Способ переработки железоцинксодержащих материалов

Изобретение относится к области металлургии и может быть использовано при переработке железоцинксодержащих материалов вельцеванием. На стадию вельцевания подают окатыши, изготовленные из смеси железоцинксодержащего материала, оборотных пылей и твердого углеродистого восстановителя. Причем окатыши содержат 40-60% железа при мольном соотношении железа к углероду 0,7-1,0 к 1,0 и имеют крупность 15-40 мм. При этом 90-95% твердого углеродистого восстановителя составляет фракция минус 0,2 мм. Изобретение позволит получать металлизованные окатыши, удовлетворяющие требованиям металлургического производства, и товарные цинковые возгоны. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области металлургии и может быть использовано при переработке железоцинксодержащих материалов вельцеванием.

Известен способ переработки цинксодержащих материалов, включая вельцевание пылей доменного и сталеплавильного производств, при максимальной температуре в печи 1050°С [М.А.Абдеев, A.M.Колесников, Н.Н.Ушаков. Вельцевание цинк-свинецсодержащих материалов. М., «Металлургия», 1985 г., с.88].

Недостатком указанного способа является низкое содержание в возгонах цинка 18-28% и высокое содержание железа 24-31%.

Известен способ переработки цинксодержащих материалов, включая вельцевание материалов с повышенным содержанием железа и меди, при котором вельцевание проводят при массовом отношении железа к сумме кремнезема и меди в шихте 1,2-2,5 [авторское свидетельство СССР №1096296, кл. С22В 19/38. Способ вельцевания цинксодержащих материалов].

Недостатком этого известного способа переработки материалов с повышенным содержанием железа более 30% является высокая дозировка кремнезема, необходимая для снижения образования металлизованных настылей в печи.

Наиболее близким по технической сущности и достигаемому результату является способ переработки цинксодержащих материалов, включающий стадию смешения, окатывания вместе с твердым углеродистым восстановителем фракции минус 3 мм и оборотными цинксодержащими пылями и стадию вельцевания окатышей с твердым углеродистым восстановителем фракции плюс 3 мм [авторское свидетельство СССР №876761, кл. С22В 19/38. Способ пирометаллургической переработки цинковых кеков.].

Недостатком указанного способа является низкая прочность выходящих из печи окатышей при переработке таких высокожелезистых материалов, как пыли доменного и сталеплавильного производств.

Техническим результатом данного изобретения является получение окатышей с высокой степенью металлизации, удовлетворяющих требованиям металлургического производства как по прочности, так и крупности, а также производство товарной вельц-окиси.

Технический результат достигается тем, что в способе переработки цинксодержащих материалов, включающем стадии смешения и окатывания железоцинксодержащих материалов и оборотной пыли с твердым углеродистым восстановителем и стадию вельцевания окатышей при температуре в реакционной зоне 1050-1100°С, на стадию окатывания 90-95% твердого углеродистого восстановителя подают в виде фракции минус 0,2 мм, а процесс вельцевания проводят при содержании железа в загружаемых в печь окатышах 40-60% и при соотношении железа к углероду по мольному весу, равном 0,7-1,0 к 1,0. Крупность окатышей составляет 15-40 мм.

Способ осуществляют следующим образом:

Железоцинксодержащие материалы, включая шламы газоочисток доменного и конвертерного газа приведенного в таблице состава,

Материал:Содержание, % по массе:
железоцинксвинец
Шлам газоочистки доменного газа35-450,5-3,00,1-0,3
Шлам газоочистки конвертерного газа52-651,1-5,50,15-0,62

отсев коксовой мелочи и/или другого твердого углеродистого восстановителя и оборотную пыль вельцевания шихтуют в пропорции, соответствующей содержанию железа в шихте 40-60% и соотношению железа к углероду по полному весу 0,7-1,0 к 1. Предварительно отсев коксовой мелочи и/или другого твердого углеродистого восстановителя пропускают через молотковую дробилку, достигая выхода фракций минус 0,2 мм 90%, а минус 1,0 мм 100%. После смешивания шихта поступает в бункер тарельчатого гранулятора. Окатывание материала проходит с дозировкой связующего (бентонит и сульфит-спиртовая барда) и с подачей воды. Полученные окатыши диаметром 15-40 мм поступают в бункер вельц-печи и дозируются на вельцевание. В вельц-печь также поступает отдельно от окатышей твердый углеродистый восстановитель фракции +3 мм (крупные фракции коксика, коксовый орешек, каменный или бурый уголь). Выходящий из печи материал подвергают магнитной сепарации, грохочению с выделением металлизованных окатышей фракций +10-115 мм, непрореагировавшего твердого углерода и золы. Непрореагировавший твердый углерод повторно используют на вельцевание. Металлизованные окатыши используют в металлургическом производстве, а золу (в зависимости от состава) - в агломерации или сбрасывают в отвал. Уловленную в рукавных фильтрах вельц-окись с содержанием цинка более 50% направляют на цинковые заводы. Оборотные железоцинксодержащие пыли вельцевания с газоходов, пылевой камеры и охладителя направляют на смешение и окатывание с исходным материалом.

Предложенный способ испытан в лабораторных условиях. Испытания показали, что вельцевание окатышей, полученных при грануляции железоцинксодержащих материалов с твердым углеродистым восстановителем фракции минус 0,2-1,0 мм, размером 15-40 мм с содержанием железа 40-60% при мольном соотношении железа к углероду 0,7-1,0 к 1,0 позволяет получить прочные металлизованные окатыши, годные для металлургического производства, и товарные возгоны с содержанием цинка более 50%, соответствующие техническим условиям потребителя.

При увеличении крупности железоцинксодержащих материалов и твердого углеродистого восстановителя более 1 мм уменьшается степень металлизации окатышей. Снижение их крупности менее 0,2 мм не снижает показатели металлизации окатышей, однако возрастают затраты на измельчение кокса и/или другого твердого углеродистого восстановителя. При содержании железа в окатышах менее 40% уменьшается прочность окатышей. При содержании железа в окатышах более 60% снижается содержание цинка в товарной вельц-окиси. При мольном соотношении железа к углероду более 1,0 уменьшается степень металлизации железа и отгонки цинка, а при соотношении менее 0,7 увеличиваются затраты на измельчение и отсев твердого углерода, не повышая эффективности металлизации железа и отгонки цинка. Крупность окатышей 15-40 мм является оптимальной, обеспечивая их прочность и необходимую металлизацию железа и обесцинкования материала. При уменьшении крупности окатышей менее 15 мм снижается их прочность, а при увеличении более 40 мм снижается обесцинкование окатышей.

Только в пределах рассмотренных и заявленных показателей достигается наибольший эффект повышения прочности окатышей с высокой степенью перехода оксидов железа в металлическое состояние, практически полное обесцинкование окатышей и получение качественных цинковых возгонов.

Проверку способа осуществляли следующим образом.

Пример. Шлам металлургического производства состава (% по массе): железо 28,6; цинк 4,6; свинец 0,21; углерод 22,5; влажность 8,5, смешивали с конвертерным шламом состава железо 66,4; цинк 1,8; свинец 0,32; углерод 0,6 и коксовой мелочью (содержание углерода 80%) фракции минус 3 мм. Соотношение компонентов в шихте было (% по массе): шлам доменный 12,0; шлам конвертерный 71,8; измельченная коксовая мелочь 11,2; оборотная железоцинксодержащая пыль 5. Среднее содержание железа в шихте составляло 54,0%. Массовое соотношение железа к углероду в шихте составляло 4,25 к 1,0, а мольное 0,9 к 1,0. Коксовую мелочь измельчали в молотковой дробилке до фракции 0,2-1,0 мм. В шихте, подаваемой на грануляцию, доля фракций коксовой мелочи минус 0,2 мм составляла 92%, фракций минус 1,0 мм 100%. Шихту подавали на тарельчатый гранулятор, на который подавался также водный раствор лигносульфоната в количестве по сухому веществу 2% к массе шламов. Полученные окатыши крупностью 15-40 мм загружали в вельц-печь вместе с коксиком крупностью +3 мм. Расход коксика составлял 11% к массе окатышей. Процесс вельцевания протекал при температуре в реакционной зоне 1080-1100°С, продолжительность пребывания материала в этой зоне составила 2 часа. При экспериментальной проверке известного способа был взят доменный шлам с содержанием (% по массе) железа 31,5; цинка 4,6 и твердого углеродистого восстановителя 22,5. Результаты испытаний приведены в таблице.

Из приведенных в таблице данных видно, что использование предлагаемого способа по сравнению с известным, принятым за прототип, позволяет получить обесцинкованные прочные окатыши с выходом фракций +15-40 мм 95% против 5% по прототипу, более богатые по цинку возгоны 51,5% против 38,9% по прототипу. Таким образом, при реализации предлагаемого способа переработки железоцинксодержащих материалов получены металлизованные окатыши, отвечающие требованиям металлургического производства, и товарные цинковые возгоны.

Таблица 1.
Результаты сравнения показателей предлагаемого и известного способа(прототипа)
Показатели:Способ:
ПредлагаемыйПрототип
1. Выход фракций в смеси, включая твердый углеродистый, подаваемой на грануляцию, %:
- минус 0,2 мм9251
- минус 1,0 мм10078
- минус 3,0 мм100100
2 Мольное соотношение в окатышах Fe/C0,9/10,3/1
3. Содержание Fe в исходных окатышах, %54,031,5
4. Размер окатышей100% фракций +15-40 мм5% фракций +15-40 мм
5. Выход окатышей после вельцевания95% фракций +15-40 мм5% фракций +15-40 мм
6. Степень металлизации железа, %98,295,6
7. Содержание цинка в металлизованных окатышах, %0,030,08
8. Содержание цинка в возгонах, %51,538,9

1. Способ переработки железоцинксодержащих материалов, включающий стадии смешения и окатывания железоцинксодержащих материалов и оборотных пылей с твердым углеродистым восстановителем и стадию вельцевания окатышей, отличающийся тем, что на стадию окатывания 90-95% твердого углеродистого восстановителя подают в виде фракции минус 0,2 мм, а процесс вельцевания проводят при содержании железа в загружаемых в печь окатышах 40-60% и при соотношении железа к углероду по мольному весу, равном 0,7-1,0 к 1,0.

2. Способ по п.1, отличающийся тем, что размер окатышей составляет 15-40 мм.



 

Похожие патенты:

Изобретение относится к цветной металлургии и может быть использовано при удалении хлора и фтора из пылевидных цинксодержащих материалов свинцово-цинкового производства, например, из вельцвозгонов или шлаковозгонов.
Изобретение относится к цветной металлургии и может быть использовано при удалении хлора и фтора из пылевидных материалов свинцово-цинкового производства, например из вельцвозгонов или шлаковозгонов.
Изобретение относится к способу извлечения рения, серы, рассеянных и редких элементов, благородных и цветных металлов из сильно обводненных природных вулканических газов.
Изобретение относится к области цветной металлургии и может быть использовано при переработке свинецсодержащих отходов производства, содержащих также соединения олова, сурьмы, меди, железа, цинка, висмута, мышьяка, серебра, кальция, натрия, калия, магния в виде оксидов, хлоридов, сульфитов, сульфатов.

Изобретение относится к переработке мелкодисперсных железоцинксодержащих отходов металлургического производства и побочной продукции коксохимического производства и может быть использовано в черной и цветной металлургии.
Изобретение относится к области черной металлургии и может быть использовано для переработки железоцинксодержащих материалов, являющихся отходами производств, например пылей и шламов газоочисток мартеновских и доменных печей, а также конвертеров.
Изобретение относится к области металлургии, преимущественно цветных металлов. .

Изобретение относится к металлургии, в частности к способам обработки пылевидных веществ, содержащих щелочные и тяжелые металлы. .

Изобретение относится к технологии получения соединений свинца, а именно к способам получения солей свинца, в частности хлорида свинца. .
Изобретение относится к металлургии цветных металлов, в частности, предназначено для переработки цинковых кеков и других цинксодержащих материалов вельцеванием. .

Изобретение относится к переработке мелкодисперсных железоцинксодержащих отходов металлургического производства и побочной продукции коксохимического производства и может быть использовано в черной и цветной металлургии.
Изобретение относится к области черной металлургии и может быть использовано для переработки железоцинксодержащих материалов, являющихся отходами производств, например пылей и шламов газоочисток мартеновских и доменных печей, а также конвертеров.
Изобретение относится к металлургии цветных металлов, в частности предназначено для переработки цинковых кеков вельцеванием. .

Изобретение относится к области цветной металлургии, в частности к переработке цинковых кеков вельцеванием. .

Изобретение относится к цветной металлургии, в частности к футеровке зоны формирования клинкера вельц-печей. .

Изобретение относится к области цветной металлургии, в частности к переработке цинковых кеков вельцеванием. .

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке некондиционных цинксодержащих промпродуктов обогатительных фабрик и коллективных медно-цинковых концентратов.

Изобретение относится к металлургии цветных металлов, к переработке цинковых кеков вельцеванием. .

Изобретение относится к металлургии цветных металлов, в частности предназначено для переработки индийсодержащих цинковых кеков вельцеванием. .

Изобретение относится к переработке мелкодисперсных железоцинксодержащих отходов металлургического производства и побочной продукции коксохимического производства и может быть использовано в черной и цветной металлургии.
Наверх