Устройство для испытаний образцов на термоусталость

Настоящее изобретение относится к испытательной технике. Устройство содержит цилиндрический корпус, горизонтальную разделительную перегородку и датчики контроля и управления испытаниями. Внутри цилиндрического корпуса, снабженного плоским днищем и герметичной крышкой, в верхней части закрепленной шпильками и гайками, расположен барабан, закрепленный на крышке внутри корпуса. Горизонтальная разделительная перегородка размещена в нижней части барабана и выполнена в виде перфорированного диска, перфорация которого выполнена в виде расположенных по окружности калиброванных отверстий, имеющих вдоль своей образующей калиброванные каналы для прохода греющей среды. Во внутренней полости барабана установлена дополнительная горизонтальная перегородка с калиброванными отверстиями в ней, точно такими же, как отверстия в перфорированном диске. Трубки-образцы установлены в отверстиях перфорированного диска и закреплены на крышке корпуса, а между трубками установлены вертикальные разделительные перегородки. Во внутреннюю полость каждой трубки-образца заведены трубки меньшего диаметра, закрепленные в раздаточном ресивере и имеющие в своей верхней части штуцеры для отвода охлаждающей среды и сливные трубки с калиброванными устройствами на них. В нижней части корпуса под перфорированным диском установлены трубка с диффузорным насадком, соединенная с цилиндрическим диффузором и штуцером подвода греющей среды и система камер со штуцером на днище для отвода греющей среды. Технический результат: повышение качества и точности результатов проводимых испытаний и их эффективность. 3 ил.

 

Изобретение относится к области испытательной техники, в частности к устройствам для исследования термоусталости образцов, подверженных случайным температурным пульсациям в потоке жидкости, и может быть использовано в атомной и теплоэнергетике и в транспортных энергетических установках.

Известна установка для исследования тепловой усталости труб, воспроизводящая в стендовых условиях разрушение кипятильных труб в результате изменения условий теплообмена на внутренней стороне трубы, содержащая замкнутый трубный контур в виде треугольника, одной из вершин обращенного вниз и закрепленного на валу, заполненном до определенного уровня дистиллятом. На одной из сторон контура установлена электропечь. При качаниях контура уровень воды в нем перемещается, тем самым создаются колебания температуры стенки трубы (Троянский Е.А., Кориковский И.К. Тепловая усталость труб при высоком давлении. Сборник: Исследование прочности элементов паровых котлов, МЭИ, М., 1954, с.45-52, и Троянский Е.А. Металлы котлостроения и расчет прочности деталей паровых котлов. Энергия, M.-Л., 1964, с.192).

Недостатками известной установки являются сложность изготовления каждого образца - замкнутый трубный контур в виде треугольника, установка электропечи на образец, сложность в определении места для дефектоскопии, а также большой период одного цикла и, как следствие, очень большое время для получения большого числа циклов (106 - 107) для построения кривой усталости, кроме того, невозможность увеличения перепада температур и повторения условий испытаний из-за индивидуального изготовления каждого участка.

Известна установка для испытания образца на термоусталость, содержащая полый цилиндрический корпус, заполненный теплоносителем, перегородку с отверстием, установленную в корпусе и разделяющую его на две полости с различными температурами теплоносителя, нагреватель и охладитель теплоносителя, при этом нагреватель и охладитель установлены в корпусе по разные стороны перегородки, перегородка выполнена в виде установленного соосно корпусу диска с углублением для размещения торца образца, причем ось углубления параллельна оси отверстия диска, а край углубления расположен от оси отверстия на расстоянии, равном радиусу этого отверстия (SU 1665284, МПК: G01N 3/60, опубликовано 23.07.91).

По совокупности признаков это известное техническое решение является наиболее близким к заявляемому и принято за прототип.

Недостатком известного технического решения, а также причиной, препятствующей достижению желаемого технического результата при использовании упомянутого известного устройства, является невозможность испытания одновременно большого количества образцов и, как следствие, получение достоверных статистических данных.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, а также выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил технического решения, характеризующегося признаками, тождественными или эквивалентными предлагаемым. При этом предлагаемое техническое решение не вытекает явным для специалиста образом из известного уровня техники и определенного заявителем.

Определение из перечня выявленных аналогов прототипа как наиболее близкого технического решения по совокупности признаков позволило выявить в заявленном устройстве совокупность существенных отличительных признаков по отношению к усматриваемому заявителем техническому результату, изложенную в нижеприведенной формуле изобретения.

Заявляемое техническое решение позволяет испытывать одновременно большое количество образцов, определяемое размерами корпуса, проводить ресурсные испытания для получения кривых усталости металла за счет создания на поверхности образцов при организованной протечке греющей среды нестабильного температурного режима с резкими колебаниями температуры при различных частотах и амплитудах, а также гарантирует равномерную раздачу рабочих сред по образцам, и, как следствие, одинаковый температурный режим для всех образцов, что существенно повышает качество и точность результатов проводимых испытаний и их эффективность.

Предложено устройство для испытаний образцов на термоусталость, включающее цилиндрический корпус, горизонтальную разделительную перегородку и датчики контроля и управления испытаниями, при этом внутри цилиндрического корпуса, снабженного плоским днищем и герметичной крышкой, в верхней части закрепленной шпильками и гайками, расположен барабан, закрепленный на крышке внутри корпуса, горизонтальная разделительная перегородка размещена в нижней части барабана и выполнена в виде перфорированного диска, перфорация которого выполнена в виде расположенных по окружности калиброванных отверстий, имеющих вдоль своей образующей калиброванные каналы для прохода греющей среды, во внутренней полости барабана установлена дополнительная горизонтальная перегородка с калиброванными отверстиями в ней, точно такими же, как отверстия в перфорированном диске, при этом трубки-образцы установлены в отверстиях перфорированного диска и закреплены на крышке корпуса, а между трубками установлены вертикальные разделительные перегородки, во внутреннюю полость каждой трубки-образца заведены трубки меньшего диаметра, закрепленные в раздаточном ресивере и имеющие в своей верхней части штуцеры для отвода охлаждающей среды и сливные трубки с калиброванными устройствами на них, кроме того, в нижней части корпуса под перфорированным диском установлены трубка с диффузорным насадком, соединенная с цилиндрическим диффузором и штуцером подвода греющей среды и система камер со штуцером на днище для отвода греющей среды.

Изобретение иллюстрируется чертежами, где на фиг.1 изображен общий вид устройства, на фиг.2 - вид А-А по фиг.1, размещение трубок-образцов в барабане, на фиг.3 - вид Б-Б по фиг.2, размещение трубок-образцов в перфорированном диске.

Устройство включает цилиндрический корпус 1 с плоским днищем 2 и герметичной крышкой 3, в верхней части закрепленной шпильками и гайками 4. Внутри корпуса 1 расположен барабан 5, закрепленный на крышке 3, с испытываемыми трубками-образцами 6, количество которых определяется размерами корпуса 1. В нижней части барабана 5 размещена горизонтальная разделительная перегородка, выполненная в виде перфорированного диска 7. Перфорация выполнена в виде расположенных по окружности калиброванных отверстий, имеющих вдоль своей образующей калиброванные каналы 8 для прохода греющей среды. Во внутренней полости барабана 5 установлена дополнительная горизонтальная перегородка 9 с калиброванными отверстиями в ней, точно такими же, как и в перфорированном диске 7. Трубки-образцы 6 установлены в отверстиях перфорированного диска 7 и закреплены на крышке 3 корпуса 1, а для исключения взаимного влияния потоков греющей среды между трубками 6 установлены вертикальные разделительные перегородки 10. Во внутреннюю полость каждой трубки-образца 6 заведены трубки меньшего диаметра подвода охлаждающей среды 11, закрепленные в раздаточном ресивере 12 для обеспечения равномерной раздачи охлаждающей среды и имеющие в своей верхней части штуцеры 13 для отвода охлаждающей среды и сливные трубки 14 с калиброванными устройствами 15 на них. В нижней части корпуса 1 под перфорированным диском 7 установлена трубка 16 с диффузорным насадком на ее конце, соединенная с цилиндрическим диффузором 17 и штуцером подвода греющей среды 18. Для отвода греющей среды установлена система камер 19 и 20 и штуцер 21 на днище 2. Во внутреннем объеме барабана 5 установлен датчик давления, а на наружной поверхности трубок-образцов 6 - термопары и тензодатчики (не показаны). Для организованной протечки греющей среды в центре крышки 3 установлен штуцер 22. Для сбора охлаждающей среды установлен кольцевой короб 23. Для равномерной раздачи прокачиваемой греющей среды по трубкам-образцам 6 предусмотрен цилиндрический вытеснитель 24 в центре барабана 5. В качестве греющей и охлаждающей среды могут быть использованы любые рабочие среды - жидкости или газы.

Устройство работает следующим образом. Греющая среда подается через штуцер подвода греющей среды 18, равномерно растекается через диффузор 17 и отводится через систему камер 19, 20 и штуцер отвода 21. Величина организованной протечки греющей среды регулируется через штуцер 22. Подвод охлаждающей среды во внутреннюю полость трубок-образцов 6 осуществляется из ресивера 12. В зоне разделения холодной и горячей сред вдоль наружной поверхности трубок-образцов 6 и в перфорации диска 7 возникают пульсации температур и соответствующие им температурные напряжения, приводящие к повреждению образцов (трещинообразованию в них). Управление частотой и амплитудой термопульсаций осуществляется изменением температуры и расхода греющей и охлаждающей сред, изменением направления движения охлаждающей среды, величиной и направлением организованной протечки греющей среды через штуцер 22. Колебания температуры среды, воздействующие на поверхность трубок-образцов и вызывающие деформацию их поверхности, фиксируются датчиками контроля и управления испытаниями (датчиками давления, тензорезисторами и термопарами). На основании этих измерений вычисляют напряжение, соответствующее деформации поверхностей трубок-образцов, и в соответствии с количеством циклов испытаний строят кривые усталости.

Устройство для испытаний образцов на термоусталость, включающее цилиндрический корпус, горизонтальную разделительную перегородку и датчики контроля и управления испытаниями, отличающееся тем, что внутри цилиндрического корпуса, снабженного плоским днищем и герметичной крышкой, в верхней части, закрепленной шпильками и гайками, расположен барабан, закрепленный на крышке внутри корпуса, горизонтальная разделительная перегородка размещена в нижней части барабана и выполнена в виде перфорированного диска, перфорация которого выполнена в виде расположенных по окружности калиброванных отверстий, имеющих вдоль своей образующей калиброванные каналы для прохода греющей среды, во внутренней полости барабана установлена дополнительная горизонтальная перегородка с калиброванными отверстиями в ней, точно такими же, как отверстия в перфорированном диске, при этом трубки-образцы установлены в отверстиях перфорированного диска и закреплены на крышке корпуса, а между трубками установлены вертикальные разделительные перегородки, во внутреннюю полость каждой трубки-образца заведены трубки меньшего диаметра, закрепленные в раздаточном ресивере и имеющие в своей верхней части штуцеры для отвода охлаждающей среды и сливные трубки с калиброванными устройствами на них, кроме того, в нижней части корпуса под перфорированным диском установлены трубка с диффузорным насадком, соединенная с цилиндрическим диффузором и штуцером подвода греющей среды и система камер со штуцером на днище для отвода греющей среды.



 

Похожие патенты:

Изобретение относится к способам испытания материалов на термоустойчивость. .

Изобретение относится к способам оценки длительной прочности неразрушающим методом. .

Изобретение относится к области температурных измерений, в частности, к определению пространственного распределения температур в теплозащитных конструкциях, подвергнутых высокотемпературному одностороннему нагреву, и может быть использовано при отработке теплозащиты спускаемых космических аппаратов.

Изобретение относится к установкам и стендам для исследования и испытаний лопаток турбомашин двигателей, установок и других турбомашин на термомеханическую усталость.

Изобретение относится к испытаниям, в частности на термостойкость, и заключается в том, что поверхность испытываемого образца материала подвергают циклическому тепловому воздействию, включающему нагрев поверхности и последующее охлаждение, производя при этом контроль поверхности испытываемого образца материала.

Изобретение относится к испытательной технике, в частности к устройствам для испытания полых изделий на термостойкость. .

Изобретение относится к области теплофизических измерений и предназначено для определения коэффициента термического расширения твердых тел. .

Изобретение относится к измерительной технике, в частности к методам и устройствам определения деформаций авиационных конструкций. .

Изобретение относится к исследованиям физико-механических свойств проката металлов, а именно анизотропии пластичности и вязкости, которая является причиной появления при сварке слоистых трещин.

Изобретение относится к испытаниям космической техники, а именно к установкам для имитации тепловых режимов работы элементов космических аппаратов

Изобретение относится к области энергетики, к устройствам для исследования термоусталости образцов, подверженных случайным температурным пульсациям в потоке жидкости, и может быть использовано в атомной энергетике и в транспортных энергетических устройствах. Устройство содержит корпус с фланцевым разъемом и испытуемые образцы в виде трубок. Испытуемые образцы в количестве двух, расположенные соосно один внутри другого с образованием кольцевого зазора между ними, закреплены внутри отдельных частей корпуса, размещенных на коллекторе подвода горячей воды и коллекторе отвода смеси горячей и холодной воды. Коллекторы посредством трубопроводов подключены к нагревателю и холодильнику. Наружная поверхность внешней трубки и внутренняя поверхность центральной трубки покрыты слоем изоляции. В верхней части корпуса установлен штуцер и клапан для подвода и регулирования расхода охлаждающей воды. Технический результат: исключение влияние рабочего давления среды на процесс образования трещин, обеспечивая в чистом виде трещинообразование только за счет пульсации температуры среды, что приводит к получению абсолютно точных результатов испытаний. 1 ил.

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца, связанное с захватами, механизм для механической обработки образца и платформу для перемещения механизма относительно оси захватов. Стенд дополнительно снабжен механизмом для поворота захватов вокруг их оси, который включает привод, на валу которого установлены две шестерни, на которых закреплены захваты. Технический результат: расширение функциональных возможностей стенда путем обеспечения испытаний при изменениях направлений механической обработки относительно радиальных направлений образца. 1 ил.

Изобретение относится к испытательной технике, к испытаниям, преимущественно, образцов горных пород. Стенд содержит основание, соосно установленные на нем захваты образца, устройство для нагружения образца осевой механической нагрузкой, механизм для взаимодействия с образцом, платформу для перемещения механизма вдоль оси захватов, платформу для перемещения механизма в вертикальном направлении перпендикулярно оси захватов и платформу для перемещения механизма в горизонтальном направлении перпендикулярно оси захватов. Механизм для взаимодействия с образцом выполнен фрезерным. Технический результат: расширение функциональных возможностей стенда путем обеспечения исследований при постепенном удалении материала образца без снятия механической нагрузки. 1 ил.

Изобретение относится к испытательной технике, а именно к устройствам для исследования термической усталости конструкционных материалов, и может быть использовано для экспериментального подтверждения расчетного прогноза малоцикловой прочности конструкционных материалов. Устройство состоит из последовательно соединенных между собой газогенератора и рабочей части с образцом конструкционного материала. Газогенератор имеет сменную смесительную головку. Цилиндрическая камера сгорания газогенератора оснащена запальным устройством и дроссельной шайбой. Рабочая часть состоит из соединенных между собой зажимного фланца с центральным отверстием и фланца с установленным на нем образцом. Центральные продольные оси фланца и образца совпадают. Внутренняя цилиндрическая поверхность зажимного фланца образует с поверхностью образца кольцевую щель, которая через торцевые выходные отверстия, выполненные во фланце вокруг образца, соединена с полостью, заканчивающейся выходным соплом. Технический результат: возможность обеспечить необходимые режимы термосилового нагружения образцов с моделированием натурного термонапряженного состояния исследуемых конструкционных материалов различных агрегатов, работающих в условиях переменных тепловых режимов. 1 ил.

Изобретение относится к устройству для оценки термомеханической усталости материала, который подвергается воздействию горячего теплового потока. Устройство содержит образец для испытаний, имеющий "горячую" стенку с наружной поверхностью, которая подвергается воздействию теплового потока, и внутренней поверхностью, от которой отходят параллельные полосы, прикрепленные к этой внутренней поверхности и образующие между собой параллельные каналы; промежуточную часть, имеющую параллельные ребра, форма и размеры которых обеспечивают возможность их вставки в указанные каналы между полосами с образованием прохода в области внутренней поверхности горячей стенки для циркуляции охлаждающей жидкости. Проход состоит из множества параллельных сегментов, отделенных друг от друга указанными полосами, а сечение прохода задано путем вставки ребер в указанные параллельные каналы. Устройство также содержит опору, на которой установлены образец и промежуточная часть, имеющая проходы, связанные с концами прохода для циркуляции охлаждающей жидкости; контур циркуляции охлаждающей жидкости, и нагревающие средства. Технический результат: возможность создания условий тестирования моделей, соответствующих реальным промышленным условиям, а также обеспечение возможности воздействовать высокими уровнями теплового потока с относительно простыми средствами нагревателя при одновременном наличии ресурса системы охлаждения, который соответствует "промышленным" системам. 9 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике и может быт использовано при испытаниях изделий на термическую стойкость. Заявлен способ испытаний полых изделий на термостойкость, заключающийся в нагреве изделия изнутри и охлаждении снаружи. Согласно изобретению внутрь изделия помещают нагреватель из теплоемкого материала, а изделие с нагревателем помещают в заполненную инертным газом капсулу из жаростойкого материала. Капсулу с изделием герметизируют, после чего полученную сборку нагревают до температуры не более допустимой температуры капсулы и осуществляют выдержку при указанной температуре до состояния выравнивания температуры всех составляющих изделия. Затем сборку охлаждают до заданной температуры с заданной скоростью, изделие извлекают из капсулы, а о термостойкости изделия судят по наличию в нем дефектов сверх допустимых величин. Технический результат - повышение достоверности получаемых результатов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области строительства, в частности к определению изменения длительной прочности бетона во времени эксплуатируемых под нагрузкой в условиях внешней агрессивной среды бетонных и железобетонных конструкций. Сущность: отслеживается разница между деформациями, получаемыми в результате испытания образца на одновременное силовое нагружение и воздействие агрессивной среды, и заранее протарированными данными, полученными испытаниями на длительную прочность образцов в условиях только силового нагружения, осуществляется контроль нагрузки на образец и своевременное ее снижение таким образом, что напряжения в сечении образца остаются постоянными до начала разрушения образца. Устройство содержит резервуар, заполненный агрессивным раствором, раму силовой установки, подвижную и неподвижную траверсы с цилиндрическими шарнирами для реализации сосредоточенного нагружения на железобетонный образец. В качестве нагрузочного устройства использована рычажная система с применением в качестве груза воды, заполняющей резервуар, оборудованный отводной трубкой с вентилем, работа которого регулируется изменением показателей тензометрических приборов на образце. Технический результат: возможность экспериментально определять градиент изменения длительной прочности во времени от начала приложения нагрузки и коррозионного воздействия среды до разрушения опытного образца нагруженного и корродирующего бетона при заданном неизменном значении напряжений в сечении образца с использованием более усовершенствованной по сравнению с прототипом модели испытательного стенда. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности. Сущность: осуществляют воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценивают результаты воздействия. Воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны. Технический результат: расширение возможностей контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах. 5 ил.

Изобретение относится к метрологии, в частности к средствам измерения термостойкости углей. Способ предполагает воздействие на образец угля двух последовательных термоударов, второй из которых имеет большую по сравнению с первым интенсивность, и регистрацию параметров акустической эмиссии. Ориентация образца по отношению источнику нагрева постоянна. При этом регистрацию параметров акустической эмиссии осуществляют как на стадиях нагрева, так и на стадиях остывании образца после каждого из термоударов. Затем определяют границы временных интервалов, соответствующих областям пиковых значений акустической эмиссии, когда ее уровень не менее чем в полтора раза выше уровня фоновых шумов. В каждом из этих интервалов рассчитывают средние значения активности акустической эмиссии. Уровень активности акустической эмиссии в ходе второго термоударного воздействия, проводимого на уже не содержащий влагу образец, показывает количество разрушенных структурных связей, а этот же параметр, но в ходе последующего остывания - количество сохранившихся структурных связей, переходящих из напряженного состояния в исходное. Затем по отношению величин средней активности акустической эмиссии за время нагрева и остывания вычисляется коэффициент термической стойкости геоматериала. Технический результат - повышение надежности и точности измерений. 4 ил.
Наверх