Стойкая к высоким температурам ниобиевая проволока

Изобретение относится к получению ниобиевой проволоки, пригодной для применения в качестве проволочного вывода для ниобиевых, ниобийоксидных или танталовых конденсаторов. Стойкая к высоким температурам ниобиевая проволока, легированная 50-2000 мкг/г фосфора, получена путем вытягивания сплава ниобия. Легирование ниобия фосфором или фосфорсодержащими лигатурами осуществляют при плавке или спеканием ниобия с фосфором. Проволоку также могут вытягивать из материала, полученного спеканием предварительно легированного фосфором порошка ниобия. В структуре проволоки сохраняется стабильность размера зерен при температуре свыше 1400°С. Материал имеет высокие прочностные характеристики, в частности, число циклов изгиба, а его электрические свойства сопоставимы со свойствами чистого ниобия. 3 н. и 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение касается стойкой к высоким температурам ниобиевой проволоки, способа ее получения и ее применения для подсоединения ниобиевых, или ниобийоксидных, или танталовых конденсаторов.

Для электрического соединения конденсаторов на основе металлических порошков применяют проволоку из тугоплавких металлов. Между тем, вследствие использования более крупного и поэтому более дешевого ниобиевого порошка при изготовлении ниобиевых конденсаторов используют температуры спекания более 1400оС. Как правило, танталовая проволока выдерживает столь высокие температуры. Правда, тантал имеет почти в два раза большую плотность по сравнению с ниобием, что ведет к высокому потреблению этого материала. Готовый конденсатор, порошковый материал которого состоит по существу из ниобия, также как и отходы производства спеченных заготовок, не могут быть экономически выгодным образом отделены от тантала, чтобы снова ввести ниобий в замкнутый технологический цикл. Ниобиевая проволока решила бы эту проблему. Кроме того, цена тантала сильно зависит от колебаний рынка, так что расходы на исходные материалы трудно рассчитывать и регулировать. Поэтому особенно желательно иметь в распоряжении выгодный по цене материал-заменитель на основе ниобия. Вследствие стабильной цены ниобия в качестве исходного материала было бы желательно также использование ниобиевых проволочных выводов в танталовых конденсаторах.

Известно применение нелегированного Nb в качестве припоя для Ta и W при 1600оС (Werner Espe, Werkstoffkunde der Hochvakuumtechnik. Bd.1. Metalle und metallisch leitende Werkstoffe, VEB Dt. Verl. d. Wissenschaften, 1959). Однако для такого применения не требуется ни стабильность мелких зерен, ни стойкость в отношении охрупчивания и разлома при деформациях на изгиб «туда-сюда».

Ниобиевая проволока также хорошо зарекомендовала себя для присоединения порошковых анодов. В патенте США 6358625 В1 описана, например, анодная проволока из ниобия или тантала, которая для улучшения сцепления подвергается обработке кислородом таким образом, что происходит обогащение поверхности на порядок величины до 35 атомн. % в слое толщиной примерно 50 нм. В нормальном состоянии ниобиевая и танталовая проволока содержат лишь незначительные количества кислорода. Для тантала указывают содержание кислорода в 50-600 мкг/г. Обогащение поверхности не оказывает влияния на общие свойства, такие как электропроводность, но повышает сцепление. Указывается температура спекания в примерно 1250оС. Легированная кислородом ниобиевая проволока, как описано, например, в находящейся на рассмотрении заявке на патент Германии DE 10304756, имеет границу использования в примерно 1300оС.

Поэтому с технической точки зрения задача состоит в том, чтобы разработать пригодный материал на основе ниобия, выдерживающий температуры использования свыше 1400оС без образования крупных зерен и одновременно обладающий электрическими свойствами, сопоставимыми со свойствами чистого Nb. Кроме того, такой материал не должен охрупчиваться или ломаться с тем, чтобы выдержать процессы изгибания во время изготовления конденсаторов.

Было неожиданным образом установлено, что уже малые добавки фосфора оказывают значительное влияние на температуру рекристаллизации, а также на начало процесса образования крупных зерен и развитие процесса образования крупных зерен у ниобия.

Легированный фосфором Nb характеризуется в случае отжига при 1400оС в течение 20 мин размером зерен по ASTM, равным 9, что сопоставимо с тем размером зерен, который у легированного кислородом Nb достигается при 1200оС, а у нелегированного Nb - при 900оС. Заметное укрупнение зерен происходит в NbP лишь при температуре свыше 1600оС.

При 1600оС размер зерен по ASTM все еще достигает лишь 5.

Из свойств этого материала согласно изобретению следует универсальная возможность применения проволоки из Nb в ниобиевых конденсаторах. Так как данный материал также до 1600оС все еще не проявляет интенсивного образования крупных зерен и не охрупчивается, то, кроме того, существует возможность его применения в танталовых конденсаторах. Это представляет особенный интерес для более мелких типов (конденсаторов), так как там стоимость проволоки из Ta вносит значительный вклад в общие затраты.

Легирование ниобия происходит, например, во время:

- электронно-лучевой плавки путем добавления P или P-содержащих лигатур; или

- электродуговой плавки (плавки в дуговой печи) путем добавления Р или Р-содержащих лигатур; или

- получения спеченных заготовок из порошка Nb путем добавления Р или Р-содержащих лигатур; или

получения спеченных заготовок из порошка Nb, уже легированного Р.

Образующийся Р-содержащий сплав может быть при комнатной температуре переработан в проволоку с диаметром от 0,2 до 0,4 мм. Проволоку предпочтительно применяют в качестве проволочных выводов в ниобиевых, или ниобийоксидных, или танталовых конденсаторах. Такие конденсаторы изготавливают из металлического порошка. После спекания (вместе с проволокой) металл на поверхности «формуется», т.е. анодно окисляется, и тем самым образуется предельно тонкий слой Nb2O5 или Та2О5 в качестве диэлектрика.

Следующий пример поясняет изобретение, не ограничивая его.

Слиток ниобия легируют фосфором путем гомогенного добавления содержащей примерно 10% Р лигатуры при электронно-лучевой плавке. Получают сплав ниобия с содержанием фосфора от 100 до 2000 мкг/г. Изготовленный таким образом сплав ниобия при комнатной температуре вытягивают в проволоку с диаметром в диапазоне от 0,2 до 0,4 мм.

Посредством экспериментов с отжигом, которые моделируют истинные процессы спекания при изготовлении конденсаторов, может быть доказана пригодность этих сплавов для высокотемпературных применений. В качестве сравнительных образцов служат Nb («Nb-стандарт») и Nb с 3000 мкг/г О («NbO»).

Результаты объединены в следующей таблице

Качество NbТемпература отжигаРезультирующий размер зерен по ASTMЧисло циклов изгиба «туда-сюда»
Nb-стандарт900°C7>10
Nb-стандарт1000°C45
NbO900°C12>10
NbO1200°C78
NbO1300°C42
NbP900°Cдеформированная структуране установлено
NbP1200°C9>40
NbP1300°C9>40
NbP1400°C9>40
NbP1500°C8>40
NbP1600°C7>20
NbP1700°C4>20
NbP1800°C15
NbP1900°C12
NbP2000°C12

Эти эксперименты показывают стабильность размеров зерен до примерно 1500оС, а с 1600оС начинается укрупнение зерен. Механические свойства (число циклов изгиба) после спекания при 1600оС являются достаточными для того, чтобы гарантировать беспроблемную переработку при изготовлении конденсаторов.

На Фиг. 1, 2 и 3 приведены механические свойства - прочность и относительное удлинение, размер зерен (по ASTM) и число циклов изгиба - легированного P ниобия согласно изобретению в виде проволоки с диаметром 0,24 мм после 20-минутного спекания при различных температурах. У проволоки из этого примера содержание P составляет 350 мкг/г.

(Rm = предел прочности при растяжении, МПа; Rp0,2 = 0,2%-ный условный предел текучести, МПа; Al254 = предельное относительное удлинение в расчете на исходную длину 254 мм, %).

1. Стойкая к высоким температурам ниобиевая проволока, отличающаяся тем, что она легирована фосфором до содержания фосфора от примерно 50 до примерно 2000 мкг/г.

2. Способ получения легированной фосфором, стойкой к высоким температурам ниобиевой проволоки, отличающийся тем, что

a) ниобий легируют путем добавления фосфора или фосфорсодержащих лигатур при электронно-лучевой или электродуговой плавке или спекания с фосфором, или

b) спекают порошок ниобия, уже легированный фосфором;

и из полученного материала вытягивают проволоку с содержанием фосфора от примерно 50 до примерно 2000 мкг/г.

3. Способ по п.2, в котором вытянутая проволока имеет диаметр от 0,2 до 0,4 мм.

4. Способ по п.2, в котором вытягивание проволоки осуществляют при комнатной температуре.

5. Применение легированной фосфором ниобиевой проволоки по п.1 в качестве проволочного вывода в ниобиевых, или ниобийоксидных, или танталовых конденсаторах.



 

Похожие патенты:
Изобретение относится к области металлургии и касается составов сплава на основе ниобия, которые могут быть использованы для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах.
Изобретение относится к области металлургии и касается составов сплавов на основе ниобия, которые могут быть использованы для изготовления изделий, работающих в условиях механических нагрузок при повышенных температурах.
Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе Nb-Al для изготовления деталей авиационно-космической техники, работающих при температурах до 1600°С.
Изобретение относится к получению ниобийсодержащих материалов, используемых для получения специальных сталей. .
Изобретение относится к области металлургии, а именно к производству лигатур тугоплавких металлов, используемых для легирования титановых сплавов, методом алюминотермической плавки.

Изобретение относится к цветной металлургии, в частности к сверхпроводящим соединениям. .

Изобретение относится к цветной металлургии, в частности к сверхпроводящим соединениям. .

Изобретение относится к металлам, в частности к танталу, и изделиям, приготовленным из тантала, а также к способам получения и переработки тантала. .

Изобретение относится к области металлургии, в частности, к сплавам, способам их получения и изделиям, выполненным из них. .

Изобретение относится к порошковой металлургии, в частности к получению крупнопористых термостойких труб, может использоваться в теплоэнергетике в качестве насадок на газовые горелки.

Изобретение относится к порошковой металлургии, в частности, к изготовлению спеченных длинномерных заготовок из сплавов на основе вольфрама. .
Изобретение относится к порошковой металлургии и может использоваться для изготовления длинномерных изделий из металлических нанопорошков. .

Изобретение относится к внепечной обработке металлических расплавов, в частности к изготовлению порошковой проволоки, которая представляет собой стальную оболочку с замковым соединением, заполненную порошком (шихтой) различных материалов (раскислителей, модификаторов, ферросплавов, легирующих и науглероживателей).

Изобретение относится к устройству для изготовления порошковой проволоки в металлической оболочке с фальцевым швом диаметром 6-20 мм, используемой преимущественно для внепечной обработки стали и чугуна.
Изобретение относится к материалам для наплавки. .

Изобретение относится к способу изготовления порошковой проволоки диаметром 2-8 мм, применяемой для сварки и наплавки, а также для обработки металлических расплавов.

Изобретение относится к способу изготовления порошковой проволоки в металлической оболочке с фальцевым швом, используемой преимущественно для внепечной обработки стали и чугуна.

Изобретение относится к порошковой металлургии, в частности к получению армированных длинномерных изделий из порошков
Наверх