Топливная форсунка

 

Форсунка предназначена для использования в газотурбинных двигателях. Топливная форсунка с тангенциальным входом воздуха имеет входное отверстие камеры сгорания для входа воздуха и топлива в камеру сгорания. Отверстие ограничено конвергентной поверхностью, поверхностью камеры сгорания и цилиндрической поверхностью, проходящей между ними. Конвергентная поверхность проходит на первое расстояние вдоль продольной оси форсунки, цилиндрическая поверхность проходит на второе расстояние вдоль оси, причем второе расстояние составляет по меньшей мере 30% первого расстояния. Изобретение обеспечивает низкое выделение NОх, повышение эксплуатационной долговечности за счет предотвращения соединения факела с центральной частью форсунки. 2 з.п. ф-лы, 3 ил.

Изобретение относится к топливным форсункам с предварительным смешением топлива и воздуха, обеспечивающим низкое выделение NOx, и, в частности, к форсункам, предназначенным для применения в газотурбинных двигателях.

Предпосылки создания настоящего изобретения Выделение закисей азота (называемых ниже NOx) имеет место в результате горения при высоких температурах. NOx является загрязняющим веществом и в результате к камерам сгорания, генерирующим NOx, всегда предъявляют более строгие требования в отношении выделений таких загрязняющих веществ. В соответствии с этим, было приложено много усилий для уменьшения образования NOx в камерах сгорания.

Одним решением этой проблемы было предварительное смешение топлива с избытком воздуха для того, чтобы горение проходило с локально большим избытком воздуха, давая в результате относительно низкую температуру горения и, благодаря этому, минимизируя образование NOx. Топливная форсунка, которая работает таким образом, описана в патенте США 5307634, в котором иллюстрируется спиральный завихритель с конической центральной частью. Этот тип топливной форсунки известен как топливная форсунка с тангенциальным входом и содержит два смещенных спиральных элемента с цилиндрическими сводами, соединенных с двумя торцевыми пластинами. Воздух для горения поступает в завихритель через две прямоугольные прорези, образованные смещенными спиральными элементами, а выходит через входное отверстие камеры сгорания в одной торцевой пластине и входит в камеру сгорания. Линейная матрица отверстий, расположенная на наружном спиральном элементе против внутренней задней кромки, инжектирует топливо в воздушный поток на каждой входной прорези из магистрали для получения равномерной смеси топлива с воздухом перед входом в камеру сгорания.

Предварительно смешивающие топливные форсунки с тангенциальным входом отличались низкими выделениями NOx по сравнению с топливными форсунками предшествующего уровня техники. К сожалению, топливные форсунки, описанные, например, в вышеупомянутом патенте, имеют крайне низкий эксплуатационный ресурс при использовании в газотурбинных двигателях, обусловленный соединением факела с центральной частью форсунки. По этой причине топливные форсунки с тангенциальным входом не нашли практического применения в газотурбинных двигателях, выпускаемых на промышленной основе.

В этой связи существует необходимость в топливной форсунке с тангенциальным входом, которая при применении в газотурбинных двигателях обладает значительно большей эксплуатационной долговечностью, чем топливные форсунки предшествующего уровня техники.

Краткое изложение сущности настоящего изобретения Техническим результатом при использовании настоящего изобретения является создание топливной форсунки с низким выделением NOx, которая при применении в газотурбинных двигателях обладала бы значительно большей эксплуатационной долговечностью, чем топливные форсунки предшествующего уровня техники.

Другим техническим результатом настоящего изобретения является создание топливной форсунки с тангенциальным входом, которая значительно уменьшает склонность факела соединяться с центральной частью, обеспечивая одновременно низкие уровни выделения NOx.

В соответствии с этим топливная форсунка с тангенциальным входом воздуха, соответствующая настоящему изобретению, имеет продольную ось и два спиральных элемента с цилиндрическим сводом, причем осевая линия каждого элемента смещена друг относительно друга. Перекрывающиеся концы этих спиральных элементов образуют между собой воздухозаборную прорезь для введения в топливную форсунку смеси топлива с воздухом. Торцевая пластина, смежная камере сгорания, имеет входное отверстие для разрешения воздуху и топливу выходить из сопла в камеру сгорания. Отверстие содержит конвергентную поверхность, дивергентную поверхность и цилиндрическую поверхность, проходящую между ними. Конвергентная поверхность простирается на первое расстояние вдоль продольной оси форсунки, цилиндрическая поверхность простирается на второе расстояние вдоль оси, причем второе расстояние составляет по меньшей мере 5% первого расстояния. Противоположная торцевая пластина блокирует область потока форсунки, а спиральные элементы закреплены между этими торцевыми пластинами.

Центральная часть, расположенная между спиральными элементами и коаксиально продольной оси, имеет наружную в радиальном направлении поверхность, включающую в себя участок усеченной фигуры, ограничивающий наружную поверхность, выполненную в виде усеченного конуса, ориентированного коаксиальна продольной оси, и цилиндрический участок, который также ориентирован коаксиально продольной оси и ограничивает наружную поверхность цилиндра. Центральная часть имеет основание, которое содержит по меньшей мере одно отверстие для подачи воздуха, проходящее через него, и внутренний канал. Участок усеченной фигуры сужается к выходному отверстию внутреннего канала, а цилиндрический участок расположен между участком усеченной фигуры и плоскостью, в которой расположено выходное отверстие. Первый и второй цилиндрические элементы имеют внутренний канал. Трубка для вдувания топлива, которая коаксиальна продольной оси и проходит через основание и заканчивается во внутреннем канале, обеспечивает подачу топлива в поток воздуха в центральной части.

Краткое описание чертежей Фиг. 1 - разрез топливной форсунки, соответствующей настоящему изобретению, сделанный по линии 1-1, показанной на фиг.2.

Фиг. 2 - разрез по продольной оси форсунки, соответствующей настоящему изобретению.

Фиг. 3 - разрез топливной форсунки, соответствующей настоящему изобретению, по линии 3-3, показанной на фиг.2.

Вариант осуществления настоящего изобретения Как следует из фиг.1, топливная форсунка 10 с предварительным смешением топлива и воздуха, обеспечивающая низкое выделение NOx и соответствующая настоящему изобретению, содержит центральную часть 12 в спиральном завихрителе 14. Спиральный завихритель 14 содержит первую и вторую торцевые пластины 16, 18, причем первая торцевая пластина соединена с центральной частью 12 и отстоит от второй торцевой пластины 18, которая имеет входное отверстие 20 камеры сгорания, проходящее через нее. Множество, а предпочтительно два спиральных элемента 22, 24 с цилиндрическим сводом проходят от первой торцевой пластины 16 ко второй торцевой пластине 18, при этом упомянутые торцевые пластины соединены между собой.

Спиральные элементы 22, 24 равномерно разнесены вдоль продольной оси 26 форсунки 10, ограничивая в соответствии с этим между собой зону 28 смешения, как показано на фиг. 2. Каждый спиральный элемент 22, 24 имеет внутреннюю радиальную поверхность, которая обращена к продольной оси 26 и ограничивает поверхность частичного вращения вокруг осевой линии 32, 34. Используемое выражение "поверхность частичного вращения" означает поверхность, полученную поворотом линии менее чем на один полный оборот вокруг одной из осевых линий 32, 34.

Каждый спиральный элемент 22 отстоит от другого спирального элемента 24, а осевая линия 32, 34 каждого из спиральных элементов 22, 24 расположена в зоне 28 смешения, как показано на фиг.2. Как следует из фиг.3, каждая осевая линия 32, 34 параллельна в разнесенном положении продольной оси 26, и все осевые линии 32, 34 отстоят от продольной оси 26 на одинаковом расстоянии, ограничивая в соответствии с этим входные прорези 36, 38, проходящие параллельно продольной оси 26 между каждой парой смежных спиральных элементов 22, 24 для введения воздуха 40 горения в зону смешения 28. Поддерживающий горение воздух из компрессора (не показан) поступает через входные прорези 36, 38, образованные перекрывающимися концами 44, 50, 48, 46 спиральных элементов 22, 24, имеющих смещенные осевые линии 32, 34.

Каждый спиральный элемент 22, 24 дополнительно содержит топливопровод 52, 54 для введения топлива в воздух 40 горения, когда его вводят в зону 28 смешения через одну из входных прорезей 36, 38. Первый подающий топливопровод (не показан), который может подавать жидкое или газообразное топливо, но предпочтительно газообразное топливо, соединен с каждым из топливопроводов 52, 54. Входное отверстие 20 камеры сгорания, которое коаксиально продольной оси 26, непосредственно прилегает к камере сгорания 56 для выпуска топлива и воздуха для горения из устройства, соответствующего настоящему изобретению, в камеру сгорания 56 (обозначена условно), где имеет место горение смеси топлива и воздуха.

Как следует из фиг.1, центральная часть 12 имеет основание 58, которое имеет по меньшей мере одно, а предпочтительно множество отверстий 60, 62 для подачи воздуха, проходящих через него, причем основание 58 перпендикулярно продольной оси 26, проходящей через него. Центральная часть 12 предпочтительно имеет внутренний канал 64, который коаксиален продольной оси 26. В предпочтительном варианте осуществления настоящего изобретения внутренний канал 64 включает в себя первый цилиндрический канал 66, имеющий первый конец 68 и второй конец 70, и второй цилиндрический канал 72, большего диаметра, чем диаметр первого цилиндрического канала 66, и аналогичным образом имеющий первый конец 74 и второй конец 76. Второй цилиндрический канал 72 сообщается с первым цилиндрическим каналом 66 через сужающийся канал 78, выполненный в форме усеченного конуса, имеющий первый конец 80, диаметр которого равен диаметру первого цилиндрического канала 66, и второй конец 82, диаметр которого равен диаметру второго цилиндрического канала 72, т.е. усеченный конус расположен между упомянутыми первым и вторым цилиндрическими каналами и сопряжен своим меньшим основанием со вторым концом первого цилиндрического канала, а большим основанием - с первым концом второго цилиндрического канала. Каждый из каналов 66, 72, 78 коаксиален продольной оси 26, при этом первый конец 80 сужающегося канала 78 составляет одно целое со вторым концом 70 первого цилиндрического канала 66, в то время как второй конец 82 сужающегося канала 78 составляет одно целое с первым концом 74 второго цилиндрического канала 72. Первый цилиндрический канал 66, имеет выходное отверстие, которое является круглым и коаксиальным продольной оси 26 и расположено на первом конце 68 первого цилиндрического канала 66.

Как следует из фиг.3, наружная в радиальном направлении поверхность 84 центральной части 12 содержит участок 86 усеченной фигуры, который ограничивает наружную поверхность усеченной фигуры, которая коаксиальна продольной оси 26 и расширяется по направлению к основанию 58, и изогнутый участок 88, который составляет одно целое с участком 86 усеченной фигуры и предпочтительно ограничивает часть поверхности, образованной вращением круга вокруг продольной оси 26 по касательной к участку 86 усеченной фигуры, имеющим центр, который лежит в радиальном направлении наружу от нее. В предпочтительном варианте осуществления настоящего изобретения участок 86 усеченной фигуры ограничен плоскостью, в которой расположено выходное отверстие, являющееся одновременно первым концом 68 первого цилиндрического канала 66. Диаметр основания (не путать с основанием 58 центральной части) участка 86 в 2,65 раза больше диаметра участка 86 усеченной фигуры в его вершине, а высота 90 участка 86 усеченной фигуры (расстояние между плоскостью, в которой расположено основание участка 86 усеченной фигуры и плоскостью, в которой расположена вершина участка 86 усеченной фигуры) в 1,90 раза больше диаметра основания участка 86 усеченной фигуры. Как более подробно описано ниже, изогнутый участок 88, который расположен между основанием 58 и участком 86 усеченной фигуры, обеспечивает плавную переходную поверхность, которая аксиально вращает воздух 40 для горения, поступающий в топливную форсунку 10 с тангенциальным входом смежно основанию 58. Как показано на фиг.3, внутренний канал 64 расположен в радиальном направлении внутрь от наружной в радиальном направлении поверхности 84 центральной части 12, участок 86 усеченной фигуры коаксиален продольной оси 26, а центральная часть 12 соединена с основанием 58 так, чтобы участок 86 усеченной фигуры сужался по направлению к выходному отверстию первого цилиндрического канала 66 и заканчивался у этого отверстия.

Как показано на фиг. 2, основание участка 86 усеченной фигуры соответствует окружности 92, вписанной в зону 28 смешения и имеющей свой центр 94 на продольной оси 26. Как вполне очевидно квалифицированному в этой области техники специалисту, поскольку зона 28 смешения не является круглой в поперечном сечении, изогнутый участок 88 должен быть пригнан к ней. Наклонная часть 96, 98 оставлена на изогнутом участке 88, где изогнутая часть 88 проходит в каждую входную прорезь 36, 38, и эта часть механически обработана для образования аэродинамически профилированной наклонной части 96, 98, которая направляет воздух, поступающий во входную прорезь 36, 38, от основания 58 и на изогнутый участок 88 в зоне 28 смешения.

Как следует из фиг.1, внутренняя камера 100 расположена в центральной части 12 между основанием 58 и вторым концом 76 второго цилиндрического канала 72, который ограничивает камеру 100. Воздух 102 подают в камеру 100 через отверстия 60, 62 для подачи воздуха в основании 58, которые сообщаются между собой, а камера 100, в свою очередь, обеспечивает подачу воздуха во внутренний канал 64 через второй конец 76 второго цилиндрического канала 72. Первая торцевая пластина 16 имеет отверстия 104, 106, которые совмещены с отверстиями 60, 62 для подачи воздуха, выполненные в основании 58 так, чтобы не мешать прохождению потока воздуха 102 для горения от компрессора газотурбинного двигателя. Завихритель 108, предпочтительно известной конструкции с радиальным входом, коаксиален продольной оси 26 и расположен в камере 100, непосредственно прилегая ко второму концу 76 второго цилиндрического канала 72 так, что весь воздух, поступающий во внутренний канал 64 из камеры 100, должен проходить через завихритель 108.

Трубка 110 для вдувания топлива, которая также коаксиальна продольной оси 26, проходит через основание 58, камеру 100 и завихритель 108 во второй цилиндрический канал 72 внутреннего канала 64. Трубка 110 для вдувания топлива, которая имеет диаметр меньше, чем диаметр второго цилиндрического канала 72, входит во второй цилиндрический канал 72 так, чтобы площадь поперечного сечения потока во втором цилиндрическом канале 72 была по существу равна площади поперечного сечения первого цилиндрического канала 66. Второй подающий топливопровод (не показан), который может подавать жидкое или газообразное топливо, соединен с трубкой 110 для вдувания топлива для подачи топлива во внутренний канал 112 в трубке 110 для вдувания топлива. Топливные жиклеры 114 расположены в трубке 110 для вдувания топлива и обеспечивают проход топливу к выходу из трубки 110 для вдувания топлива во внутренний канал 64.

Как следует из фиг.3, входное отверстие 20 камеры сгорания (сама камера не показана) коаксиально продольной оси 26 и имеет конвергентную поверхность 116 и цилиндрическую поверхность 118, которая ограничивает критическое сечение входного отверстия. Конвергентная поверхность 116 и цилиндрическая поверхность 118 коаксиальны продольной оси 26, при этом конвергентная поверхность 116 расположена между первой торцевой пластиной 16 и цилиндрической поверхностью 118. Конвергентная поверхность 116 имеет по существу коническую форму и сужается в направлении цилиндрической поверхности 118. Цилиндрическая поверхность 118 проходит между плоскостью 120 критического сечения и поверхностью 122 камеры сгорания входного отверстия 20 камеры сгорания, которая перпендикулярна продольной оси 26 и ограничивает плоскость 124 выходного сечения топливной форсунки 10, соответствующей настоящему изобретению. Для достижения требуемой аксиальной скорости смеси топлива с воздухом через входное отверстие 20 камеры сгорания, проходящий через него воздух для горения, должен столкнуться с минимальной площадью прохождения потока или площадью критического сечения во входном отверстии 20 камеры сгорания.

Конвергентная поверхность 116 ограничена плоскостью 120 критического сечения, где диаметр конвергентной поверхности 116 равен диаметру цилиндрической поверхности 118. Как показано на фиг.3, плоскость 120 критического сечения расположена между плоскостью 124 выходного сечения и плоскостью, в которой расположено выходное отверстие первого конца 68 первого цилиндрического канала 66, а конвергентная поверхность 116 расположена между цилиндрической поверхностью 118 и первой торцевой пластиной 16. Чтобы установить требуемый профиль скорости смеси топлива с воздухом во входном отверстии 20 камеры сгорания, конвергентная поверхность 116 проходит на заданном расстоянии 126 вдоль продольной оси 26, а цилиндрическая поверхность 118 проходит на втором расстоянии 128 вдоль продольной оси 26, которое составляет по меньшей мере 30% от заданного расстояния 126.

В процессе работы, поток воздуха для горения из компрессора газотурбинного двигателя поступает через отверстия 104, 106 и отверстия 60, 62 для подачи воздуха в основании 58 в камеру 100 центральной части 12. Воздух для горения выходит из камеры 100 через завихритель 108 с радиальным входом и входит во внутренний канал 64 по существу с тангенциальной скоростью или с завихрением относительно продольной оси 26. Когда этот вихревой поток воздуха для горения проходит трубку 110 для вдувания топлива, топливо, предпочтительно в газообразном виде, распыляется из трубки 110 для вдувания топлива во внутренний канал 64 и смешивается с вихревым потоком воздуха для горения. Затем поток смеси топлива и воздуха для горения проходит от второго цилиндрического канала 72 в первый цилиндрический канал 66 через сужающийся канал, выполненный в виде усеченного конуса 78. После этого смесь продолжает двигаться вдоль первого цилиндрического канала 66, выходя из первого цилиндрического канала 66 вблизи от или в плоскости 120 критического сечения входного отверстия 20 камеры сгорания, обеспечивая центральный поток смеси топлива и воздуха.

Дополнительный воздух для горения из компрессора газотурбинного двигателя входит в зону 28 смешения через каждую из входных прорезей 36, 38. Воздух, входящий во входные прорези 36, 38 непосредственно вблизи основания 58, направляется посредством наклонных частей 96, 98 на изогнутый участок 88 в зоне 28 смешения спирального завихрителя 14. Топливо, предпочтительно газообразное топливо, подаваемое к топливопроводам 52, 54, распыляется в воздухе для горения, проходящем через входные прорези 36, 38, и начинает смешиваться с ним. Благодаря форме спиральных элементов 22, 24, эта смесь образует вихревой кольцевой поток вокруг центральной части 12, и смесь топлива с воздухом продолжает перемешиваться, когда она образует вихревой поток вокруг центральной части 12, перемещаясь вдоль продольной оси 26 к входному отверстию 20 камеры сгорания.

Вихрь кольцевого потока, образуемый спиральным завихрителем 14, предпочтительно (но без ограничения) вращается в одном направлении с вихрем смеси топлива и воздуха в первом цилиндрическом канале 66 и предпочтительно имеет угловую скорость по меньшей мере равную угловой скорости смеси топлива с воздухом в первом цилиндрическом канале 66. Благодаря форме центральной части 12, аксиальная скорость кольцевого потока поддерживается при скоростях, которые препятствуют пламени камеры сгорания мигрировать в спиральный завихритель 14 и присоединяться к наружной поверхности 84 центральной части 12. При наличии первого цилиндрического канала 66, вихревая смесь топлива с воздухом (или воздушный поток без топлива) центрального потока окружена кольцевым потоком из спирального завихрителя 14, и эти два потока входят в плоскость 120 критического сечения входного отверстия 20 камеры сгорания и проходят в радиальном направлении к цилиндрической поверхности 118 до тех пор, пока не достигнут плоскости 124 выходного сечения входного отверстия 20 камеры сгорания вниз по технологической цепочке от зоны 28 смешения.

При существующем входном отверстии 20 камеры сгорания, взаимодействие центрального потока с кольцевым потоком создает центральную зону 200 рециркуляции, которая ниже по технологической цепочке от плоскости 124 выходного сечения (то есть плоскость выходного сечения расположена между центральной зоной рециркуляции и выпускным отверстием внутреннего канала) и отстоит от нее. Острый выступ 130, образованный там, где цилиндрическая поверхность 118 встречается с поверхностью 122 входного отверстия 20 камеры горения, вызывает внезапное расширение смеси топлива с воздухом и рециркуляцию смеси топлива с воздухом в радиальном направлении наружу от центральной зоны 200 рециркуляции. Горение и пламя, образуемое в этой наружной рециркуляции 300, закрепляет это "наружное" пламя смежно выступу 130, но это пламя отстоит от плоскости 124 выходного сечения и полностью находится ниже ее по технологической цепочке. В результате этого устройство, соответствующее настоящему изобретению, обеспечивает обе зоны 200, 300 рециркуляции, поддерживаемыми отстоящими от плоскости 124 выходного сечения при всех режимах работы двигателя.

Топливная форсунка 10, соответствующая настоящему изобретению, существенно уменьшает вибрации потока, сопровождающиеся выделением тепла, которые вызывают чрезмерные пульсации давления в камере сгорания и акустический звук. Настоящее изобретение исключает вышеупомянутое взаимодействие процесса горения с плоскостью 124 выходного сечения, приводя к значительному уменьшению звуковых эффектов. Следовательно, настоящее изобретение обеспечивает решение проблемы чрезмерных пульсаций давления в топливной форсунке 10 с тангенциальным входом при достижении меньших выбросов в процессе ее эксплуатации.

Хотя настоящее изобретение описано и показано на примере его предпочтительного варианта осуществления, квалифицированному в этой области техники специалисту будет очевидно, что без отклонения от сущности и объема заявляемого изобретения могут быть в общем и в частности сделаны различные изменения.

Формула изобретения

1. Топливная форсунка, содержащая центральную часть с продольной осью, наружную в радиальном направлении поверхность, включающую участок усеченной фигуры, ограничивающий наружную поверхность усеченной фигуры, коаксиальную продольной оси и расширяющуюся к основанию усеченной фигуры, и изогнутый участок, составляющий одно целое с участком усеченной фигуры и предпочтительно ограничивающий часть поверхности, образованной вращением вокруг продольной оси окружности, которая тангенциальна участку усеченной фигуры и имеет центр, расположенный в радиальном направлении наружу от него; основание центральной части, имеющее, по меньшей мере, одно проходящее через него отверстие для подачи воздуха; внутренний канал, коаксиальный продольной оси, образованный первым цилиндрическим каналом, вторым цилиндрическим каналом и размещенным между упомянутыми первым и вторым цилиндрическими каналами коническим каналом, причем каждый канал имеет первый конец и второй конец, а упомянутый конический канал сопряжен своим меньшим основанием со вторым концом первого цилиндрического канала, а большим основанием - с первым концом второго цилиндрического канала, при этом упомянутый второй цилиндрический канал имеет диаметр, больший диаметра упомянутого первого цилиндрического канала, упомянутый второй цилиндрический канал сообщается с упомянутым первым цилиндрическим каналом через упомянутый конический канал, при этом его первый конец составляет одно целое с упомянутым вторым концом упомянутого первого цилиндрического канала, а его второй конец составляет одно целое с упомянутым первым концом упомянутого второго цилиндрического канала, упомянутый первый конец конического канала имеет диаметр, равный диаметру первого цилиндрического канала, а упомянутый второй конец конического канала имеет диаметр, равный диаметру второго цилиндрического канала, каждый из упомянутых каналов коаксиален продольной оси, упомянутый первый цилиндрический канал имеет выходное отверстие, которое является круглым, коаксиальным продольной оси и расположенным на первом конце первого цилиндрического канала; внутреннюю камеру, расположенную между упомянутым основанием центральной части и упомянутым вторым концом второго цилиндрического канала, причем упомянутые отверстия для подачи воздуха сообщаются с упомянутым вторым цилиндрическим каналом через упомянутую камеру; завихритель, ориентированный коаксиально продольной оси и расположенный в камере, непосредственно прилегающей ко второму концу второго цилиндрического канала; трубку для вдувания топлива, ориентированную коаксиально упомянутой продольной оси и проходящую через упомянутые основание центральной части, внутреннюю камеру и завихритель, и заканчивающуюся в упомянутом втором цилиндрическом канале; спиральный завихритель, имеющий первую и вторую торцевые пластины, соединенные между собой, причем упомянутая первая торцевая пластина разнесена относительно упомянутой второй торцевой пластины, которая имеет проходящее через нее входное отверстие камеры сгорания, ориентированное коаксиально упомянутой продольной оси, а также конвергентную поверхность, поверхность камеры сгорания и цилиндрическую поверхность, проходящую от упомянутой конвергентной поверхности к упомянутой поверхности камеры сгорания, по меньшей мере два спиральных элемента с цилиндрическим сводом, причем каждый спиральный элемент ограничивает тело частичного вращения вокруг осевой линии, каждый из упомянутых спиральных элементов проходит от упомянутой первой торцевой пластины к упомянутой второй торцевой пластине и равномерно разнесен вокруг оси, ограничивая в соответствии с этим между собой зону смешения, каждый упомянутый спиральный элемент разнесен относительно другого спирального элемента, каждая упомянутая осевая линия расположена в упомянутой зоне смешения и в разнесенном положении одинаково отстоит от упомянутой продольной оси и параллельна ей, ограничивая в соответствии с этим входные прорези, проходящие параллельно упомянутой оси между каждой парой смежных спиральных элементов, через которые осуществляется ввод воздуха для горения в упомянутую зону смешения, при этом каждый из упомянутых спиральных элементов содержит топливопровод для введения топлива в воздух для горения, вводимый через одну из упомянутых входных прорезей.

2. Топливная форсунка по п. 1, в которой упомянутая конвергентная поверхность проходит на первое расстояние вдоль упомянутой оси, упомянутая цилиндрическая поверхность проходит на второе расстояние вдоль упомянутой оси, причем упомянутое второе расстояние составляет по меньшей мере 30% первого расстояния.

3. Топливная форсунка по п. 2, в которой цилиндрическая поверхность имеет заданный радиус от продольной оси, который по меньшей мере на 10% меньше радиуса участка усеченной фигуры в его основании.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности может использоваться в топливной аппаратуре двигателей внутреннего сгорания с воспламенением от сжатия

Изобретение относится к двухканальным форсункам для инжекции жидкого топлива в камеру сгорания газотурбинного двигателя

Изобретение относится к двигателестроению, в частности может использоваться в топливной аппаратуре двигателей внутреннего сгорания с воспламенением от сжатия

Форсунка // 1239456

Форсунка // 1236251

Изобретение относится к двигателестроению, в частности к клапанным форсункам в системах впрыскивания двигателей внутреннего сгорания со сжатием рабочей смеси и принудительным зажиганием и способам изготовления форсунок

Изобретение относится к двигателестроению, в частности к топливовпрыскивающим устройствам с электронным управлением бензинового двигателя

Изобретение относится к клапанам с электромагнитным приводом

Изобретение относится к двигателестроению, в частности к системам впрыскивания топлива двигателей внутреннего сгорания со сжатием рабочей смеси и принудительным зажиганием

Изобретение относится к двигателестроению, в частности к топливовпрыскивающей аппаратуре двигателей внутреннего сгорания

Изобретение относится к двигателестроению, в частности к клапанам для впрыска топлива в двигателе внутреннего сгорания со сжатием смеси и принудительным зажиганием

Изобретение относится к машиностроению, а именно к способам изготовления сопла клапана для впуска топлива, предназначенного для двигателя внутреннего сгорания, в частности для большого двухтактного двигателя

Форсунка // 2084685

Изобретение относится к области двигателестроения, в частности, к устройствам для подачи топлива в цилиндр двигателя

Изобретение относится к машиностроению, в частности, к впускным системам двигателей внутреннего сгорания с впрыском топлива

Изобретение относится к устройствам регулирования подачи топлива в основную камеру сгорания ГТД в топливной форсунке
Наверх