Стенд для измерения тяги ракетного двигателя

 

Изобретение относится к области измерений, в частности измерений тяги ракетного двигателя.

Задачей изобретения является уменьшение погрешности измерения тяги. Стенд содержит опорный элемент и датчик тяги, скрепленный с двигателем и с упорной поверхностью. Между двигателем и упорной поверхностью установлено шарнирное устройство, а опорный элемент выполнен в виде кольца, закрепленного на двигателе у соплового дна, и соединенной с кольцом гибкими растяжками регулируемой длины опорной рамы, перпендикулярной продольной оси двигателя. 3 ил.

Изобретение относится к области измерений, в частности измерений тяги ракетного двигателя (РД).

Известно устройство для измерения тяги ракетного двигателя [1], в котором двигатель передней частью скреплен с поршнем, установленным вертикально в цилиндрической направляющей. Между поршнем и опорной поверхностью установлен пружинный динамометр или тензометрический датчик, с помощью которых регистрируется изменение тяги во времени. К недостатку устройства можно отнести повышенную погрешность измерения тяги, обусловленную воздействием на датчик тяги веса двигателя, который меняется по мере выгорания заряда РД. Кроме того, вследствие наличия эксцентриситета тяги всегда существует боковая сила, увеличивающая силу трения поршня в направляющей, что еще более увеличивает погрешность измерения тяги. В некоторых случаях боковая сила может приводить к заклиниванию поршня и, как следствие, к потере информации.

Данное устройство может быть закреплено на стапеле и горизонтально, но в этом случае боковая приклинивающая сила еще более увеличивается весом двигателя.

Указанные недостатки частично устранены в конструкции горизонтального стенда, в котором двигатель установлен на опорные ролики и скреплен с датчиком тяги, который, в свою очередь, жестко скреплен с вертикальной упорной поверхностью [2]. В процессе работы РД может перемещаться в продольном направлении на опорных роликах. В данной конструкции цилиндрическая направляющая заменена опорными роликами. т.е. трение скольжения заменено трением качения, что уменьшает, но не устраняет погрешность измерения тяги, обусловленную наличием силы трения, так при весе двигателя 5 кг и коэффициенте трения качения 0,05 (стальное колесо по стали) сила трения составляет 0,25 кг. При тяге двигателя 25 кг погрешность измерения тяги составляет 1%. Наличие эксцентриситета тяги может еще больше увеличить эту погрешность.

Кроме того, к недостатку конструкции можно отнести трудность обеспечения соосности двигателя и датчика тяги. При несоосности 4° погрешность измерения тяги составляет ~0,25%.

Задачей настоящего изобретения является уменьшение погрешности измерения тяги.

Указанная задача решается тем, что в стенде для измерения тяги ракетного двигателя, содержащем опорный элемент и датчик тяги, скрепленный с двигателем и с упорной поверхностью, между упорной поверхностью и датчиком тяги установлено шарнирное устройство, а опорный элемент выполнен в виде кольца, закрепленного на двигателе у соплового дна, и соединенной с кольцом гибкими растяжками регулируемой длины опорной рамы, перпендикулярной оси двигателя.

Шарнирное устройство исключает погрешность измерения тяги, обусловленную несоосностью двигателя и датчика тяги. При этом исключается сама необходимость установки двигателя строго по оси датчика тяги, что существенно упрощает процесс подготовки к испытаниям. Выполнение опорного элемента на гибких растяжках устраняет погрешность измерения тяги, обусловленную трением в опоре. Выполнение гибких растяжек регулируемой длины обеспечивает возможность регулирования положения оси двигателя относительно датчика тяги.

На фиг.1 показан продольный разрез предлагаемого стенда, на фиг.2 - вид сзади. Испытываемый двигатель 1 с помощью переходника 2 скреплен с датчиком тяги 3, который в свою очередь скреплен с шарнирным устройством 4 и через него - с упорной поверхностью 5. Шарнирное устройство выполнено на базе шарнирного подшипника [3] . Двигатель 1 поддерживается в горизонтальном положении с помощью кольца 6, которое крепится на сопловой части двигателя радиальными винтами 7 и фиксируется в опорной треугольной раме 8 тремя гибкими тросовыми растяжками 9. Центрирование кольца 6 в раме 8 осуществляется изменением длины растяжек 9 с помощью винтовой пары 10. На фиг.3 показан вариант выполнения шарнирного устройства, в котором шарнирный подшипник 11 закреплен на оси 12 в обойме 13.

Работает устройство следующим образом. Двигатель 1 с переходником 2 присоединяют к датчику тяги 3, закрепленному на упорной поверхности 5 через шарнирное устройство 4. Радиальными винтами 7 кольцо 6 фиксируется на сопловой части двигателя 1. Регулируя длину растяжек 9 с помощью винтовой пары 10, выставляют двигатель 1 соосно датчику тяги 3. Смещая раму 8 вперед по линии действия тяги, обеспечивают натяжение растяжек 9, после чего закрепляют раму на стапеле. При этом выбираются микрозазоры в кинематической цепи "двигатель - упорная плита". Включают двигатель 1, тяга которого регистрируется датчиком 3. В процессе работы двигателя шарнирное устройство 4 обеспечивает передачу тяги двигателя строго по оси датчика, компенсируя возможную несоосность двигателя и датчика, возникшую при установке двигателя.

Таким образом, выполнение опорного элемента на гибких растяжках и использование шарнирного устройства позволяет исключить составляющие погрешности измерения тяги двигателя. обусловленные трением в опорах двигателя и несоосностью двигателя и датчика тяги.

Источники информации

1. Зельдович Я.Б. и др. "Импульс реактивной силы пороховых ракет", стр.130, фиг.4.1. Издательство Оборонгиз, Москва, 1963 г.

2. Патент России № 2091736, МПК 6 G 01 L 5/13, 1997 г.

3. ГОСТ 3635-78. Подшипники шарнирные. Технические условия.

Формула изобретения

Стенд для измерения тяги ракетного двигателя, содержащий опорный элемент и датчик тяги, скрепленный с двигателем и с упорной поверхностью, отличающийся тем, что между упорной поверхностью и датчиком тяги установлено шарнирное устройство, а опорный элемент выполнен в виде кольца, закрепленного на двигателе у соплового дна, и соединенной с кольцом гибкими растяжками регулируемой длины опорной рамы, перпендикулярной продольной оси двигателя.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к ракетной технике, в частности к установкам для определения скорости горения твердого ракетного топлива (ТРТ) с высокой чувствительностью скорости горения от давления

Изобретение относится к ракетной технике, в частности к установкам для определения скорости горения твердого ракетного топлива (ТРТ) в напряженно-деформированном состоянии
Изобретение относится к области ракетостроения и может быть использовано при производстве кислородно-керосиновых жидкостных ракетных двигателей (ЖРД)

Изобретение относится к технике испытаний РДТТ и может быть использовано для выявления нарушений процесса функционирования двигателя

Изобретение относится к технике контроля параметров РДТТ

Изобретение относится к области исследования процессов горения в теплонапряженных топках и может быть использовано на этапе проектирования и отработки камер сгорания и газогенераторов для обеспечения их надежной и безаварийной работы

Изобретение относится к области ракетной техники и может быть использовано при отработке и проведении научно-исследовательских и проектно-конструкторских работ по созданию ракетных двигателей твердого топлива

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке ракетных двигателей, у которых в процессе работы происходит изменение площади критического сечения сопла (унос материала, налипание конденсированной фазы и т.п.)

Изобретение относится к области испытаний ракетной техники, в частности к области исследований процесса в камере импульсного ракетного двигателя твердого топлива (РДТТ)

Изобретение относится к области машиностроения и может быть использовано в производстве оборудования для испытаний ракетных двигателей твердого топлива (РДТТ), а также сжигания топлива в процессе их утилизации с обеспечением требований экологической безопасности

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива
Наверх