Способ модификации поверхности текстильного материала

Изобретение относится к способам модификации поверхности текстильного материала и может быть использовано для нанесения тонких пленок металлов, сплавов или соединений металлов. Способ включает обезгаживание материала при вакуумировании камеры с обрабатываемым материалом и последующее нанесение на его поверхность покрытия методом магнетронного распыления. При этом в процессе вакуумирования материал обрабатывают в низкотемпературной плазме тлеющего разряда неполимеризующегося газа. Технический результат - повышение качества покрытия, снижение времени модификации и расхода электроэнергии. 4 табл.

 

Изобретение относится к способам модификации поверхности текстильных материалов методом магнетронного распыления и может быть использовано для изготовления материалов, обладающих защитным действием от электромагнитных полей и инфракрасного излучения, обладающих антистатическими, противомикробными, электропроводящими и радиопоглощающими свойствами, а также декоративных и отделочных тканей.

Известен способ газофазной металлизации ткани и нетканых материалов путем полной принудительной прокачки паров карбонила металла через исходный тканый или нетканый материал в неглубоком вакууме при одновременном нагреве исходного материала со стороны, противоположной подаче паров карбонила металла, до температуры начала разложения паров, но не выше температуры деструкции исходного материала (пат. RU 2171858, опубл. 10.08.2001).

Приведенный способ является вредным производством, поскольку обработку поверхности материала при одновременном его нагреве проводят парами карбонилов металлов, являющимися летучими, ядовитыми и горючими веществами.

Известен способ модификации поверхности текстильных материалов методом магнетронного распыления, включающий обезгаживание материала путем вакуумирования камеры с обрабатываемым материалом и последующее нанесение на его поверхность металлического покрытия (см. Б.Горберг «Союз металла и тканей против электромагнитных излучений», Малые производства, №1(5), 2006 г., с.20-22).

Известный способ основан на использовании аномального тлеющего разряда в инертном газе, при котором положительно заряженные ионы, образующиеся в разряде, бомбардируют поверхность катода в зоне эрозии и выбивают из нее частицы металла, которые затем осаждаются в виде тонкого слоя на поверхности обрабатываемого материала.

Приведенный способ осуществляется при относительно глубоком вакууме и позволяет наносить на поверхность материала тонкие пленки меди, алюминия, титана, латуни, серебра, золота, нержавеющей стали, бронзы и других металлов, их сплавов и соединений металлов, например нитрида титана, двуокиси титана, окиси алюминия и.т.д.

В приведенном способе исключен недостаток предыдущего, поскольку обработку поверхности материала осуществляют без применения химических веществ, загрязняющих окружающую среду.

Недостатком приведенного способа является его низкая производительность, обусловленная необходимостью проведения процесса напыления в условиях глубокого вакуума.

Поскольку текстильные материалы являются материалами с высокоразвитой поверхностью, они содержат в своей структуре большое количество адсорбированных газов, в особенности воды, прочно связанных и тяжело отделяемых от активных центров материала. Поэтому перед нанесением покрытия проводят процесс обезгаживания материала путем вакуумирования рабочей камеры с обрабатываемым материалом до требуемого давления, которое занимает большое количество времени, значительно превышающее в 3-5 раз и более сам процесс модификации.

Кроме того, приведенный способ не обеспечивает полного удаления влаги и адсорбированных газов из внутренних слоев материала, в результате чего над поверхностью обрабатываемого материала образуется высокая концентрация водяных паров, которая увеличивается при повышении температуры материала в процессе нанесения покрытия. Частицы металла при этом взаимодействуют с частицами десорбирующихся газов, окисляются и осаждаются на материале (подложке), в результате чего качество наносимого покрытия значительно ухудшается. При эксплуатации изделий, изготовленных из такого материала, на открытом воздухе происходит быстрое окисление его поверхностного слоя, что снижает эксплуатационные характеристики покрытия.

И, наконец, приведенный способ требует значительных энергозатрат, поскольку процесс вакуумирования рабочей камеры с обрабатываемым материалом происходит в течение длительного времени, иногда в течение 24 ч.

Способ, приведенный последним, является наиболее близким решением по технической сущности.

Задачей настоящего изобретения является повышение производительности способа при снижении энергетических затрат и повышение качества покрытия.

Эта задача решается таким образом, что в известном способе модификации поверхности текстильного материала, включающем его обезгаживание путем вакуумирования камеры с обрабатываемым материалом и последующее нанесение на его поверхность покрытия методом магнетронного распыления, в процессе вакуумирования материал обрабатывают в низкотемпературной плазме тлеющего разряда неполимеризующегося газа.

Обработка материала перед напылением в низкотемпературной плазме тлеющего разряда неполимеризующегося газа позволяет значительно сократить время на процесс модификации, включающее также время на вакуумирование рабочей камеры с обрабатываемым материалом, и значительно уменьшить количество потребляемой электроэнергии.

Воздействие активных частиц низкотемпературной плазмы неполимеризующихся газов - высокоэнергетичных электронов, ионов, возбужденных молекул, свободных радикалов, а также инфракрасного и ультрафиолетового излучений - приводит к интенсивной десорбции адсорбированных газов и воды с поверхности и внутренних пор обрабатываемого материала, в результате чего происходит процесс его обезгаживания. Глубокое обезгаживание материала за счет интенсивной плазмохимической обработки позволяет значительно сократить время на вакуумирование рабочей камеры с обрабатываемым материалом перед нанесением покрытия.

Одновременно с обезгаживанием происходит активация поверхности обрабатываемого материала, в результате которой на поверхности материала появляются активные центры в виде свободных радикалов и новых химически активных функциональных групп. Активные центры способствуют увеличению взаимодействия напыляемых частиц металла с субстратом, что позволяет получить на поверхности материала более качественное пленочное покрытие.

Поскольку обрабатываемый материал попадает в зону магнетронного напыления без выхода в атмосферу, он сохраняет на поверхности активные центры, которые появились в результате плазмохимической обработки.

В качестве низкотемпературной плазмы неполимеризующегося газа может быть использована плазма воздуха, кислорода, азота, аргона, CO2, NH3, CF4, Не, Н2, Н2O.

В качестве покрытия используют металлы, их сплавы и соединения металлов.

В качестве материала могут быть использованы ткани, марля, трикотаж, тканевые полотна, нетканые материалы любого волокнистого состава.

Материал, полученный заявляемым способом, может быть применен для изготовления одежды, обладающей защитным действием от электромагнитных полей и инфракрасного излучения, одежды, обладающей противомикробным действием, а также для изготовления дезинфицирующих салфеток, повязок, фильтров для очистки воды и воздуха и т.п. Материал с декоративным напылением может быть использован для изготовления нарядной одежды и отделки интерьера.

Заявителю не известно использование в науке и технике отличительных признаков заявляемого способа с достижением указанного технического результата.

Способ модификации поверхности материала осуществляют следующим образом.

Пример 1

Рулон полиамидной ткани арт. 5369-06 диаметром 200 мм, длиной ткани 200 м и шириной 152 см, установленный в вакуумной камере установки магнетронного распыления, вакуумировали при перемотке до давления 5×10-5 мм рт.ст. по способу-прототипу без предварительной плазмохимической обработки и по заявляемому способу с обработкой перед напылением в низкотемпературной плазме аргона при давлении 1 Па на скорости перемотки 2 м/мин. После обезгаживания до давления 5×10-5 мм рт.ст. на ткань, подготовленную по способу-прототипу и по заявляемому способу, напыляли двуокись титана для придания ей перламутрового оттенка. Результаты испытаний приведены в таблице 1.

Таблица 1
Показатели Материал - полиамидная ткань арт. 5369-06
Способ-прототип Заявляемый способ
Время вакуумирования камеры до давления 5×10-5 мм рт.ст., ч 6 1,67
Чистота перламутрового оттенка, баллы
(1 - низкое качество, 5 - высокое качество)
4 5
Затраты на вакуумирование, кВт·ч 180 58,5
Суммарное время модификации, ч 9 4,66

Пример 2

Рулон полиэфирной ткани арт. 5354-06 диаметром 250 мм, длиной ткани 240 м и шириной 160 см, установленный в вакуумной камере установки магнетронного распыления, вакуумировали при перемотке до давления 5×10-5 мм рт.ст. по способу-прототипу без предварительной плазмохимической обработки и по заявляемому способу с обработкой перед напылением в низкотемпературной плазме азота при давлении 250 Па на скорости перемотки 6 м/мин. После обезгаживания до давления 5×10-5 мм рт.ст. ткань, подготовленную по способу-прототипу и по заявляемому способу, подвергали напылению нитридом титана для придания ей золотистого оттенка. Результаты испытаний приведены в таблице 2.

Таблица 2
Показатели Материал - полиэфирная ткань арт.5354-06
Способ-прототип Заявляемый способ
Время вакуумирования камеры до давления 5×10-5 мм рт.ст., ч 3,5 0,66
Чистота золотистого оттенка, баллы
(1 - коричневый оттенок, 5 - золотисто-желтый оттенок)
2 (бронзоподобный оттенок) 5 (золотоподобный оттенок)
Затраты на вакуумирование, кВт·ч 105 23,1

Пример 3

Рулон камуфлированной хлопко-полиэфирной (35% хлопка, 65% полиэфира) ткани с полиуретановым покрытием арт. 3451 (диаметр рулона 450 мм, количество ткани 200 м), устанавленный в вакуумной камере установки магнетронного распыления, вакуумировали до давления 5×10-5 мм рт.ст. по способу-прототипу без предварительной плазмохмической обработки и с предварительной обработкой в плазме воздуха при давлении 40 Па на скорости 2,8 м/мин. После обезгаживания до давления 5×10-5 мм рт.ст. на ткань, подготовленную по способу-прототипу и по заявляемому способу, методом магнетронного распыления напыляли алюминий для придания ткани теплоотражающих свойств. Результаты испытаний приведены в таблице 3.

Таблица 3
Показатели Материал - хлопко-полиэфирная ткань арт. 3451
Способ-прототип Заявляемый способ
Время вакуумирования камеры до давления 5×10-5 мм рт.ст., ч 8 1,2
Коэффициент отражения теплового
излучения
0,6 0,85
Затраты на вакуумирование, кВт·ч 240 51
Покрытие матовое блестящее

Матовое покрытие поверхности ткани после напыления по способу-прототипу обусловлено окислением алюминия примесями, десорбирующимися при напылении.

В предлагаемом способе за счет полного удаления из материала паров воды и других адсорбированных газов существенно улучшен внешний вид покрытия - поверхность блестящая, зеркальная с хорошей отражающей способностью.

Пример 4

Рулон полиамидной ткани арт. 5369-06 диаметром 200 мм, длиной ткани 200 м и шириной 152 см, установленный в вакуумной камере установки магнетронного распыления, вакуумировали при перемотке до давления 5×10-5 мм рт.ст., по способу-прототипу и по заявляемому способу с обработкой перед напылением в низкотемпературной плазме кислорода при давлении 20 Па на скорости перемотки 2 м/мин, а затем для придания экранирующих свойств подвергали двустороннему напылению алюминия. Экранирующие свойства ткани оценивали по ее электрическому сопротивлению. Удовлетворительные экранирующие свойства имеют материалы с поверхностным сопротивлением не более 5 Ом/квадрат. Результаты испытаний приведены в таблице 4.

Таблица 4
Показатели Материал - полиамидная ткань арт. 5369-06
Способ-прототип Заявляемый способ
Время вакуумирования камеры до давления 5×10-5 мм рт.ст., ч 6 1,67
Поверхностное сопротивление ткани после напыления алюминия, Ом/квадрат 11 2
Поверхностное сопротивление ткани после 60 дней выдержки на атмосфере, Ом/квадрат 16 2.1
Адгезия Al-покрытия к ткани по методу отрыва скотча (5 баллов - max, 1 балл - min) 3 5
Затраты на вакуумирование, кВт·ч 180 58,5

Результаты испытаний показали, что предварительная обработка материала в низкотемпературной плазме тлеющего разряда неполимеризующегося газа позволяет интенсифицировать процесс обезгаживания текстильного материала, улучшить качество наносимого покрытия и в 3-5 и более раз сократить время вакуумирования рабочей камеры с обрабатываемым материалом до требуемого давления в вакуумной камере установки магнетронного распыления.

Сокращение времени вакуумирования позволяет в 3 и более раз снизить затраты электроэнергии на весь процесс модификации.

Заявляемый способ позволяет существенно повысить качество напыляемого покрытия, значительно улучшить адгезию между поверхностью обрабатываемого материала и образовавшейся пленкой, а также обеспечить стабильность свойств покрытий во времени.

При нанесении декоративных покрытий существенно улучшается их внешний вид (яркость оттенков, блеск).

Кроме того, заявляемый способ не загрязняет окружающую среду, поскольку не требует использования химических материалов.

Способ модификации поверхности текстильного материала, включающий его обезгаживание при вакуумировании камеры с обрабатываемым материалом и последующее нанесение на его поверхность покрытия методом магнетронного распыления, отличающийся тем, что в процессе вакуумирования материал обрабатывают в низкотемпературной плазме тлеющего разряда неполимеризующегося газа.



 

Похожие патенты:
Изобретение относится к металлургии высокочистых металлов, конкретно - к производству распыляемых металлических мишеней для микроэлектроники. .

Изобретение относится к области нанесения покрытий, в частности к малогабаритному магнетронному распылительному устройству обращенного типа, и может найти использование для нанесения тонких пленок металлов и их соединений в вакууме на тонкие проволоки и волокна.

Изобретение относится к способам нанесения металлических покрытий на внутреннюю поверхность длинномерных труб вакуумным распылением металлов в магнитном поле. .

Изобретение относится к устройству и способу для нанесения покрытия на подложку с использованием физического осаждения из паровой фазы. .

Изобретение относится к аппарату магнетронного распыления для обработки подложки (варианты), установке магнетронного распыления и способу распыления для формирования пленки из материала мишени.

Изобретение относится к вакуумно-дуговому источнику плазмы и может найти применение для нанесения различного рода металлических покрытий на поверхность изделий. .

Изобретение относится к способу и устройству ионно-плазменного нанесения многокомпонентных пленочных покрытий. .

Изобретение относится к способу и аппарату магнетронного распыления и позволяет значительно уменьшить аномальный разряд на поверхности мишени и неразмытые области, вызывающие отложение материала мишени.

Изобретение относится к плазменной технике, в частности к дуальной магнетронной распылительной системе, и может найти применение для нанесения тонких пленок из металлов и их соединений в различных отраслях техники.

Изобретение относится к источнику фильтрованной плазмы вакуумной дуги (варианты) и способу создания фильтрованной плазмы. .

Изобретение относится к области машиностроения, а именно к способам нанесения антифрикционных износостойких покрытий, и может быть использовано при обработке поверхностей деталей пар трения и кинематических передач.

Изобретение относится к технике вакуумного нанесения износо-, коррозионно- и эрозионностойких ионно-плазменных покрытий и может быть применено в машиностроении, преимущественно для ответственных деталей, например рабочих и направляющих лопаток турбомашин.
Изобретение относится к способу вакуумного нанесения ионно-плазменных покрытий и может быть применено в машиностроении, преимущественно, для ответственных деталей, например, рабочих и направляющих лопаток турбомашин.

Изобретение относится к способу осаждения вещества на подложку, импульсному источнику питания для магнетронного реактора и магнетронному реактору. .
Изобретение относится к электродуговой обработке поверхности металлических изделий в вакууме и может быть использовано в черной и цветной металлургии, а также в машиностроительных отраслях производства.
Изобретение относится к области консервации металлических изделий, в частности к способам получения защитных покрытий на поверхности, в труднодоступных порах и дефектах металлических изделий, и может быть использовано в машиностроении и археологии.
Изобретение относится к области очистки металлических изделий, таких как катанка, проволока, полоса, поковки, отливки и других, в частности к способу электродуговой обработки поверхностей металлических изделий, и может найти применение в различных отраслях машиностроения.
Изобретение относится к области технологии нанесения тонкопленочных титановых и нитридтитановых декоративных покрытий на глазурованные керамические и полимерные материалы и изделия в вакууме способом ионно-плазменного напыления и может найти применение в производстве строительных материалов и товаров народного потребления.
Изобретение относится к способам изготовления рабочего элемента горелок со сквозной пористостью и может быть использовано в установках для газовой, нефтяной и нефтеперерабатывающей промышленности, например при изготовлении нагревателей газа на газораспределительных станциях.
Изобретение относится к области получения металлических покрытий методом магнетронного и дугового вакуумного распыления материала катода и может быть использовано для получения токопроводящих, защитных, износостойких покрытий на изделиях из керамики
Наверх