Способ извлечения никеля и сопутствующих металлов

Изобретение относится к области металлургии, в частности к способам извлечения никеля, кобальта и сопутствующих металлов из растворов, полученных при кислотном выщелачивании окисленных (латеритовых) руд, и может быть использовано при получении никеля, кобальта, марганца и магния из указанных растворов. Исходный раствор нейтрализуют до рН 5,0-5,5 карбонатом или оксидом магния для осаждения железа и алюминия и полученную пульпу сгущают. Из верхнего слива сгустителя и сгущенной пульпы сорбируют никель и кобальт, отделяют раствор от осадка в сгущенной части пульпы и объединяют его с очищенным от никеля и кобальта верхним сливом сгустителя, после чего выделяют из объединенного раствора марганец и магний. Техническим результатом является снижение потерь смолы и упрощение извлечения марганца и магния. 2 табл.

 

Изобретение относится к способам извлечения никеля, кобальта и сопутствующих металлов из растворов, полученных при кислотном выщелачивании окисленных руд, и может быть использовано при получении никеля, кобальта, марганца и магния из указанных растворов.

Известен способ выделения никеля и кобальта из растворов, полученных в результате автоклавного сернокислотного выщелачивания металлов из окисленных руд [1]. По этому способу на заводе Моа Бей товарный сернокислый раствор для доочистки от примесей железа, алюминия и хрома нейтрализуют известняком до рН˜2,5 и из нейтрализованного раствора в горизонтальных цилиндрических автоклавах с мешалками при температуре 120-135°С газообразным сероводородом под давлением около 1,0 МПа выделяют смешанный никелькобальтовый сульфид (товарная продукция). Недостатки процесса - высокая токсичность сероводорода и сложность получения удовлетворительно фильтрующегося осадка.

Наиболее близок к предлагаемому техническому решению способ получения никеля и кобальта из сернокислого раствора, включающий осаждение железа и, частично, никеля и кобальта из раствора при изменении водородного показателя раствора с последующим отделением осадка от раствора, осаждение из оставшегося раствора марганца переводом его в диоксид и отделением диоксида от раствора, промывка осадков растворами аммиака, объединение всех растворов и осаждение из объединенного раствора никеля путем добавления в него сульфида натрия или аммония [2]. Недостатки способа - сложная многостадийная схема получения конечного никелевого раствора, приводящая к его существенному разбавлению и соответственно увеличению количества и объема оборудования, использование для осаждения никеля сильно токсичных сульфидов.

Технический результат предлагаемого решения заключается в снижении потерь смолы при раздельной сорбции никеля и кобальта из сгущенного продукта и раствора после нейтрализации раствора оксидом или карбонатом магния и разделении полученной пульпы на указанные продукты; упрощается извлечение из отработанных растворов марганца и магния.

Технический результат достигается тем, что согласно предлагаемому способу для осаждения железа и алюминия раствор нейтрализуют до рН 5,0-5,5 карбонатом магния, полученную пульпу сгущают, из верхнего слива сгустителя и сгущенной пульпы сорбируют никель и кобальт, отделяют раствор от осадка в сгущенной части пульпы и объединяют его с очищенным от никеля и кобальта верхним сливом сгустителя, после чего известными способами выделяют из объединенного раствора марганец и магний.

Перед извлечением никеля и кобальта из растворов необходимо перевести в осадок содержащееся в растворе железо. Для этого можно нейтрализовать раствор, например, известняком или оксидом кальция до рН 3,5-4,0. При последующем извлечении из раствора магния очистку раствора от железа целесообразно совместить с его очисткой от алюминия, но для этого надо довести рН раствора до 5,0-5,5. Осаждение железа и алюминия, а также хрома при нейтрализации раствора сопровождается частичным осаждением никеля и кобальта, причем с увеличением рН выше 3,5 количество переходящих в осадок никеля и кобальта резко возрастает (табл.1).

Осаждение гидроксида железа оксидом кальция.

Таблица 1
N п/пpH раствораСодерж. в р-ре, г/дм3Перешло в осадок, %
FeNiAlFeNiAl
1Исходный10,51,702,15
23,5-3,71,951,610,07781,45,396,4
35,00,381,380,00696,418,899,7

Извлечь никель и кобальт как из раствора, так и перешедшие в осадок, позволяет использование процесса сорбции этих металлов из пульпы, для чего полученную после нейтрализации пульпу при постоянных рН и температуре контактируют с ионитом в противоточном режиме. Однако перед сорбцией следует разделить пульпу на две части: сгущенную пульпу и осветленный раствор. Сорбцию металлов из пульпы ведут в пачуках при перемешивании, из растворов - в колоннах с плотным слоем ионита. Потери смолы за счет истирания составляют соответственно 55 и 13% в год. Таким образом, раздельная сорбция из пульпы и раствора позволяет снизить потери смолы и существенно улучшить экономичность процесса (табл. 2).

Очистку раствора от железа и алюминия при последующих сорбционном извлечении никеля и кобальта из пульпы и утилизации магния следует проводить карбонатом (предпочтительно природным) магния, что позволит уменьшить количество осадка и повысит содержание магния в растворе, а следовательно, экономичность его утилизации.

Способ осуществляется следующим образом.

Исходный раствор выщелачивания, содержащий, г/дм3: 4,8 Ni; 0,13 Со; 6,0 Fe; 1,4 Mn; 4,5 Al; 13 Mg и 50 H2SO4 нейтрализовали карбонатом магния до рН 5,5, переведя в осадок железо (III) и алюминий. Полученную пульпу сгустили и разделили на осветленный раствор и сгущенную пульпу.

После сорбционного извлечения никеля и кобальта из сульфатного раствора насыщенный металлами ионит отмыли водой и обработали при 40-45°С водным раствором минеральной кислоты серной с концентрацией не более 3 н. Из товарного десорбата осадили карбонатный концентрат 15%-ным раствором кальцинированной соды при температуре 70-80°С, который затем отфильтровали, промыли и высушили. В расчете на вес сухого продукта он содержал, %: 38-45 Ni; 0,08-0,1 Со; 2,0-2,8 Fe; 1,0-1,1 Al; 0,4-0,5 Mg.

В таблице приведены основные расходные показатели для трех вариантов переработки раствора:

1. переработка раствора по предлагаемому решению,

2. осаждение железа и алюминия известняком и сорбция никеля из полученной пульпы,

3. осаждение железа и алюминия известняком, сгущение пульпы и раздельная сорбция никеля из раствора и сгущенной пульпы.

Расход реагентов и сорбента при переработке раствора выщелачивания

Таблица 2
ПоказательВарианты
123
Осаждение железа. Расход, г/дм3:
MgCO378,5
СаСО39595
Концентрация Mg в растворе после осаждения Fe, г/дм335,51313
Выход после сгущения, %:
осветленного раствора,92,473,7
сгущенной пульпы7,610026,3
Потери сорбента за счет истирания, кг/т руды, при сорбции никеля из:
раствора,0,0290,024
пульпы.0,0230,1630,109
Всего0,0520,1630,133

Как видно из данных табл.2, раздельная сорбция никеля и кобальта из сгущенной пульпы и осветленного раствора позволяет снизить потери сорбента по сравнению с их сорбцией из исходной пульпы с 0,163 до 0,133 кг/т руды, а уменьшение объема осадка при осаждении железа и алюминия карбонатом магния вместо карбоната кальция - до 0,052 кг/т руды.

После извлечения никеля и кобальта пульпу фильтровали для отделения твердой компоненты, представляющей собой смесь гидроксидов железа, хрома и алюминия, и фильтрат объединяли с осветленным раствором. Для повышения эффективности извлечения из объединенного раствора содержащихся в нем марганца и магния концентрацию магния в растворе доводили до предела растворимости, используя часть раствора для выщелачивания сульфатизированной руды. Затем из концентрированного раствора известными методами последовательно выделяют марганец и магний.

Техническая эффективность предлагаемого способа извлечения никеля и сопутствующих металлов заключается в следующем:

- извлечение в первую очередь никеля (и кобальта) методом их сорбции из пульпы, полученной в результате осаждения железа (III) и алюминия, позволяет в отличие от прототипа избежать на этом этапе операции фильтрования и необходимости аммиачной промывки осадка для снижения потерь никеля с осадком;

- разделение пульпы на чистый раствор и сгущенную пульпу и проведение процесса сорбции никеля по отдельности из каждого полученного продукта позволяет снизить потери сорбента за счет истирания;

- способ обеспечивает возможность снизить затраты на извлечение магния в товарную продукцию.

Источники информации

1.Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель. М.: ООО "Наука и технологии", 2001. Т.2: Окисленные никелевые руды, с.385-388.

2.Пат. 2182188 РФ, 7 С22В 23/00. Способ получения никеля / Д.Б.Басков, С.В.Плеханов, С.Л.Орлов, Г.А.Середа // 2002. Бюл. № 13.

Способ извлечения никеля и сопутствующих металлов из раствора выщелачивания окисленных руд, включающий осаждение железа при нейтрализации и выделение никеля, кобальта и марганца, отличающийся тем, что осаждение железа ведут совместно с алюминием при нейтрализации раствора карбонатом или оксидом магния до рН 5,0-5,5 с последующим сгущением полученной пульпы, выделение никеля и кобальта ведут из верхнего слива сгустителя и сгущенной пульпы сорбцией, отделяют раствор от осадка в сгущенной части пульпы и объединяют его с очищенным от никеля и кобальта сорбцией верхним сливом сгустителя, и из объединенного раствора выделяют последовательно марганец и магний.



 

Похожие патенты:

Изобретение относится к области гидрометаллургии, в частности к способам извлечения ванадия из щелочных растворов, полученных от выщелачивания металлургических шлаков и других ванадийсодержащих материалов.

Изобретение относится к гидрометаллургии и может быть использовано при переработке сульфидных медно-цинковых концентратов и промпродуктов с повышенным содержанием цинка.
Изобретение относится к металлургии редких металлов, в частности к способам извлечения и концентрирования германия, и может быть использовано при переработке германийсодержащих растворов и надсмольных вод коксохимического производства.

Изобретение относится к области металлургии тяжелых цветных металлов, в частности, к области очистки от примесей растворов при производстве кобальта. .
Изобретение относится к области цветной металлургии и может быть использовано при цементационной очистке сульфатных цинковых растворов от примесей. .
Изобретение относится к переработке марганецсодержащих материалов, относится к цветной металлургии и может быть использовано при гидрометаллургической переработке смешанных марганецсодержащих материалов или аналогичных марганцевых руд с получением концентрата марганца, который может быть использован в металлургической, электротехнической, химической промышленности.

Изобретение относится к извлечению молибдена из кислых растворов. .

Изобретение относится к цветной металлургии и может быть использовано при очистке сульфатных цинковых растворов от примесей. .
Изобретение относится к области переработки ураносодержащих продуктов, образующихся, в частности, при экстракционном извлечении урана из растворов с последующей его реэкстракцией углеаммонийными солями и может быть использовано в технологиях извлечения урана и попутных ценных компонентов из руд.
Изобретение относится к области цветной металлургии, а именно к области автоклавной гидрометаллургии и переработке силикатных окисленных никелевых руд, обогащенных магнием.

Изобретение относится к области цветной металлургии, в частности к получению катодного никеля из сульфидного медно-никелевого сырья. .

Изобретение относится к области получения вторичных цветных металлов, например, из скрапа, а более конкретно, с целью получения никеля и кадмия из отработанных никель-кадмиевых аккумуляторных батарей.

Изобретение относится к области металлургии и может быть использовано при электроплавке сульфидных медно-никелевых материалов на штейн. .

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения кобальта и никеля в хлоридных средах, образующихся при гидрохлоридной переработке природного и вторичного кобальтсодержащего сырья, а также для отделения кобальта от примесных компонентов в виде тяжелых цветных металлов и железа.

Изобретение относится к металлургии никеля и может быть использовано для восстановительного осаждения никеля водородом. .
Изобретение относится к области металлургии, в частности к способам извлечения никеля и кобальта из руд, и может быть использовано при переработке окисленных никелевых и кобальтовых руд.

Изобретение относится к области металлургии тяжелых цветных металлов, в частности, к области очистки от примесей растворов при производстве кобальта. .
Изобретение относится к металлургии цветных металлов и может быть использовано на предприятиях по получению кобальта, меди, никеля и других металлов и их соединений путем сульфатизации цветных металлов.

Изобретение относится к области металлургии, а именно к способам восстановительного обжига окисленных железных руд и селективного извлечения из них легирующих элементов, например никеля, и к конструкции используемой при этом установки.
Изобретение относится к металлургии никеля и кобальта, в частности к способу переработки оборотных конвертерных шлаков никель-кобальтового производства
Наверх