Способ ускоренного получения культур мезенхимальных стволовых клеток (мск) млекопитающих, исключая человека, с низкой гетерогенностью и высокой жизнеспособностью

Изобретение относится к биотехнологии, медицине. Выделяют клетки-предшественники, затем их культивируют до получения целевой клеточной культуры. Культивирование ведут от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5%, при этом используют клетки от 1-го до 2-го пассажей. Определяют количество апоптически и некротически поврежденных клеток, их морфологические характеристики. По экспрессии маркеров CD90, CD54, CD44, CD73, CD11b, CD45 определяют иммунофенотип клеток, и при снижении суммарного количества апоптически и некротически поврежденных клеток не менее чем в 2 раза по сравнению с репрезентативными культурами в условиях нормоксии, при полном сохранении имммунофенотипа МСК и при превышении числа быстроделящихся однотипных клеток над крупными медленно пролиферирующими клетками получаемую культуру считают культурой мезенхимальных клеток с низкой гетерогенностью и высокой жизнеспособностью. Способ позволяет повысить пролиферативную активность культуры стромальных клеток-предшественников, снизить гетерогенность культуры. 3 з.п. ф-лы, 1 ил., 2 табл.

 

Изобретение относится к биотехнологии, медицине и может быть использовано при получении культур стволовых клеток для различных целей.

С учетом возрастания области применения стволовых клеток перед цитологами достаточно остро стоит проблема получения в короткий временной период требуемого количества мезенхимальных стволовых клеток с низкой гетерогенностью и высокой жизнеспособностью, поскольку именно такие клетки необходимы для решения практических задач.

Стромальные костномозговые клетки-предшественники, называемые также мезенхимальными стволовыми клетками (МСК), могут быть выделены из различных тканей. Они представляют собой малочисленную популяцию клеток, характеризующихся большим пролиферативным потенциалом, способных к самоподдержанию с сохранением недифференцированного состояния, а также обладающих возможностью дифференцироваться в различные клеточные типы под действием определенных стимулов [3, 4, 6, 12, 13]. Способность МСК дифференцироваться по крайней мере в клетки тканей мезенхимального происхождения лежит в основе их репаративного потенциала.

Известен способ выращивания человеческих мезенхимальных стволовых клеток, взятых из крови, в котором одним из условий является повышенное количество CO2 (патент US 7060494 от 13.06.2006 г., класс 435/366, C12N 5/00).

Гипоксия является ключевым звеном во многих патофизиологических процессах, а также в процессах тканевой репарации. Пониженное содержание кислорода может оказывать влияние на жизнеспособность МСК и их пролиферативный потенциал, что, в свою очередь, может влиять на протекание репаративных процессов в ткани.

Известно, что гипоксия может увеличивать пролиферации ряда клеток предшественников [5, 8, 11]. Однако все проводимые эксперименты по изучению влияния гипоксии на стволовые клетки проводили в очень короткие временные интервалы, используя раличное содержание кислорода. Кратковременная экспозиция и различия в содержании кислорода не позволяют сделать определенные выводы о возможном использовании этого фактора для наращивания массы клеток, пригодной для регенеративных целей. Важными проблемами при культивировании клеток-предшественников является также их гетерогенность, различная степень коммитирования и процессы апоптоза и некроза in vitro, поскольку для практического применения используют стволовые клетки только с низкой гетерогенностью и высокой жизнеспособностью.

Гетерогенность клеток проявлялась в наличии в культуре нескольких типов клеток, отличающихся по морфологии и пролиферативной активности, что описано рядом авторов [1, 2, 7, 10]. Так, в культурах МСК, по крайней мере, можно было выделить активно пролиферирующие клетки веретеновидной или треугольной формы с однородной цитоплазмой; активно пролиферирующие, более распластанные фибробластоподобные клетки с крупным ядром; медленно пролиферирующие, сильно распластанные, варьирующие по размеру клетки, имеющие полигональную, округлую или неправильную форму и неоднородную цитоплазму.

Наиболее близким к заявленному способу является известный способ получения стволовых клеток по Javason (2001), в котором клетки культивировали в условиях нормального содержания кислорода (около 20%) и пересаживали при достижении субконфлуента.

Стромальные клетки-предшественники, используемые в работе, выделяли из бедренных костей крыс. После ресуспендирования клетки переносили во флаконы для адгезии, через 2 суток удаляли флотирующие агрегаты, первичную культуру отмывали и добавляли свежую культуральную среду. В качестве среды для культивирования использовалась α-МЕМ (ICN, США или "Биолот", Россия) с добавлением 2 мМ L-глутамина (Gibco, США), пирувата натрия (Gibco, США), 100 ед/мл пенициллина и 100 мг/мл стрептомицина (Gibco, США) и 8-10% эмбриональной телячьей сыворотки (Gibco, США). При достижении культурой 70-90% монослоя проводили пассирование клеток. Среду во флаконах с культивируемыми клетками меняли каждые 4 дня, субкультивирование продолжали на высоких пассажах. Морфологические характеристики МСК оценивали визуально с помощью фазовоконтрастного микроскопа (Axiovert 25, Zeiss, Германия), сопряженной с ним камеры и специального программного обеспечения (Sigma Scan Pro5). Оценка пролиферативной активности культур МСК проводилась путем подсчета числа клеток в случайно выбранных фиксированных полях зрения до и после инкубации. Иммунофенотипическая характеристика МСК проводилась с помощью метода проточной цитофлуориметрии (цитофлуориметр Beckman Coulter, США) с использованием моноклональных антител (BD Bioscience, США) к маркерам МСК. Использовались антитела как к позитивным маркерам (CD90, CD44, CD54, CD106, CD73), так и к негативным маркерам (CD45, CD11b, CD62L). Необходимое количество клеток (1·105-5·105) после трипсинизации и отмывки отбирали для окрашивания антителами в рекомендуемой концентрации в 100 мкл фосфатного буфера при 4°С в течение 30 минут. Оценка жизнеспособности МСК проводилась также цитофлуориметрически с использованием набора Annexin V FITC Kit (Immunotech, Франция) согласно инструкции производителя.

Однако получаемые при этом клетки обладали довольно высокой гетерогенностью, что делает их малопригодными для трансплантации. Кроме того, процесс получения достаточной массы клеток занимал значительное время - более 2-3 недель.

Неожиданно нами было обнаружено, что культивирование стромальных клеток-предшественников костного мозга от 4 до 10 суток при использовании 1-2 пассажей в условиях гипоксии не только ускоряет пролиферацию клеток, но и приводит к снижению гетерогенности культуры, уменьшению количества апоптотических и некротических клеток при повышении ее пролиферативной активности и жизнеспособности клеток и при сохранении фенотипа и дифференцировочного потенциала, т.е. по сути нами была решена проблема ускоренного получения культур МСК с низкой гетерогенностью и высокой жизнеспособностью.

Техническим результатом способа получения стволовых клеток с низкой гетерогенностью и высокой жизнеспособностью является повышение пролиферативной активности культуры стромальных клеток-предшественников, ускорения тем самым процесса получения клеток, снижение гетерогенности культуры за счет преобладания быстроделящихся однотипных клеток над крупными медленно пролиферирующими клетками, уменьшения количества апоптотических и некротических клеток, при сохранении фенотипических характеристик по основным маркерам (кластерам дифференцировки).

Технический результат достигался тем, что в известном способе ускоренного получения культур мезенхимальных стволовых клеток (МСК) с низкой гетерогенностью и высокой жизнеспособностью, включающем выделение клеток-предшественников и их последующее культивирование до получения целевой клеточной культуры при том, что культивирование ведут от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5%, используют клетки от 1-го до 2-го пассажей, после чего определяют количество апоптически и некротически поврежденных клеток, их морфологические характеристики, по экспрессии маркеров CD90, CD54, CD44, CD73, CD11b, CD45 определяют иммунофенотип клеток и при снижении суммарного количества апоптически и некротически поврежденных клеток не менее чем в 2 раза по сравнению с репрезентативными культурами в условиях нормоксии при полном сохранении имммунофенотипа МСК и при превышении числа быстроделящихся однотипных клеток над крупными медленно пролиферирующими клетками получаемую культуру считают культурой мезенхимальных клеток с низкой гетерогенностью и высокой жизнеспособностью.

В качестве клеток-предшественников использовали стромальные костномозговые клетки-предшественники.

Морфологически однотипными клетками культур для МСК из костного мозга крыс считают клетки, имеющие размер 20-60 мкм.

Морфологически однотипными клетками для МСК культур, выделенных из костного мозга человека, считают клетки, имеющие размер 10-20 мкм.

Способ осуществляют следующим образом.

Для осуществления способа выделяли стромальные клетки-предшественники костного мозга по Javason (2001).

В работе использовали 1-2 пассажи культур МСК, выделенных из диафизов бедренных и больших берцовых костей молодых беспородных крыс по описанной ранее методике [10].

Стромальные клетки-предшественники, используемые в работе, выделяли из бедренных костей крыс. После ресуспендирования клетки переносили во флаконы для адгезии, через 2 суток удаляли флотирующие агрегаты, первичную культуру отмывали и добавляли свежую культуральную среду. В качестве среды для культивирования использовалась α-МЕМ (ICN, США или "Биолот", Россия) с добавлением 2 мМ L-глутамина (Gibco, США), пирувата натрия (Gibco, США), 100 ед/мл пенициллина и 100 мг/мл стрептомицина (Gibco, США) и 8-10% эмбриональной телячьей сыворотки (Gibco, США). При достижении культурой 70-90% монослоя проводили пассирование клеток. Среду во флаконах с культивируемыми клетками меняли каждые 4 дня, субкультивирование продолжали на высоких пассажах. Морфологические характеристики МСК оценивались визуально с помощью фазовоконтрастного микроскопа (Axiovert 25, Zeiss, Германия), сопряженной с ним камеры и специального программного обеспечения (Sigma Scan Pro5). Оценка пролиферативной активности культур МСК проводилась путем подсчета числа клеток в случайно выбранных фиксированных полях зрения до и после инкубации. Иммунофенотипическая характеристика МСК проводилась с помощью метода проточной цитофлуориметрии (цитофлуориметр Beckman Coulter, США) с использованием моноклональных антител (BD Bioscience, США) к маркерам МСК. Использовались антитела как к позитивным маркерам (CD90, CD44, CD54, CD106, CD73), так и к негативным маркерам (CD45, CD11b, CD62L). Необходимое количество клеток (1·105-5·105) после трипсинизации и отмывки отбирали для окрашивания антителами в рекомендуемой концентрации в 100 мкл фосфатного буфера при 4°С в течение 30 минут. Оценка жизнеспособности МСК проводилась также цитофлуориметрически с использованием набора Annexin V FITC Kit (Immunotech, Франция) согласно инструкции производителя.

Для создания гипоксии в среде культивирования использовали герметичную камеру (Stem Cell Technologies, Канада), в которую подавали газовую смесь (95% N2, 5% CO2) до установления в среде концентрации кислорода 5%. Содержание кислорода и давление в газовой среде контролировали с помощью встроенных в камеру датчиков. Контрольные клетки находились в стандартных нормоксических условиях CO2 инкубатора с 5% CO2.

Результаты осуществления способа

В большинстве культур к четвертому пассажу наблюдался спад пролиферативной активности, характеризующийся доминированием медленно делящихся распластанных клеток. При дальнейшем субкультивировании это так называемое "пролиферативное торможение" сменялось подъемом и стабилизацией пролиферативной активности, что сопровождалось доминированием в культуре однородных по морфологии клеток. В работе использовались МСК на ранних пассажах (до второго), т.е. до момента, когда в культурах наблюдалось пролиферативное торможение. При оценке морфологических характеристик МСК, культивируемых в разных условиях, было показано, что гипоксия стимулировала образование островков из небольших по размеру клеток с однородной по оптической плотности цитоплазмой.

Количество и размер таких островков были больше в гипоксических культурах (чертеж). В условиях гипоксии также снижалась доля варьирующих по размеру и разнородных по морфологическим особенностям крупных (60-200 мкм), распластанных, медленно делящихся клеток. Таким образом, гипоксия снижала степень гетерогенности культур МСК, увеличивая долю однотипных, небольших по размеру клеток (20-60 мкм). Можно предположить, что более низкая пролиферативная активность крупных распластанных клеток в культуре отражали степень их повреждения в условиях окислительного стресса при культивировании клеток в нормоксии (21% О2). Снижение концентрации кислорода обуславливало уменьшение интенсивности окислительного стресса, вероятно, влияющего на долю крупных распластанных клеток, также называемых некоторыми авторами "зрелыми" МСК [10] в культуре. Торможение пролиферации и морфологические особенности этих клеток, возможно, отражают степень их повреждения в условиях окислительного стресса.

Пролиферативная активность МСК оценивалась по увеличению количества клеток в рандомически выбранных полях зрения после четырех суток культивирования МСК на 1-2 пассажах. Было показано, что гипоксия статистически достоверно стимулировала пролиферативную активность клеток-предшественников, что согласуется с данными других исследователей [5, 8, 11]. При культивировании клеток в условиях гипоксии их число увеличилось в среднем в 7 раз, в то время как в нормоксических условиях количество клеток возросло в среднем лишь в 2,1 раза. Следует отметить, однако, что прирост количества клеток в нормоксических культурах варьировал, отражая, вероятно, индивидуальные особенности животных, из костного мозга которых были выделены клетки; особенности определенных этапов культивирования; а также неспецифичность метода выделения МСК, не позволяющего получение при каждом выделении стандартной по ряду характеристик популяции клеток. Механизм активации пролиферации МСК при гипоксии связан, вероятно, с индукцией некоторых киназных каскадов, таких как SAP-киназные сигнальные пути (JNK и р38), активируемых обычно в ответ на стрессовые факторы и приводящих к стимуляции пролиферативной активности клеток [14].

Оценка жизнеспособности клеток при их культивировании в нормо- и гипоксических условиях показала, что процент как апоптотических, так и некротических клеток был примерно в два раза ниже в гипоксических культурах по сравнению с нормоксическими (Таблица 1), т.е. стимулирующий эффект гипоксии на пролиферацию клеток-предшественников на ранних этапах культивирования сопровождался отсутствием ее повреждающего действия на клетки. Следует отметить, что естественной средой для стромальных клеток-предшественников in vivo является костный мозг, где содержание кислорода не превышает 5%, что может быть связано с цитопротекторной ролью гипоксии на ранних этапах культивирования, до появления устойчивой к новым условиям стабильно пролиферирующей популяции клеток. С другой стороны, есть данные, что в некоторых случаях гипоксия может опосредовать образование ряда антиапоптотических белков [9].

Проведение иммунофенотипической характеристики культур, находившихся в нормо- и гипоксических условиях, показало, что гипоксия не изменяет значительно экспрессию поверхностных маркеров, характерных для МСК, но снижает и без того небольшое количество клеток, экспрессирующих гемопоэтические маркеры, стимулируя образование более гомогенной по иммунофенотипическим показателям популяции клеток-предшественников (Таблица 2).

Таким образом, культивирование клеток в условиях 5% O2 оказывало стимулирующий эффект на стромальные клетки-предшественники из костного мозга крыс на ранних этапах культивирования, что выражалось в изменении соотношения морфологических типов клеток в культуре; стимуляции пролиферативной активности клеток; отсутствии повреждающего и/или наличии протективного воздействия на клетки; снижении доли клеток, экспрессирующих гемопоэтические маркеры.

Таблица 1.
Жизнеспособность стромальных клеток-предшественников в условиях гипоксии, % апоптотических (Ann V+) и некротических (PI+) клеток, а также суммарный процент поврежденных клеток (при каждом измерении анализировали 5-10 тыс. клеток).
Процент Ann V + клетокПроцент PI + клетокСуммарный процент поврежденных клеток
Нормоксия9,7%±1,2%3,6%±1,2%13,4%±0,8%
Гипоксия4,5%±1,3%1,3%±0,3%5,8%±1,3%

Таблица 2.
Влияние гипоксии на экспрессию поверхностных маркеров стромальными клетками-предшественниками, % клеток, экспрессирующих исследуемые маркеры в норме и при гипоксии (репрезентативные данные, полученные для культуры на 2 пассаже; при каждом измерении анализировали 5-10 тыс. клеток).
CD90CD45CD54CD44CD73CD11b
Нормоксия100%0,11%98,3%99,7%88,2%2,37%
Гипоксия100%0,02%98,7%99,4%81,9%0,79%

Источники информации

1. Анохина Е.Б., Григорьева О.В., Буравкова Л.Б // Материалы VI Международной конференции "Молекулярная генетика соматических клеток" 2005., Звенигород, с.86

2. Лагарькова М.А., Лякишева А.В., Филоненко Е.С и др. // Клеточные технологии в биологии и медицине. - 2006. - №1. - с.3-7.

3. Паюшина О.В., Домарацкая Е.И., Старостин В.И. // Известия РАН. Серия биологическая. - 2006. - №1. - С.6-25.

4. Чертков И.Л., Дризе Н.И. // Вестник Российской АМН. - 2005. - №10. - С.37-44.

5. Annabi В., Lee Y.T., Turcotte S. et al. // Stem Cells. - 2003. - Vol.21. - P.337-347.

6. Barry P.P., Murphy M.J. // The International Journal of Biochemistry and Cell biology. - 2004. - Vol.36. - P.568-584.

7. Bianco P., Riminucci M., Gronthos S., Robey P.G. // Stem Cells. - 2001. - Vol.19. - P. 180-192.

8. Cipolleschi M.G., Rovida E., Ivanovic Z. et al. // Leukemia. - 2000. - Vol.14. - P.735-739.

9. Greijer A.E., van der Wall E. // Journal of Clinical Pathology. - 2004. - Vol.57. - P.1009-1014.

10. Javazon E.H., Colter D.C., Schwarz E.J., Prockop D.J. // Stem Cells. - 2001. - Vol.19, N 3. - P.219-225.

11. Lennon D.P., Edmison J.M., Caplan A.I. // J Cell Physiol. - 2001. - Vol.187, N3. - P.345-355.

12. Minguel J.J., Erices A., Conget P. // Experimental biology and medicine. - 2001. - Vol.226. - P.507-520.

13. Prockop D.J. // Science. - 1997. - Vol.276. - P.71-74.

14. Scott P.H., Paul A., Belham C.M. et al. // Am J Respir Crit Care Med. - 1998. - Vol.158. - P.958-962.

15. Патент US 7060494 от 13.06.2006 г., класс 435/366, C12N 5/00.

1. Способ ускоренного получения культур мезенхимальных стволовых клеток (МСК) млекопитающихся, исключая человека, с низкой гетерогенностью и высокой жизнеспособностью, включающий выделение клеток-предшественников и их последующее культивирование до получения целевой клеточной культуры, отличающийся тем, что культивирование ведут от 4 до 10 дней в условиях гипоксии с содержанием кислорода не менее 5%, при этом используют клетки от 1-го до 2-го пассажей, после чего определяют количество апоптически и некротически поврежденных клеток, их морфологические характеристики, по экспрессии маркеров CD90, CD54, CD44, CD73, CD11b, CD45 определяют иммунофенотип клеток, и при снижении суммарного количества апоптически и некротически поврежденных клеток не менее чем в 2 раза по сравнению с репрезентативными культурами в условиях нормоксии, при полном сохранении имммунофенотипа МСК и при превышении числа быстроделящихся однотипных клеток над крупными медленно пролиферирующими клетками получаемую культуру считают культурой мезенхимальных клеток с низкой гетерогенностью и высокой жизнеспособностью.

2. Способ по п.1 отличающийся тем, что в качестве клеток-предшественников используют стромальные костно-мозговые клетки-предшественники.

3. Способ по п.1 отличающийся тем, что морфологически однотипными клетками культур для МСК из костного мозга крыс считают клетки, имеющие размер 20-60 мкм.

4. Способ по п.1 отличающийся тем, что морфологически однотипными клетками для МСК культур, выделенных из костного мозга человека, считают клетки, имеющие размер 10-20 мкм.



 

Похожие патенты:

Изобретение относится к области биотехнологии и может быть использовано для получения популяции трансфицированных стволовых кроветворных клеток отрицательной линии дифференцировки, выделенных из костного мозга млекопитающего.

Изобретение относится к области биотехнологии культивирования субстратзависимых клеток животных в условиях in vitro методом микроносителей и может быть использовано при крупномасштабном выращивании клеток животных - продуцентов биологически важных продуктов.
Изобретение относится к медицине, а именно к фармакотерапии, и может быть использовано для лечения и профилактики в практической медицине и для научных исследований.

Изобретение относится к области медицины и касается модуля для уменьшения активности лейкоцитов. .
Изобретение относится к области медицины и касается ксеногенных олиго- или/и полирибонуклеотидов в качестве средств для лечения злокачественных опухолей. .

Изобретение относится к области биотехнологии, конкретно к получению из костного мозга человека культуры мезенхимальных стволовых клеток, и может быть использовано в клеточной терапии.

Изобретение относится к области биотехнологии, конкретно к клеточной биологии, и может быть использовано в транспланталогии, медицине и для создания банка криоконсервированных клеток человека и животных.

Изобретение относится к биотехнологии и может быть использовано при производстве питательных сред для суспензионного культивирования клеток. .
Изобретение относится к области вирусологии и биотехнологии

Изобретение относится к области медицины и касается способа получения гомозиготных стволовых клеток с предварительно отобранным иммунотипом, банка этих клеток и способа получения банка этих клеток

Изобретение относится к области биотехнологии и может быть использовано для культивирования плюрипотентных клеток

Изобретение относится к области медицины и касается гематопоэтических стволовых клеток и способов лечения неоваскулярных заболеваний глаз с их помощью
Изобретение относится к области молекулярной биологии и биоинженерии, а именно к стволовым клеткам
Изобретение относится к биотехнологии, в частности к получению перевиваемых линий клеток рыб, пригодных для выделения и изучения вирусов рыб разных таксономических групп
Изобретение относится к биотехнологии, в частности к получению перевиваемых линий клеток рыб, пригодных для выделения и изучения вирусов рыб разных таксономических групп
Наверх