Установка для приготовления высокодисперсных смесей

Изобретение относится к средствам получения высокодисперсных гомогенизированных смесей с заданной концентрацией компонентов. Установка содержит каналы подачи раствора трех компонентов, выполненные с возможностью фильтрации, дозирования и принудительной подачи раствора компонентов. Первый компонент подают в смесительный блок. Второй компонент подают в пеногенератор. Смесительный блок смешивает первый компонент и вспененный второй компонента и выдает высокодисперсную смесь. Третий компонент подают во второй смеситель для смешивания его с высокодисперсной смесью на выходе первого смесителя. Пеногенератор выполнен низкократным, содержит цилиндрический корпус с фланцами на торцах, в одном из которых установлено сопло для подвода водного раствора пенообразователя, а в боковой поверхности корпуса - патрубок для подвода воздуха, и установленную внутри корпуса напротив сопла камеру смешения. Технический результат состоит в повышении качества продукции за счет повышении точности дозирования и регулирования потоков подаваемых компонентов. 3 ил.

 

Изобретение относится к средствам получения высокодисперсных гомогенизированных смесей с заданной концентрацией компонентов.

Наиболее близким техническим решением является система для приготовления смесей (патент РФ №2163504 - прототип), включающая канал подачи раствора первого компонента, выполненный с возможностью фильтрации и регулирования параметров потока, первый смеситель и канал подачи раствора второго компонента.

Известная система недостаточно эффективна при формировании высокодисперсных вспененных смесей, используемых для получения полимерных материалов, из-за трудности получения высокодисперсной, равномерной по размеру пузырьков, стабильной полимеризованной вспененной смеси.

Технический результат - повышение качества продукции за счет повышении точности дозирования и регулирования потоков подаваемых компонентов и повышение достоверности и точности работы устройства.

Это достигается тем, что в установке для приготовления смесей, содержащей канал подачи раствора первого компонента, выполненный с возможностью фильтрации, дозирования и принудительной подачи раствора первого компонента в смесительный блок, канал подачи раствора второго компонента выполнен с возможностью его фильтрации, дозирования и принудительной подачи раствора второго компонента в пеногенератор, выполненный с возможностью вспенивания раствора второго компонента сжатым воздухом, подаваемым через канал подачи сжатого воздуха, смесительный блок выполнен с возможностью смешивания раствора первого компонента и вспененного второго компонента и выдачи получаемой высокодисперсной смеси, при этом она дополнительно включает канал подачи третьего компонента, выполненный с возможностью фильтрации, дозирования и принудительной подачи третьего компонента во второй смеситель, выполненный с возможностью смешивания раствора третьего компонента с высокодисперсной смесью на выходе первого смесителя, а пеногенератор выполнен низкократным, содержит цилиндрический корпус с фланцами на торцах, в одном из которых установлено сопло для подвода водного раствора пенообразователя, а в боковой поверхности корпуса - патрубок для подвода воздуха, и установленную внутри корпуса напротив сопла камеру смешения, а сопло для подвода водного раствора пенообразователя имеет коническую часть, соединенную с фланцем для подвода водного раствора пенообразователя, и соосную ей цилиндрическую часть, установленную напротив конфузора камеры смешения, причем в боковой поверхности корпуса расположен перпендикулярно оси корпуса патрубок с обратным клапаном для подвода воздуха, а камера смешения выполнена с цилиндрической частью и диффузором на ее выходе, прикрепленным большим основанием к фланцу, при этом она имеет дополнительную опору в виде упругого кольца, соединяющего цилиндрическую часть с корпусом.

На фиг.1 приведена схема установки для приготовления высокодисперсных смесей, на фиг.2 - вариант выполнения установки, работающей по двум каналам, на фиг.3 - схема пеногенератора.

Установка для приготовления высокодисперсных смесей (фиг.1) содержит емкость 1 второго компонента (раствор пенообразующего вещества), кран 2, насос 3, манометр 4, кран 5, фильтр 6, кран 7, дроссель 8, образующие канал подачи второго компонента, пеногенератор 9, источник 10 сжатого воздуха, кран 11, емкость 12 второго компонента (карбамидоформальдегидная смола), кран 13, насос 14, манометр 15, фильтр 16, кран 17, дроссель 18, смеситель 19, емкость 20 третьего компонента (раствор отвердителя), кран 21, насос 22, манометр 23, фильтр 24, кран 25, дроссель 26, источник 27 сжатого воздуха, смеситель 28. Узлы 12-18 образуют канал подачи первого компонента, узлы 20-26 образуют канал подачи третьего компонента.

В установке для приготовления высокодисперсных смесей по второму варианту (фиг.2) работа по двум каналам идентична. Но в растворе второго компонента отсутствует отвердитель. В третьем канале из емкости 20 раствор отвердителя через кран 21 и насос 22 подается в фильтр 24 и далее через кран 25 и дроссель 26 в смеситель 28, где смешивается со смесью смолы и вспенивателя, что позволяет улучшить качество получаемого материала, т.к. подача отвердителя в смесь на конечном этапе позволяет получать высокодисперсную равномерную по размеру пузырьков стабильную полимеризующуюся смесь.

Пеногенератор (фиг.3) содержит цилиндрический корпус 29 с фланцами 30, 31, закрепленными на его торцах, во фланце 30 установлено сопло 32 для подвода водного раствора пенообразователя. Сопло 32 имеет коническую часть, соединенную с фланцем 30 для подвода водного раствора пенообразователя, и соосную ей цилиндрическую часть 33, установленную напротив конфузора 36 камеры смешения. В боковой поверхности корпуса 29 расположены отверстия (не показаны) или перпендикулярно оси корпуса 29 патрубок 34 с обратным клапаном 35 для подвода газа (воздуха). Камера смешения выполнена с цилиндрической частью 37 и диффузором 38 на ее выходе, прикрепленным большим основанием к фланцу 31. Камера смешения имеет дополнительную опору в виде упругого кольца 39, соединяющего цилиндрическую часть 37 с корпусом 29.

Установка для приготовления высокодисперсных смесей работает следующим образом.

В устройстве по первому варианту (фиг.1) перед началом работы открывают краны 7, 17, затем краны 2, 13 и одновременно включают насосы 3, 14. Раствор (пенообразующее вещество (ПАВ) плюс отвердитель) из емкости 1 через кран 2, насос 3, фильтр 6, кран 7 и дроссель 8 поступает в пеногенератор 9, куда подается сжатый воздух от источника 10 и осуществляется вспенивание ПАВ. Из емкости 12 смола подается через кран 13 в насос 14 и через фильтр 16, кран 17 и дроссель 18 в смеситель 19. Туда же подается вспененный ПАВ с отвердителем. Эти два компонента перемешиваются и готовая смесь выдается потребителю, который использует ее по своему усмотрению. Дроссели 8 и 18 служат дозаторами, манометры 4, 15 позволяют контролировать давление в потоках компонентов. Перед окончанием работы сначала закрывают краны 2, 13, затем 7, 17, открывают краны 5, 11 для очистки каналов, пеногенератора 9 и смесителя 19. Затем краны 5, 11 закрывают. Управление технологическим процессом подачи, дозирования, вспенивания и перемешивания растворов позволяет получать высокодисперсную равномерную по размеру пузырьков, стабильную полимеризующуюся смесь, которая при дальнейшем отверждении превращается в материал с высокими физико-механическими и теплоизолирующимися свойствами.

В устройстве по второму варианту (фиг.2) работа по двум каналам идентична. Но в растворе второго компонента отсутствует отвердитель. В третьем канале из емкости 20 раствор отвердителя через кран 21 и насос 22 подается в фильтр 24 и далее через кран 25 и дроссель 26 в смеситель 28, где смешивается со смесью смолы и вспенивателя. Это позволяет улучшить качество получаемого материала, т.к. подача отвердителя в смесь на конечном этапе позволяет получать высокодисперсную равномерную по размеру пузырьков, стабильную полимеризующуюся смесь, дальнейшее отверждение которой происходит более равномерно во времени и по объему, что улучшает свойства конечного материала. Кроме того, это позволяет облегчить работу смесителя 19, т.к. процесс схватывания элементов смеси в установке по первому варианту начинается уже в процессе работы смесителя. А в установке по второму варианту процесс схватывания элементов смеси начинается уже за пределами смесителя 28.

Пеногенератор работает следующим образом.

Водный раствор пенообразователя под давлением через входные отверстия сопла 32 (сначала коническое, а потом цилиндрическое) попадает в конфузор 36. За счет кинетической энергии струи воздух снаружи (или газ под давлением) увлекается (засасывается) наружной движущейся с большой скоростью поверхностью струи в камеру смешения, где происходит образование пены требуемой кратности.

Повышение точности дозирования и регулирования потоков растворов компонентов по каналам установки, поддержание в установке единого настроенного автоматического режима вспенивания, смешивания и отверждения позволяют повысить достоверность и точность работы установки и повысить качество продукции.

Установка для приготовления высокодисперсных смесей, содержащая канал подачи раствора первого компонента, выполненный с возможностью фильтрации, дозирования и принудительной подачи раствора первого компонента в смесительный блок, канал подачи раствора второго компонента, отличающаяся тем, что канал подачи раствора второго компонента выполнен с возможностью его фильтрации, дозирования и принудительной подачи раствора второго компонента в пеногенератор, выполненный с возможностью вспенивания раствора второго компонента сжатым воздухом, подаваемым через канал подачи сжатого воздуха, смесительный блок выполнен с возможностью смешивания раствора первого компонента и вспененного второго компонента и выдачи получаемой высокодисперсной смеси, при этом она дополнительно включает канал подачи третьего компонента, выполненный с возможностью фильтрации, дозирования и принудительной подачи третьего компонента во второй смеситель, выполненный с возможностью смешивания раствора третьего компонента с высокодисперсной смесью на выходе первого смесителя, а пеногенератор выполнен низкократным, содержит цилиндрический корпус с фланцами на торцах, в одном из которых установлено сопло для подвода водного раствора пенообразователя, а в боковой поверхности корпуса патрубок для подвода воздуха, и установленную внутри корпуса напротив сопла камеру смешения, а сопло для подвода водного раствора пенообразователя имеет коническую часть, соединенную с фланцем для подвода водного раствора пенообразователя и соосную ей цилиндрическую часть, установленную напротив конфузора камеры смешения, причем в боковой поверхности корпуса расположен перпендикулярно оси корпуса патрубок с обратным клапаном для подвода воздуха, а камера смешения выполнена с цилиндрической частью и диффузором на ее выходе, прикрепленным большим основанием к фланцу, при этом она имеет дополнительную опору в виде упругого кольца, соединяющего цилиндрическую часть с корпусом.



 

Похожие патенты:

Изобретение относится к области переработки жидких сред, в частности к физико-химическому изменению исходного жидкого углеводородного сырья, например нефти и нефтепродуктов, получению жидких композиционных материалов, в том числе наноструктурированных жидкостей, и может использоваться в химической, нефтехимической, нефтеперерабатывающей пищевой, фармацевтической промышленности.

Изобретение относится к машиностроению и может быть применено для диспергирования, эмульгирования и обеззараживания технологических, например, смазывающих и охлаждающих жидкостей.

Изобретение относится к устройствам для диспергирования в потоке движущейся жидкости пузырьков газа или жидкости, несмешивающейся с несущей жидкостью, и может быть использовано для образования газожидкостных смесей во флотационных установках и аэрации грунтовых вод в процессах водоподготовки.

Изобретение относится к способу гомогенизации находящейся под давлением жидкой эмульсии, такой как молоко. .

Изобретение относится к смесителям для получения эмульсий путем кавитационной обработки потока жидкостной смеси в теплоэнергетике, металлообработке, в химической, лакокрасочной, пищевой промышленности.

Изобретение относится к оборудованию для гомогенизации и тепловой обработки суспензий, и может быть использовано в консервной и пищевой промышленности. .
Изобретение относится к изготовлению резиновой смеси для автомобильной шины на основе ненасыщенных каучуков
Изобретение относится к изготовлению резиновой смеси для автомобильной шины
Изобретение относится к изготовлению резиновой смеси для автомобильной шины

Настоящее изобретение направлено на жидкие композиции для кондиционирования ткани и способы их получения и применения. Описана композиция кондиционера для ткани, имеющая вязкость от 5 сПз до 5000 сПз, при этом композиция содержит от 4 % до 30 % по массе одного или более активных веществ кондиционера для ткани, которое представляет собой соединение сложноэфирного четвертичного аммония, выбранное из группы, состоящей из сложных моноэфиров ацил-оксиэтил- N,N-диметиламмоний хлорида, сложных диэфиров ацил-оксиэтил-N,N-диметиламмоний хлорида и их смесей, при этом указанное активное вещество содержит частицы, при этом частицы имеют гранулометрический показатель от 750 до 3000: от 1 м.д. до 5000 м.д. электролита, от 60 до 96 % носителя, содержащего воду и необязательно один или более вспомогательных ингредиентов. Технический результат - высокая эффективность активного вещества кондиционера для ткани. 3 н. и 39 з.п. ф-лы, 10 пр., 3 ил., 8 табл.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации гидродинамических физико-химических, тепломассообменных процессов в системах «жидкость-жидкость» и жидкость-газ». Устройство содержит корпус с передней торцовой крышкой, консольно закрепленные упругие заостренные пластины, расположенные напротив горизонтальных осей щелевидных участков конических сопел с возможностью осевого смещения. Предусмотрен радиальный патрубок ввода основного компонента. Входной патрубок основного компонента, имеющий цилиндрический участок может перемещаться в осевом направлении. Смесительный элемент представляет собой цилиндрический корпус с внутренней конической поверхностью, на которой выполнены не менее двух радиальных проточек. В торцовой перегородке корпуса, где находится четное количество сквозных пересекающихся каналов, закреплена ступенчатая цилиндрическо-коническая вставка. На ее цилиндрическом конце, находящемся напротив щелевидного сопла, выполнена лыска, на которой жестко закреплена упругая пластина одной толщины. Пластина имеет П-образную форму с пластинами-ножками разной длины. Средняя ступень, значительно большего диаметрального размера, имеет коническую поверхность и находится внутри корпуса смесительного элемента. На другой цилиндрической поверхности ступенчатой вставки закреплены стержни с консольной частью разной длины, расположенные по окружностям в несколько рядов вдоль оси. В каждом последующем ряду оси стержней смещены по длине окружности относительно осей стержней предыдущего ряда на одинаковое расстояние. Внутренняя часть задней торцовой крышки, по оси которой находится выходной патрубок, выполнена в виде поверхности, близкой к сферической. Разность длин консольных пластин-ножек П-образной упругой пластины выбирается таким образом, чтобы разность частот, генерируемая этими элементами, не превышала 5%. Оси входа и выхода пересекающихся сквозных каналов находятся на одном диаметре и располагаются друг напротив друга на боковых поверхностях торцовой перегородки таким образом, что в каждой паре соседних каналов вход первого канала находится напротив выхода второго канала, а вход второго канала находится напротив выхода первого канала. Длина консольной части стержней в каждом ряду одинакова, но в каждом следующем ряду уменьшается таким образом, чтобы коническая поверхность, прилегающая к наружной поверхности торцов стержней была эквидистантна внутренней конической поверхности корпуса смесительного элемента. Форма поперечного сечения консольной части стержней может быть любой (круг, треугольник, многоугольник и др.). На боковой поверхности стержней выполнены не менее одной продольной канавки с округлой формой поперечного сечения, имеющих длину не менее чем 3/4 длины консольной части стержня. Стержни установлены с произвольной ориентацией боковых поверхностей. Диаметр, на котором находятся оси выхода сквозных пересекающихся каналов, должен быть больше внутреннего диаметра выходного патрубка в 1,4…1,6 раза. В устройстве осуществляется комплексное воздействие на обрабатываемую среду: акустических колебаний, кавитации, турбулентных пульсаций, сдвиговых напряжений, вихревых потоков. Технический результат изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов. 5 з.п. ф-лы, 6 ил.

Изобретение относится к технологии получения нанопорошков феррита кобальта в микромасштабном реакторе. Способ заключается в подаче исходных компонентов - смеси растворов солей кобальта и железа в соотношении компонентов, отвечающих стехиометрии CoFe2O4, и раствора щелочи в соотношении с растворами солей, обеспечивающем кислотность среды в диапазоне от 7 до 8, отвечающей условиям соосаждения компонентов, при этом растворы исходных компонентов подают в виде тонких струй диаметром от 50 до 1000 мкм со скоростью от 1,5 до 20 м/с, сталкивающихся в вертикальной плоскости под углом от 30° до 160°, при температуре в диапазоне от 20°С до 30°С, и давлении, близком к атмосферному, причем соотношение расходов исходных компонентов задают таким образом, что при столкновении струй образуется жидкостная пелена, в которой происходит смешивание и контакт растворов исходных компонентов. Микрореактор для осуществления способа содержит корпус 1 и патрубки 2 с соплами 3 для подачи исходных компонентов 10 и патрубок 4 для отвода продуктов, корпус 1 микрореактора имеет цилиндрическую форму с коническим днищем 5, крышку 6, патрубки 2 с соплами 3 для подачи исходных компонентов 10 выполнены с возможностью тонкой регулировки направления струи, в крышке 6 соосно корпусу 1 установлен патрубок 9 для подачи продувочного газа, а в днище 5 установлен выпускной патрубок 4 для отвода продувочного газа и продуктов реакции, причем площадь выпускного патрубка 4 в 20-50 раз превышает суммарную площадь всех патрубков для подачи исходных компонентов. В цилиндрической части корпуса могут быть установлены два или более патрубков 17 для подачи раствора поверхностно-активных веществ в виде тонких струй диаметром от 10 до 1000 мкм, направленных на жидкостную пелену контактирующих растворов исходных компонентов. Изобретение позволяет снизить температуру и давление, необходимые для проведения синтеза оксидных наноразмерных частиц феррита кобальта, снизить затраты энергии и обеспечить непрерывность процесса с возможностью его осуществления в промышленном масштабе, сократить стоимость оборудования, увеличить выход и селективность процесса, обеспечить оптимальные условия для быстропротекающих реакций за счет поддержания стабильных и эффективных гидродинамических условий контактирования реагентов и быстрого отвода продуктов реакции. 2 н. и 1 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к способу изготовления однофазной фазостабильной жидкости. Способ заключается в том, что на первом этапе смешивают липофильную жидкость с гидрофильной жидкостью так, что образуется смесь жидкостей, на втором этапе статическое давление смеси устанавливают ниже давления пара по меньшей мере одной из жидкостей так, что, посредством так называемой интенсивной кавитации, образуются кавитационные пузыри, и на третьем этапе кавитационные пузыри схлопываются, причем образуется однофазная фазостабильная жидкость. Смесь приводят во вращательное движение посредством шнека со спиральной сужающейся трубой. Перед вторым этапом смесь приводят во вращательное движение. Диаметр трубы шнека в ее самой тонкой части составляет не более 30% от диаметра около впускного отверстия. Изобретение обеспечивает создание способа изготовления фазостабильных жидкостей из липофильной фазы и гидрофильной фазы без эмульгаторов. 6 з.п. ф-лы, 2 ил.
Наверх