Способ селекции r-зубца электрокардиосигнала

 

Изобретение относится к области медицины и предназначено для определения RR-интервалов по электрокардиограмме. В процессе съема электрокардиосигнала проводят его цифровую фильтрацию с частотой среза фильтра низких частот 100 Гц. Вычисляют значение энергетической функции электрокардиосигнала Е(Т) в первые несколько секунд для определения Еmax, а затем в каждой точке вычисляют Е(Т) и сравнивают ее с Еmax. При Е(Т) > 0,4Еmax идентифицируется передний фронт R-зубца. После этого определяют пик R-зубца по условию (Y(i)-Y(i-l)) (Y(i+l) - Y(i)) < 0, причем если (Y(i+l) - Y(i)) = 0, то первая часть произведения (Y(i) - Y(i-1)) запоминается и на следующей точке не вычисляется. После идентификации R-зубца следующий интервал времени 0,186 с не анализируется для пропуска заднего фронта R-зубца. Данный способ позволяет повысить точность и снизить количество ошибок распознавания R-зубцов, кроме того, он позволяет вести распознавание R-зубцов прямо в момент съема электрокардиосигнала, т.е. в реальном масштабе времени.

Изобретение относится к области медицины и предназначено для определения RR-интервалов по электрокардиограмме.

Известны способы селекции R-зубца электрокардиосигнала (ЭКС) [1, 2]. В первом используются числовые отсчеты ЭКС и требуется 3-10 предшествующих значений измеренных временных интервалов для формирования дополнительных сигналов, на основании которых, корректируя значения уровней выделения в каждом кардиоцикле, выдают сигнал наличия R-зубца. Во втором выделяют фронт QRS-комплексов кардиосигнала, увеличивая его размах в 2-3 раза относительно исходной величины и одновременно подавляя высокочастотную составляющую сигнала, обостряют фронты QRS-комплекса до соотношения сигнал-шум в 15-20 раз и подавляют высокочастотную составляющую сигнала, увеличивают амплитуду участка RS, превышающего амплитудное значение шумовой составляющей, до заданного уровня, получая таким образом выделенный R-зубец ЭКС. Недостатком обоих способов является их сложность.

За прототип принят способ регистрации ЭКГ [3], включающий стадии предварительных и основных измерений, определение значений энергетической функции ЭКС и ее максимального значения Emax на предварительной стадии, цифровую фильтрацию и определение зубца R как точки, в которой значение энергии E(T) превысит пороговый уровень KEmax, где K - коэффициент, равный 0,8. Недостатками прототипа является то, что возможен пропуск R-зубца, если энергия не достигнет вследствие изменения амплитуды R-зубца этого порогового значения, а также что эта точка не находится точно на вершине R-зубца.

Таким образом, целью изобретения является повышение точности и снижения количества ошибок выделения R-зубца.

Предложен способ селекции R-зубца, при котором энергия вычисляется как модуль суммы третьих степеней разностей амплитуд соседних точек ЭКC что позволяет повысить энергию R-зубца ЭКС по сравнению с его другими участками. Значение коэффициента K для определения порогового значения энергии ЭКС определяется минимальным значением, достоверно превышающим энергии всех остальных участков ЭКС, т.е. динамическим равновесием между уровнем ошибок пропуска R-зубца и принятия за R-зубец какого-то другого пика или помехи. На стадии основных измерений в каждой точке ЭКС вычисляется энергия E(T) и начиная с точки превышения его порогового уровня, ищется пик R-зубца по условию (Y(i) - Y(i-1)) (Y(i+1) - Y(i)) < 0, причем, если (Yi+1) - Y(i)) = 0, то первая часть произведения (Y(i) - Y(i-1)) запоминается и на следующей точке не вычисляется. Эта точка точно соответствует пику R-зубца ЭКС и RR-интервал может быть измерен с точностью до интервала оцифровки. После идентификации R-зубца следующий интервал времени 0,186 с не анализируется для пропуска заднего фронта R-зубца.

Способ реализуется следующим образом. Сначала проводится цифровая фильтрация ЭКС, моделирующая фильтр низких частот с частотой среза 100 Гц Затем проводится предварительный цикл измерений в течение 2 с для регистрации хотя бы одного кардиоцикла (такое время выбрано исходя из максимально возможного RR-интервала). Эти измерения необходимы для определения максимального значения Emax энергетической функции E(T), которая вычисляется по формуле: где T - текущая координата точки с определенным значением ЭКС; - интервал времени, равный средней длительности переднего фронта R-зубца, 15-30 мс; Y(i) - амплитуда в точке интервала (T, T+). Во время основного цикла измерений фиксируют результаты измерений ЭКС, определяют по ним энергетическую функцию E(T) с максимальным значением Emax и осуществляют сравнение E(T) со значением KEmax, где K эмпирически определенный коэффициент, равный 0,4. Точка ЭКС, в которой E(T) превысит 0.4Emax, принадлежит переднему фронту R-зубца. Далее, начиная с этой точки ищется пик R-зубца, как точка, в которой изменяется знак наклона кривой. Иными словами, точка Y(i) считается принадлежащей пику, если выполняется условие: (Y(i) Y(i-1)) (Y(i+1 - Y(i)) < 0, причем если (Y(i+1) - Y(i)) = 0 (плоский участок кривой), то первая часть произведения (Y(i) - Y(i-1)) запоминается и на следующей точке не вычисляется. Точка, в которой идентифицирован R-зубец, запоминается. Следующие точки, попавшие в интервал времени 0,186 с, не анализируются, т.е. не производится сравнение энергии с пороговым уровнем, так как это минимально возможный RR-интервал [4]. Это необходимо для пропуска заднего фронта R-зубца, также обладающего высокой энергией. Затем аналогично определяется следующий R-зубец и вычисляется RR-интервал как время, прошедшее между двумя пиками.

Предложенный способ позволяет вести распознавание RR-интервалов прямо в момент съема, т. е. в реальном масштабе времени, что особенно важно при длительном мониторировании RR-интервалов. Показатели вариабельности сердечного ритма, вычисляемые по массиву RR-интервалов, служат для оценки адаптивных возможностей человека [5], профессиональных качеств, для профилактических осмотров, а также являются хорошим диагностическим критерием для некоторых заболеваний [6]. Простота способа позволяет его реализовать на базе микропроцессорного комплекта, т.е. в виде индивидуального носимого монитора. Также способ легко реализуется на ЭВМ, необходимо только завести оцифрованный ЭКС в компьютер. Позволяет измерять RR-интервалы с точностью до интервала оцифровки. Данный способ может быть использован в любом стандартном электрокардиографическом отведении, в том числе и когда R-зубец отрицателен.

Литература 1. Авторское свидетельство СССР N 1519647, БИ N 41 от 07.11.1989, МКИ6 A 61 B 5/02 - аналог.

2. Патент РФ N 2076629, БИ N 10 от 10.04.1997, МКИ6 A 61 B 5/0456 - аналог.

3. Патент РФ N 2063167, БИ N 19 от 10.07.1996, МКИ6 A 61 B 5/0402 - прототип.

4. Вычислительные системы и автоматическая диагностика заболеваний сердца. Под редакцией Ц. Касереса и Л. Дрейфуса. Пер. с англ. - М: Мир, 1974. с.118.

5. Баевский Р. М, Кукушкин Ю.А. Марсанов А.В., Романов Е.А. Методика оценки функционального состояния организма человека// Медиц. труда и промышл. экология, 1995, N 3, с.30-34.

6. Доклад рабочей группы Европейского общества кардиологии и Североамериканского общества кардиостимуляции и электрофизиологии// European Hear Journal. - Vol.17, March 1996: 354-381.

Формула изобретения

Способ селекции R-зубца электрокардиосигнала, включающий цифровую фильтрацию электрокардиосигнала, предварительную стадию измерений для регистрации хотя бы одного кардиоцикла и определения максимального значения Emax энергетической функции E(T), а также стадию основных измерений, включающую фиксирование результатов измерений электрокардиосигнала, определение по ним энергетической функции E(T) и сравнение их с Emax, отличающийся тем, что определение энергетической функции электрокардиосигнала осуществляют по формуле где T - текущая координата точки с определенным значением электрокардиосигнала;
- интервал времени, равный нормальной длительности переднего фронта R-зубца, 15 - 30 мс,
Y(i) - амплитуда кардиосигнала в точке интервала (T,T+),
а затем на стадии основных измерений производят сравнение значений энергетической функции E(T) с K Emax, где K - эмпирический коэффициент, равный 0,4, и при E(T) > 0,4 Emax идентифицируют передний фронт R-зубца, после чего по условию (Y(i) - Y(i - 1)) (Y(i + 1) - Y(i)) < 0 определяют точку, принадлежащую пику R-зубца, причем если (Y(i + 1) - Y(i)) = 0, то первую часть произведения (Y(i) - Y(i - 1)) запоминают и на следующей точке не определяют, а также не анализируют следующие точки, попавшие в интервал времени 0,186 с, соответствующие заднему фронту R-зубца.



 

Похожие патенты:

Изобретение относится к медицине, а именно к анестезиологии, и может быть использовано при различных хирургических манипуляциях, требующих проведения наркоза

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано при проведении нагрузочных проб (ВЭМ-тест) для диагностики коронарной патологии

Изобретение относится к медицинской технике, а именно к устройствам для выделения характерных точек электрокардиографического сигнала

Изобретение относится к медицинской технике, в частности к электрокардиографии , и может быть использовано при и5мерении временных интервалов сердечных сокращений

Изобретение относится к медицине, предназначено для определения активности желудка и может быть использовано для психофизиологического контроля состояния здоровья человека, а также в гастроэнтерологии, клинической практике
Изобретение относится к медицине, в частности к спортивной медицине, и касается прогнозирования роста профессионального мастерства будущих артистов балета

Изобретение относится к области медицины, а именно к кардиологии

Изобретение относится к области медицины, а именно к способу выделения QRS-комплекса электрокардиосигнала

Изобретение относится к реабилитационной и профилактической медицине, кардиологии, терапии

Изобретение относится к медицинской технике, а именно к устройствам для определения показателя эластичности артериальных сосудов

Изобретение относится к области электрофизиологии сердца и, в частности, к процедурам радиочастотной абляции и установки кардиостимуляторов под визуальным контролем. Система обработки изображений, функционирующая в рабочей станции, снабженной также машиночитаемым носителем, выполнена с возможностью интраоперационного получения и записи последовательности 2-мерных флюорограмм с одного и того же угла проекции и расстояния до объекта, записи фаз сердечного и/или дыхательного циклов пациента, во время получения и записи 2-мерных флюорограмм, выбора набора таких 2-мерных флюорограмм, которые соответствуют конкретной фазе сердечного и/или дыхательного циклов пациента, посредством кардио- и/или дыхательной синхронизации, формирования 2-мерной реконструкции анатомических структур сердечно-сосудистой системы и/или камер сердца пациента посредством объединения наложенного поднабора 2-мерных положений инвазивного инструмента на 2-мерных флюорограммах на разных стадиях направляемого движения и отображения динамически скорректированного варианта 2-мерной реконструкции анатомических структур сердечно-сосудистой системы и/или камер сердца пациента на экране монитора или дисплее. Использование изобретения позволяет повысить точность визуализации двумерно реконструированных анатомических структур. 3 н. и 3 з.п. ф-лы, 5 ил.

Изобретение относится к медицинской технике. Осуществляют измерение, последовательно примыкающих друг к другу интервалов R-R. Формируют массив данных. Вычисляют среднее значение измеренных интервалов R-R как величину, обратную среднему значению измеренных интервалов, а также величину среднего квадратического отклонения этих интервалов R-R от среднего значения. Определяют максимальное и минимальное значения измеренных интервалов R-R и разницу между ними. Делят эту разницу на число каналов Nк, определяют таким образом ширину временного «окна» каждого канала, образованного таким образом Nк - канального временного дискриминатора. Подсчитывают число элементов полученного массива измерений, попавших в каждый канал дискриминатора. Формируют функцию распределения числа элементов массива, попавших в каждый канал, в зависимости от номера канала и от соответствующей величины интервала R-R. Диаграмму полученной функции распределения измеренных интервалов R-R представляют на экране-дисплее вместе с другими параметрами сердечного ритма и его вариабельности. При этом поделив число элементов массива на максимальную ординату функции распределения, находят «эффективную ширину» функции распределения, значение которой также выводят на дисплей. Способ позволяет повысить достоверность определения параметров вариабельности сердечного ритма, что достигается за счет получения функции распределения измеренных интервалов R-R, огибающая которой содержит данные о распределении частотных составляющих в спектре электрокардиосигнала.
Изобретение относится к медицине, диагностике, может быть использовано для комплексной скрининг-оценки состояния здоровья пациентов. Аппаратно-программный комплекс оценки функциональных резервов организма включает хотя бы одно терминальное устройство (ТУ) пациента - компьютер с загруженным программным приложением для психологического тестирования, хранилищем данных с базами данных (БД) пациентов, их антропометрических показателей, результатов выполненных тестов, БД тестов, БД текстовых, графических и звуковых объектов, используемых в тестах. ТУ пациента снабжено компьютерной мышью с возможностью выбора и перемещения графического объекта из одного положения в другое на мониторе во время тестирования; снабжено звуковыми платами и динамиками для воспроизведения звуковых сигналов, платами видеоадаптеров для воспроизведения графической информации при выполнении тестов и/или по итогам их выполнения. ТУ врача соединено проводной или беспроводной связью с ТУ пациента и содержит: модуль анализатора вариабельности сердечного ритма с возможностью оценки кардиоинтервалограммы, обеспечивающей распознавание R-зубцов, расчет ЧСС, расчет числа учтенных R-R интервалов и параметров их вариабельности; модуль биоимпедансометрии внутренних сред организма с возможностью оценки состава тела; модуль спирометрии с возможностью оценки функции внешнего дыхания; модуль осциллометрического анализатора параметров кровообращения с возможностью оценки центральной гемодинамики; модуль пульсоксигемометра с возможностью оценки фотоплетизмограммы. Модули выполнены с возможностью подключения к пациенту соответствующих датчиков и получения от них через аналогово-цифровой преобразователь (АЦП) соответствующих значений параметров пациента. Все полученные при обследовании значения физиологических и психологических параметров пациента поступают в блок аналитической обработки данных с возможностью перевода полученных значений параметров в единую десятибалльную шкалу и формирования интегральных показателей для оценки функциональных резервов организма. Изобретение обеспечивает быстрое и адекватное проведение диспансеризации лиц различных категорий в любых условиях без использования дополнительного оборудования, с интегральной количественной оценкой функциональных резервов организма человека по основным системам, унификацию оценки уровня функциональных резервов, компактность, транспортабельность и технологичность исследований. 6 з.п. ф-лы.

Группа изобретений относится к области медицины, а именно к кардиологии. Определяют момент начала диастолической фазы сердца на электрокардиограмме. При блокировке сигнала акустической активности сердца определяют зубец R. Затем, при разблокировании сигнала акустической активности сердца и блокировке сигнала электрической активности сердца на фонокардиограмме определяют начало II (аортального) тона, вместе с которым начинают подачу пачек электроимпульсов, при этом длительность пачки составляет 7-15% интервала R-R. Способ осуществляется за счет устройств. Устройство включает, по меньшей мере, одно устройство стимуляции скелетных и/или гладких мышц, датчик сигнала электрической активности сердца и датчик сигнала акустической активности сердца, связанное с ними устройство управления для запуска, по меньшей мере, один выход для связи с устройствами стимуляции, узел блокировки сигнала электрической активности сердца, второй узел блокировки сигнала акустической активности сердца. Группа изобретений позволяет повысить эффективность контрпульсационной терапии и предотвратить возможные осложнения за счет подачи стимулирующих импульсов в точно определенное время. 2 н. и 1 з.п. ф-лы, 3 ил.
Наверх