Способ получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования

 

Изобретение относится к области электрохимии, в частности к анодированию деталей из металлов вентильной группы - алюминий, титан, тантал и др., а также их сплавов, и может быть использовано для создания прочных термостойких и износоустойчивых покрытий в машиностроении. Способ включает установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали, при этом держатель детали снаружи покрыт электроизоляционным материалом на границе воздух - электролит. Техническим результатом изобретения является получение толстослойных защитных покрытий с высокой твердостью, низким коэффициентом трения и высокой адгезией к основному материалу на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, что позволяет исключить смазку при использовании деталей в трущихся парах. 1 ил.

Изобретение относится к области электрохимии, в частности к анодированию деталей из металлов вентильной группы - алюминий, титан, тантал и др., а также их сплавов, и может быть использовано в для создания прочных термостойких и износоустойчивых покрытий в машиностроении.

В настоящее время для защиты деталей из алюминия и его сплавов, а также деталей из других вентильных металлов используется технология микродугового оксидирования, позволяющая получать покрытия с уникальным комплексом физико-механических свойств, таких как высокая твердость, низкий коэффициент трения, высокая износостойкость и коррозионная стойкость и т.п. Это достигается за счет использования микродуговых разрядов, формирующих на поверхности изделий структуры на основе высокотемпературных кристаллических окислов, которые придают изделиям качественно новые свойства.

Так, при использовании защитных покрытий на трущихся парах, например, в двигателях внутреннего сгорания, можно обходиться без смазки трущихся поверхностей, что обеспечивает значительную экономию смазывающих материалов и существенно улучшает эксплуатационные характеристики двигателя. Однако получаемые в настоящее время защитные покрытия не находят широкого применения в двигателестроении из-за сложности получения толстых покрытий (более 150 мкм) с низким коэффициентом трения и высокой адгезией к материалу детали, что позволяет выдерживать многочисленные термоудары, возникающие при работе двигателя внутреннего сгорания без разрушения защитного покрытия.

Известен способ микродугового оксидирования вентильных металлов, взятый в качестве прототипа, (см. Новиков А.Н. Ремонт деталей из алюминия и его сплавов. Орел, Орловская государственная сельскохозяйственная академия, 1997 г., с.32-33), включающий установку детали в электролите на токопроводящем держателе, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродуговых разрядов на поверхности детали. Для исключения образования защитной пленки на не подлежащих оксидированию частях детали или подвески изготавливают специальные съемные футляры из фторопласта или капролона, которыми их закрывают при нанесении покрытия.

Известный способ микродугового оксидирования позволяет получать качественные покрытия с предельной толщиной до 60-70 мкм.

Основными недостатками известного способа являются недостаточная толщина получаемого покрытия и невысокая адгезия покрытия к основному материалу. Это связано с тем, что толщина покрытия линейно растет с ростом напряжения, но при достижении определенной толщины (в приведенном примере это 60-70 мкм) начинается резкое уменьшение скорости роста пленки (до 5 мкм/час). При таких скоростях роста пленки практически нельзя получать толстые покрытия за реально допустимое время. Связано это с шунтированием детали проводящей парогазовой фазой (парами электролита в воздухе) на границе воздух - электролит.

Кроме того, дальнейший медленный рост защитной пленки на детали не сопровождается улучшением ее адгезии к основному материалу. Это объясняется тем, что с уменьшением силы тока ослабевают микродуговые разряды, возникающие на поверхности детали и прогревающие как саму защитную пленку на всю ее толщину, так и приповерхностный слой материала детали. Такие локальные микроразогревы приповерхностного слоя детали приводят к возникновению “микрократеров”, которые затем закрываются оксидной пленкой, но при этом существенно увеличивается адгезия защитного покрытия к основному материалу детали.

Техническим результатом настоящего изобретения является получение толстослойных защитных покрытий с высокой твердостью, низким коэффициентом трения и высокой адгезией к основному материалу на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, что позволяет исключить смазку при использовании деталей в трущихся парах.

Указанный технический результат в способе получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, включающем установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали, достигается тем, что держатель детали снаружи покрыт электроизоляционным материалом на границе воздух - электролит.

Покрытие держателя детали снаружи электроизоляционным материалом на границе воздух - электролит позволяет исключить влияние парогазовой фазы, т.е. избежать шунтирования детали и ослабления величины тока через деталь, что создает условия для дальнейшего роста напряжения, а значит и для дальнейшего быстрого роста толщины защитного покрытия. При проведенных сравнительных механических испытаниях, направленных на определение величины адгезии покрытия к основному материалу детали, выявлено, что на деталях, покрытых по заявляемому способу, происходит отрыв поверхности детали по основному материалу, а не по нижней границе защитной пленки, как в прототипе.

Заявляемый способ позволяет существенно увеличить толщину получаемых покрытий на деталях из вентильных металлов и увеличить адгезию покрытия к основному материалу, что не имеет аналогов среди известных технических решений, используемых при микродуговом оксидировании, а следовательно, позволяет сделать вывод о том, что он удовлетворяет критерию “изобретательский уровень”.

На чертеже схематично представлена установка, поясняющая реализацию заявляемого способа.

Установка для получения защитных покрытий на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования (см.чертеж) включает металлическую ванну 1 с электролитом 2, в которую на токопроводящем держателе 3 с электроизоляционным покрытием 4 на границе воздух - электролит установлена деталь 5, которая соединена с одной из клемм источника питания 6, другая клемма которого соединена с металлической ванной 1.

Установка работает следующим образом. На деталь 5 с источника питания 6 подают положительное напряжение (или переменное напряжение со смещением). Идет процесс обычного анодирования, при котором возникает окисная пленка, а напряжение продолжает расти до некоторого значения (около 100 В), при достижении которого на поверхности детали создаются необходимые условия для возникновения микродуговых разрядов, пробивающих анодную окисную пленку с образованием нового более толстого защитного покрытия в местах пробоя. С возникновением микродуговых разрядов ток начинает расти, но с ростом толщины защитного покрытия уменьшается. Если не увеличивать напряжение на источнике 6, то процесс роста пленки остановится на определенном уровне. Для дальнейшего роста толщины защитного покрытия необходимо увеличение напряжения на источнике питания. Однако при этом наблюдается следующее негативное явление. На не погруженной в раствор электролита части держателя 3 в месте перехода воздух - электролит (из-за наличия в воздухе паров электролита) начинает образовываться пористое защитное покрытие, через которое идет основной ток от источника 6, и которое фактически шунтирует источник питания. Если процесс не остановить, материал держателя быстро перейдет в пористые наросты, а следовательно, израсходуется и разрушится. Благодаря наличию электроизоляции 4 на участке электролит - воздух удается исключить образование пористых наростов, а следовательно, убрать паразитное шунтирование источника питания 6, тем самым можно существенно увеличивать напряжение на детали, что обеспечит дальнейший рост толщины защитного покрытия.

Вариант 1.

В качестве электролита использована концентрированная серная кислота, а в качестве источника питания - источник постоянного напряжения. При постоянном токе нагрузки без защиты токопроводящего держателя удалось поднять напряжение до 390 В, а при использование частично защищенного электроизоляционным материалом (фторопластом) держателя - напряжение удалось поднять более чем до 460 В, тем самым увеличив толщину получаемого покрытия более чем в 2 раза.

Вариант 2.

В качестве электролита использован раствор 4 г/л едкого калия и 4 г/л жидкого стекла, а в качестве источника питания - источник переменного напряжения со смещением. Без защиты токопроводящего держателя удалось поднять напряжение до 410 В, а при использование частично защищенного электроизоляционным материалом держателя - напряжение удалось поднять свыше 700 В, что позволило также более чем в 2 раза увеличить толщину покрытия.

Формула изобретения

Способ получения толстослойных защитных покрытий с высокой адгезией на деталях из вентильных металлов или их сплавов в режиме микродугового оксидирования, включающий установку детали в электролите на токопроводящем держателе, покрытом изоляционным материалом, создание рабочего напряжения между деталью и электролитом, повышение напряжения до возникновения микродугового разряда на поверхности детали, отличающийся тем, что держатель детали снаружи покрыт электроизоляционным материалом на границе воздух - электролит.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области металлургии, конкретно к электрохимической обработке поверхностей переходных металлов и сплавов

Изобретение относится к способу нанесения электролитических покрытий с помощью подвижного электролита и химических реакций, проходящих на поверхности обрабатываемых изделий, и может быть использовано в машиностроении, приборостроении, авиационной и судостроительной промышленности
Изобретение относится к формированию износостойких покрытий на алюминиевых деталях сложной формы и большой площади и может быть использовано в машиностроении

Изобретение относится к устройствам для получения оксидных покрытий на деталях и может быть использовано для восстановления с упрочнением колодцев корпусов шестеренных насосов

Изобретение относится к электрохимическому формированию оксидных износостойких покрытий на алюминии и его сплавах с улучшенными антифрикционными и противозадирными свойствами методом микродугового анодирования

Изобретение относится к электрохимической обработке поверхности металлов и сплавов для формирования на их поверхности коррозионно-, тепло- и износостойких покрытий и придания им защитных диэлектрических и декоративных свойств и может быть использовано, например, в машиностроении, радиоэлектронике, химической промышленности, медицине, авиации и т.д

Изобретение относится к обработке поверхностей протезов из титана, сплавов на основе хрома и кобальта и может быть использовано в медицине

Изобретение относится к оборудованию для электролитической обработки поверхности металлов и их сплавов путем оксидирования и может быть использовано в машиностроении, авиационной, химической, радиоэлектронной промышленности, медицине, а также в ремонтном производстве при упрочнении и восстановлении деталей

Изобретение относится к оборудованию для электролитической обработки поверхности металлов и их сплавов путем оксидирования для повышения коррозионно-износостойкости, теплостойкости, получения электроизоляционных и декоративных покрытий и может быть использовано в машиностроении, авиационной, химической, радиоэлектронной промышленности, медицине, а также в ремонтном производстве при упрочнении и восстановлении деталей металлопокрытия

Изобретение относится к области обработки поверхностей изделий и может быть использовано в машиностроении и других отраслях промышленности

Изобретение относится к области обработки поверхностей изделий и может быть использовано в машиностроении и других отраслях промышленности

Изобретение относится к области электрохимии, в частности к способам нанесения упрочняющих и защитных электролитических покрытий при восстановлении и изготовлении стальных изделий

Изобретение относится к гальванотехнике, в частности к устройствам для микродугового оксидирования поверхностей вентильных металлов

Изобретение относится к области обработки поверхности изделий и может быть использовано в машиностроении и других отраслях промышленности

Изобретение относится к технологии и оборудованию для электролитической обработки поверхности металлов и их сплавов путем оксидирования для повышения износостойкости, коррозионностойкости, теплостойкости, получения декоративных и электроизоляционных покрытий и может быть использовано в машиностроении, авиационной, химической промышленности, медицине, а также в ремонтном производстве при упрочнении и восстановлении деталей

Изобретение относится к гальванотехнике, в частности к устройствам для микродугового оксидирования, и может быть использовано в любых отраслях народного хозяйства, связанных с машиностроением и металлообработкой
Изобретение относится к электролитическому нанесению покрытий на вентильные металлы и их сплавы, преимущественно на алюминий и титан, и может найти применение в различных отраслях промышленности для получения подслоя под лакокрасочные покрытия, для защиты изделий от атмосферной коррозии, в том числе в сложных климатических условиях, и придания изделиям декоративного вида

Изобретение относится к области электролитического нанесения покрытий, а именно: к микродуговому окислению поверхности металла, имеющего полупроводниковые свойства, для получения керамического покрытия

Изобретение относится к наноэлектронике, микроэлектронике и может быть использовано в микроэлектронных и микроэлектромеханических системах, а также для создания микро-, нанопроцессоров и нанокомпьютеров
Наверх