических материалов и изделий из них от биокоррозионных поражений, и может быть использовано в различных отраслях промышленности

Изобретение относится к способу защиты поверхностей от коррозионных веществ

Изобретение относится к способам антикоррозионной обработки строительных металлических конструкций путем нанесения на поверхность антикоррозионного металлсодержащего покрытия и может быть использовано, например, для обработки опор воздушных линий электропередач, открытых распределительных устройств высоковольтных подстанций, дорожных ограждений, несущих конструкций промышленных зданий и сооружений, арматуры и других изделий

Изобретение относится к области получения эпоксидных композиций, предназначенных для изготовления противокоррозионных покрытий, и может быть использовано для изготовления механически прочных покрытий пола, металлических и бетонных строительных конструкций, приклеивания керамических, стеклянных и каменных плиток

Изобретение относится к способу получения составов для антикоррозионной защиты скрытых сечений кузовов автомобилей-автоконсервантов

Изобретение относится к области защиты металлических поверхностей и их восстановления, работающих в условиях абразивного износа, воздействия агрессивных сред, и может быть использовано при ремонте изношенных деталей и для защиты аппаратуры в обогатительном оборудовании

Изобретение относится к составам для покрытия для защиты от коррозии при контакте сталей с нефтью и нефтепродуктами

Изобретение относится к области полимерных порошковых составов для нанесения на металлические изделия покрытий противокоррозионного и триботехнического назначения
Наверх