Способ получения диоксида кремния и индикаторная трубка

Изобретение может быть использовано в химической и пищевой промышленности. Способ получения диоксида кремния включает гидролиз тетраэтоксисилана в среде этанола в присутствии 0,01-0,1 М водного раствора гексафторсиликата аммония и 1-5 об.% полиэтиленгликоля с молекулярной массой 400, а также последующую сушку созревшего геля микроволновым излучением мощностью 300-1000 Вт. Для изготовления индикаторной трубки полученным порошком заполняют прозрачную трубку из стекла или из полимерного материала. Предложенное изобретение позволяет получить порошок диоксида кремния с пористостью 130-825 Å и создать индикаторную трубку, подходящую для проведения экспресс-анализа. 2 н. и 3 з.п. ф-лы.

 

Изобретение относится к области химии, пищевой промышленности и другим отраслям, где необходимо экспрессное определение ионов металлов, анионов и органических соединений, а конкретно к способу получения диоксида кремния и к индикаторной трубке.

Известен способ получения диоксида кремния, заключающийся в гидролизе тетраэтоксисилана в среде этанола в присутствии 0,01-0,1 М водного раствора гексафторсиликата аммония с последующей сушкой микроволновым излучением мощностью 300-1000 Вт (RU C1 №2139244, МПК 6 С01В 33/12, G01N 31/00, 1999).

Известный способ позволяет получать образцы пористого диоксида кремния за 15-60 мин. Удельная поверхность образцов составляет 400-1000 м2/г. Пористость образцов зависит от концентрации гексафторсиликата аммония, изменяя которую можно получать образцы со средним диаметром пор 10-70 Å. Так, для образцов диоксида кремния, полученных в присутствии 0,02 М гексафторсиликата аммония и высушенных микроволновым излучением мощностью 600 Вт, удельная поверхность составляет 443 м2/г, средний диаметр пор 70 Å. Для приготовления образцов требуется 46 мин.

Пористость материала, характеризуемая средним диаметром пор, определяет как эффективность и селективность разделения, так и время, необходимое для установления сорбционного равновесия и, следовательно, экспрессность анализа.

Полученный известным способом диоксид кремния не обеспечивает достаточную эффективность и экспрессность разделения, что обусловлено его недостаточной пористостью.

Порошки диоксида кремния используются для определения различных неорганических и органических веществ. Определение может производиться как с помощью аналитических приборов (спектрофотометров, рефлектометров), так и с использованием индикаторных трубок (Золотев Ю.А., Цизин Г.И., Моросанова Е.И., Дмитриенко С.Г. Успехи химии. 2005. Т.74, №1, С.41-66).

Технический результат изобретения заключается в получении диоксида кремния с пористостью, лежащей в диапазоне 130-825 Å. Кроме того, изобретение решает задачу создания средства в виде индикаторной трубки, обеспечивающей возможность проведения экспресс анализа.

Технические результаты достигаются тем, что способ получения диоксида кремния включает гидролиз тетраэтоксисилана в среде этанола в присутствии 0,01-0,1 М водного раствора гексафторсиликата аммония и 1-5 об.% полиэтиленгликоля с молекулярной массой 400, а также последующую сушку созревшего геля микроволновым излучением мощностью 300-1000 Вт.

Согласно изобретению индикаторная трубка выполняется в виде прозрачной трубки из стекла или из полимерного материала, которая заполняется диоксидом кремния, полученным описанным выше способом.

Внутренний диаметр прозрачной трубки лежит в диапазоне 0,5-3 мм, а ее длина - в диапазоне 40-200 мм. Для уплотнения концов трубки используется инертный пористый материал, в качестве которого может быть использован целлюлозно-бумажный нетканый материал. При использовании трубки из полимерного материала используется трубка из полиэтилена или из полиакриламида.

Добавка высокомолекулярного соединения - полиэтиленгликоля с различной молекулярной массой - существенно влияет на процесс гелеобразования, который в системе тетраэтоксисилана - этанол-вода происходит в результате протекания реакций конденсации прогидролизовавшихся молекул тетраэтоксисилана. Укрупнение частиц золя происходит в результате их агломерации. Крупные молекулы добавки высокомолекулярного соединения адсорбируюся на поверхности растущих частиц золя, уменьшают препятствующий их сближению заряд, способствуя укрупнению частиц и ускорению гелеобразования. Скорость процесса гелеобразования характеризуют временем полного созревания геля, когда оптическая плотность реакционной смеси перестает изменяться. В результате проведенных экспериментов было установлено, что ускорение гелеобразования происходит при использовании 1-5 об.% полиэтиленгликоля.

Возможность осуществления изобретения иллюстрируется следующими примерами получения индикаторного порошка диоксида кремния.

Пример 1.

К 2 мл тетраэтоксисилана прибавляют 5 мл этанола, 2 мл 0,100 М водного раствора гексафторсиликата аммония, 0,09 мл полиэтиленгликоля с молекулярной массой 400.

Смесь перемешивают и оставляют стоять при комнатной температуре до полного созревания геля. Время полного созревания геля составляет 4 мин.

Созревший гель помещают в микроволновую печь и подвергают обработке микроволновым излучением мощностью 600 Вт. Высушивание проводят до достижения постоянной массы образца. Время доведения геля до постоянной массы составляет 40 мин. Высушенный гель измельчают и рассеивают на фракции. Удельная поверхность порошка диоксида кремния (диаметр частиц 250-500 мкм) составила 270 м2/г, средний диаметр пор 130 Å.

Пример 2.

К 2 мл тетраэтоксисилана прибавляют 5 мл этанола, 2 мл 0,100 М водного раствора гексафторсиликата аммония, 0,45 мл полиэтиленгликоля с молекулярной массой 400. Время полного созревания геля составляет 2 мин. Высушивание образца проводят в соответствии с порядком по примеру 1.

Удельная поверхность порошка диоксида кремния (диаметр частиц 250-500 мкм) составила 33 м2/г, средний диаметр пор 825 Å.

Индикаторная трубка изготавливается следующим образом.

Берется стеклянная прозрачная трубка с внутренним диаметром 1,5 мм и длиной 60 мм. Вначале один конец трубки уплотняется целлюлозно-бумажным нетканым материалом, потом со стороны второго конца в трубку засыпается измельченный порошок диоксида кремния. При засыпке порошка осуществляется его уплотнение встряхиванием трубки и постукиванием по ней. Второй конец трубки также уплотняется целлюлозно-бумажным нетканым материалом. После того, как оба конца трубки уплотнены, пересыпание порошка внутри нее не допускается.

Для определения различных неорганических и органических веществ измельченный диоксид кремния может быть использован в различных вариантах: твердофазно-спектрофотометрическим, визуально-колориметрическом, а также варианте индикаторных трубок.

К анализируемому раствору добавляют необходимые аналитические реагенты, приводящие к образованию окрашенных соединений с участием определяемых веществ, и затем окрашенные продукты на материале сорбируются на диоксиде кремния. Цвет материала изменяется в результате сорбции окрашенных соединений, в состав которых входит определяемое вещество.

В варианте твердофазно-спектрофотометрического определения к 0,3 г индикаторного порошка приливают 25 мл анализируемого раствора. Суспензию перемешивают в течение 15 мин, затем измеряют оптическую плотность порошка и находят концентрацию определяемого вещества по заранее построенному градуировочному графику.

В варианте визуальной колориметрии к 0,2 г индикаторного порошка приливают 25 мл анализируемого раствора. Суспензию перемешивают в течение 15 мин, затем сравнивают окраску индикаторного порошка со шкалой цветности и находят концентрацию определяемого вещества.

В варианте индикаторных трубок: индикаторную трубку опускают в анализируемый раствор на глубину 2-3 мм. После поднятия фронта жидкости до верхнего конца индикаторную трубку вынимают и измеряют длину изменившей цвет зоны и находят концентрацию определяемого вещества по заранее построенному градуировочному графику.

1. Способ получения диоксида кремния, включающий гидролиз тетраэтоксисилана в среде этанола в присутствии 0,01-0,1 М водного раствора гексафторсиликата аммония и 1-5 об.% полиэтиленгликоля с молекулярной массой 400, а также последующую сушку созревшего геля микроволновым излучением мощностью 300-1000 Вт.

2. Индикаторная трубка, выполненная в виде прозрачной трубки из стекла или из полимерного материала, полость трубки заполнена порошкообразным диоксидом кремния, полученным гидролизом тетраэтоксисилана в среде этанола в присутствии 0,01-0,1 М водного раствора гексафторсиликата аммония и 1-5 об.% полиэтиленгликоля с молекулярной массой 400 с последующей сушкой созревшего геля микроволновым излучением мощностью 300-1000 Вт.

3. Трубка по п.2, отличающаяся тем, что внутренний диаметр прозрачной трубки лежит в диапазоне 0,5-3 мм, а ее длина - в диапазоне 40-200 мм.

4. Трубка по п.2, отличающаяся тем, что концы трубки уплотнены инертным пористьм материалом, в качестве которого использован целлюлозно-бумажный нетканый материал.

5. Трубка по п.2, отличающаяся тем, что прозрачная трубка выполнена из полиэтилена или из полиакриламида.



 

Похожие патенты:
Изобретение относится к методам проверки качества потребляемой воды и может быть использовано для определения интегрального содержания поллютантов в питьевой и иных водах.

Изобретение относится к аналитической химии платиновых металлов. .
Изобретение относится к аналитической химии, в частности к средствам анализа небиологических материалов химическими способами, преимущественно с помощью химических индикаторов, и может быть использовано для экспрессного определения ферроцена в бензине, куда его добавляют для повышения октанового числа.
Изобретение относится к сульфит-целлюлозному производству и последующей биохимической переработке. .
Изобретение относится к аналитической химии и может быть использовано для определения хлорацетанилидных гербицидов в объектах окружающей среды - почве, продуктах питания, промышленных сточных и природных водах.

Изобретение относится к средствам анализа небиологических материалов с помощью химических индикаторов, в частности к экспрессному определению ионов металлов, образующихся при коррозии металлической поверхности.
Изобретение относится к области химии, пищевой промышленности и другим отраслям, где необходимо экспрессное определение ионов металлов, анионов и органических соединений, а конкретно к способам получения диоксида кремния, модифицированного молибдофосфорным гетерополисоединением, и к индикаторным трубкам.

Изобретение относится к определению химического состава дизельного топлива, например, для определения наличия депрессорных присадок (ДП) в дизельных топливах (ДТ) и может найти применение в нефтеперерабатывающей промышленности при производстве зимних видов дизельных топлив.
Изобретение относится к области экологического мониторинга окружающей среды. .

Изобретение относится к области использования методов физико-химического анализа для исследования растворимости в многокомпонентных водно-солевых системах при постоянной температуре.
Изобретение относится к области химии, пищевой промышленности и другим отраслям, где необходимо экспрессное определение ионов металлов, анионов и органических соединений, а конкретно к способам получения диоксида кремния, модифицированного молибдофосфорным гетерополисоединением, и к индикаторным трубкам.

Изобретение относится к химической промышленности и может быть использовано для эффективного получения кремнеземов, модифицированных органическими и кремнийорганическими соединениями (органокремнеземов).
Изобретение относится к аналитической химии, а именно к способам получения модифицированных сорбентов, которые широко используются для концентрирования, разделения и определения различных неорганических и органических соединений.

Изобретение относится к материалам, представляющим собой ксерогели двуокиси кремния (силикаксерогели) с регулируемой способностью к растворению, полученным в результате превращения золя в гель, и их применению.

Изобретение относится к получению модифицированных аэрогелей, которые используются в качестве теплоизоляционного материала. .

Изобретение относится к способу получения модифицированных, упрочненных волокнами ксерогелей с пористостью свыше 60% и плотностью менее 0,6 г/см3. .

Изобретение относится к получению микросферического силикагеля и может быть использовано в ионообменной и сорбционной технологии преимущественно для разделения белков и нуклеиновых кислот.
Изобретение относится к аналитической химии, а именно к способам получения модифицированных сорбентов, которые широко применяются при анализе природных и промышленных объектов для концентрирования, разделения и тест-определения различных компонентов
Наверх