Способ получения 1,3-дихлорадамантана

Изобретение относится к способу получения 1,3-дихлорадамантана

каталитическим хлорированием адамантана, отличающемуся тем, что хлорирование проводят с помощью четыреххлористого углерода под действием железосодержащих катализаторов Fe(acac)3 или Fe(C5H5)2 в присутствии метанола при 160-170°C в течение 3-6 часов при мольном соотношении [адамантан]: [CCЦ]: [CH3OH]: [катализатор] = 100:200:100:3÷5. Настоящий способ использует дешевые катализаторы и осуществляется в более мягких условиях. 6 пр., 1 табл.

 

Предлагаемое изобретение относится к области органической химии, в частности к способу получения 1,3-дихлорадамантана.

1,3-Дихлорадамантан (1) широко применяется в производстве термо- и хемостойких полимеров, полупроводниковых резисторов, инсектицидов и служит исходным сырьем при синтезе лекарственных препаратов (Багрий Е.И. // Адамантаны. - М.: Наука, 1989. С.264 [1]).

1,3-Дихлорадамантан (1) с выходом 80.7% получают хлорированием адамантана (1) с помощью хлорсульфоновой кислоты (ClSO2OH) при -5°C в течение 60 часов (Б.М.Лерман, З.Я.Арефьева, А.Р.Кузыев, Г.А.Толстиков. Изв. АН СССР, №4, С.894 (1971) [2]).

Реакция адамантана (2) с ClSO2OH (соотношение [адамантан]: [ClSO2OH] = 1:4) при 20°C, 100 ч дает 1,3-дихлорадамантан (1) с выходом 90% (G.A.Tolstikov, В.М.Lerman, Z.Ya.Arefjeva. // Tetrahedron Lett, №31, P.3191-3192 (1972) [3]).

Хлорирование адамантана (2) хлорсульфоновой кислотой при 0-10°C в течение 2 часов, а затем при 20°C 5 часов приводит к образованию 1,3-дихлорадамантана (1) с выходом 93% (N.Tanaka, М.Yamaguchi. Патент США, №6878853 В2, опубл. 12.04.2005 [4]).

Существенные недостатки методов:

1. Большой избыток хлорирующего агента.

2. Агрессивность и высокая коррозионная активность хлорирующего агента ClSO2OH и продуктов его гидролиза (HCl, H2SO4).

3. Трудность выделения целевого 1,3-дихлорадамантана (1) из разбавленных растворов, содержащих большое количество ClSO2OH, HCl, H2SO4.

При хлорировании адамантана (2) четыреххлористым углеродом в присутствии AlCl3 при 20°C в течение 22 часов образуется смесь 1,3-дихлорадамантана (1) (выход 71%) и 1-хлорадамантана (3) (13%) (Н.Stetter, М.Krause, W.-D.Last. Angew. Chem., V.80, №22, P.970-971 (1968) [5]).

Существенные недостатки метода:

1. Неселективность реакции.

2. Значительная продолжительность реакции (22 часа).

3. Образование большого количества неорганических отходов и сточных вод, содержащих Al(OH)3 и HCl.

Кипячение адамантана (2) с хлоридом йода (ICl) в среде CCl4 в течение 5 часов приводит к 1,3-дихлорадамантану (1) с выходом 98% (A.G.Yurchenko, N.I.Kulik, V.P.Kuchar, V.M.Djakovskaya, V.F.Baklan. Tetrahedron Lett, V.27, №12, P.1399-1402 (1986) [6]; А.Г.Юрченко, Н.И.Кулик, В.П.Кухарь, В.М.Дьяковская, В.Ф.Баклан, Н.А.Фокина. Украинский химич. журнал, Т.55, №6, С.636-639 (1989) [7]).

Недостатки метода:

1. Труднодоступность хлорида йода ICl и необходимость его использования в большом избытке.

Хлорирование адамантана (2) с помощью изопропилхлорида (i-PrCl) в присутствии АlСl3 в среде четыреххлористого углерода (ССl4) при комнатной температуре в течение 4 часов приводит к образованию смеси трех продуктов: 1,3-дихлорадамантана (1) (выход 33.4%), 1-хлорадамантана (3) (46.9%) и 2-хлорадамантана (4) (4.3%) (R.Jalal, R.Gallo. Synth. Commun., V.19, №9-10, P.1697-1704 (1989) [8]).

Существенные недостатки метода:

1. Большой расход катализатора AlCl3.

2. Разложение образующихся комплексов проводится большим избытком 35% раствора соляной кислоты.

3. Трудность выделения 1,3-дихлорадамантана (1) в чистом виде из реакционной массы, содержащей i-PrCl, АlСl3, ССl4, (3) и (4).

4. Низкая селективность реакции.

5. Образование сточных вод, содержащих АlСl3 и HCl.

1,3-Дихлорадамантан (1) с выходом 28% получают хлорированием адамантана (1) системой t-BuOCl - N-гидроксифталимид (NHPI) в соотношении [адамантан]: [NНРI]: [t-BuOCl] = 1:2:2 в среде ацетонитрила (CH3CN) при 25°C в течение 18 часов (Т.С.Жук, П.А.Гурченко, Я.Ю.Коровай, П.Р.Шрайнер, А.А.Фокин. Теорет. и эксперим. химия, Т.44, №1, С.46-51 (2008) [9])

При уменьшении количества N-гидроксифталимида до 0.25 ммоль выход 1,3-дихлорадамантана снижается до 17%, а в реакционной смеси обнаруживается побочный продукт - 1,3,5-трихлорадамантан (5) (13%).

Недостатки метода:

1. Низкий выход 1,3-дихлорадамантана (1).

2. Неселективность реакции.

3. Использование в качестве хлорирующего агента нестабильного третбутилгипохлорита, получаемого перед реакцией из гипохлорита натрия и трет-бутанола.

4. Реакционная масса содержит CH3CN, t-BuOCl, N-гидроксифталимид, 1-хлорадамантан (3) и 2-хлорадамантан (4), что создает трудности при выделении целевого 1,3-дихлорадамантана (1).

Термическое хлорирование адамантана (2) с помощью CCl4 приводит к образованию хлорпроизводных адамантана (K.Tanemura, T.Suzuki. Tetrahedron Lett, V.49, №45, P.6419-6422 (2008) [10]; K.Tanemura, T.Suzuki. Tetrahedron, V.66, №15, P.2881-2888 (2010) [11]). Так, при взаимодействии 4 ммоль адамантана с 15 мл CCl4 в атмосфере азота при 250°C в течение 9 часов в стальном микровтоклаве с тефлоновым покрытием (давление ~7 МРа) образуется смесь 1,3-дихлорадамантана (1), 1-хлорадамантана (3) и 2-хлорадамантана (4) с выходами 73%, 4% и 2% соответственно.

Существенные недостатки метода:

1. Образование побочного продукта - ядовитого газообразного хлора.

2. Используется большой избыток хлорирующего агента - четыреххлористого углерода.

3. Реакция проводится при высокой температуре и высоком давлении.

4. Низкая селективность реакции.

Смесь 1,3-дихлорадамантана (1) и 1-хлорадамантана (3) образуется при хлорировании адамантана (2) четыреххлористым углеродом под действием соединений кобальта при 150°C, 3 часа (У.М.Джемилев, Р.И.Хуснутдинов, Н.А.Щаднева, В.Н.Латыпов. Патент РФ, №212551 С1, опубл. 27.01.1999 [12]).

Недостатки метода:

1. Образуется трудноразделимая смесь 1,3-дихлорадамантана (1) и 1-хлорадамантана (3), которые являются кристаллическими веществами.

1,3-Дихлорадамантан (1) (выход 98%) получают хлорированием адамантана (2) хлороформом (CHCl3) или хлористым метиленом (CH2Cl2) под действием трехкомпонентного катализатора Fe-Ti-полимер при 200°C в течение 3 часов (Р.И.Хуснутдинов, В.Н.Латыпов, Н.А.Щаднева, А.Р.Байгузина, У.М.Джемилев. Патент РФ, №2178401 C2, опубл. 20.01.2002 [13]).

Хлорирование адамантана (2) четыреххлористым углеродом в присутствии Mn(acac)3, активированного ацетонитрилом (CH3CN) (соотношение [Mn(acac)3]:[CH3CN]=1:2) при 200°C в течение 3 часов с общим выходом 96% приводит к образованию смеси 1,3-дихлорадамантана (1) и 1,3,5-трихлорадамантана (5) в соотношении (1):(5)=10:1 (Р.И.Хуснутдинов, Н.А.Щаднева, А.Р.Байгузина, Ю.Ю.Лаврентьева, Р.Ю.Бурангулова, У.М.Джемилев. Нефтехимия, т.44, №22, С.148-155 (2004) [14])

На основании сходства по нескольким признакам (идентичные реагенты: адамантан, четыреххлористый углерод, использование катализатора) за прототип взят метод хлорирования адамантана с помощью CCl4 под действием каталитической системы Mn(acac)3-CH3CN [14].

Прототип имеет следующие недостатки:

1. Использование сравнительно дорогостоящего Mn-содержащего катализатора.

2. Жесткие условия реакции.

3. Образование смеси продуктов.

Задачей настоящего изобретения является упрощение технологии получения 1,3-хлорадамантана (1).

Авторами предлагается способ получения 1,3-дихлорадамантана (1), не имеющий указанных недостатков.

Сущность способа заключается в хлорировании адамантана (2) с помощью системы CCl4 - метанол (CH3OH) под действием железосодержащих катализаторов (Fe(acac)3 или Fe(С5Н5)2) в присутствии метанола при 160-170°C в течение 3-6 часов при мольном соотношении [адамантан]: [CCl4]: [CH3OH]: [катализатор] = 100:200:100:3÷5. В оптимальных условиях единственным продуктом реакции является 1,3-дихлорадамантан (1), выход которого составляет 90%.

Преимущества предлагаемого метода:

1. Используются дешевые Fe-содержащие катализаторы.

2. По сравнению с прототипом (200°C) процесс проводится при более мягких условиях (160-170°C).

Способ поясняется примерами.

Пример 1. В микроавтоклав из нержавеющей стали (V=17 мл) или стеклянную ампулу (V=20 мл) (результаты параллельных опытов практически не отличаются) под аргоном помещали 0.3 ммоль Fe(acac)3, 10 ммоль адамантана и 20 ммоль ССl4, 10 ммоль CH3OH, автоклав герметично закрывали (ампулу запаивали) и нагревали при 160°C в течение 6 часов. После окончания реакции микроавтоклав (ампулу) охлаждали ~20°C, вскрывали, растворитель отгоняли, остаток перекристаллизовывали из метанола. Выход 1,3-дихлорадамантана (1) 90%, т.пл. 130-132°C. Спектр ЯМР 13С (CDCl3, δ, м.д.): 66.74 (С1, С3), 56.51 (С2), 45.71 (С4, С8, С9, С10), 33.65 (С5, С7), 33.35 (С6). Найдено, %: C 58.54; H 6.84, Cl 34.62. C10H15Cl. Вычислено, %: C 58.55; H 6.87; Cl 34.56.

Другие примеры, подтверждающие способ, приведены в таблице 1.

Таблица 1
Результаты опытов по синтезу 1,3-дихлорадамантана (1) хлорированием адамантана (2) с помощью CCl4 под действием Fe-содержащих катализаторов в присутствии метанола
№ п/п Катализатор Мольное соотношение [Fe]: [адамантан]: [ССl4]: [CH3OH] Температура, °C Время реакции, ч Выход 1,3-дихлорадамантана, %
1 2 3 4 5 6
1 Fe(acac)3 3:100:200:100 160 6 90
2 --//-- 5:100:200:100 --//-- --//-- 75
3 --//-- 3:100:200:100 170 3 52
4 Fe(C5H5)2 3:100:200:100 160 6 83
5 --//-- 5:100:200:100 --//-- 6 77
6 --//-- 3:100:200:100 170 3 69

Способ получения 1,3-дихлорадамантана

каталитическим хлорированием адамантана, отличающийся тем, что хлорирование проводят с помощью четыреххлористого углерода под действием железосодержащих катализаторов Fe(acac)3 или Fe(C5H5)2 в присутствии метанола при 160-170°C в течение 3-6 ч при мольном соотношении [адамантан]: [CCl4]: [CH3OH]: [катализатор] = 100:200:100:3÷5.



 

Похожие патенты:

Изобретение относится к области органической химии, в частности к способу получения 1,3-дибромадамантана, который находит широкое применение в производстве термо- и хемостойких полимеров, служит исходным сырьем при получении лекарственных препаратов, антистатиков, мягчителей, используется в синтезе других производных адамантана (амины, спирты, кислоты, нитрилы, амиды и т.д.).

Изобретение относится к способу каталитической переработки метана из природного газа с получением низших олефинов, преимущественно этилена, через промежуточный синтез хлористого метила методом окислительного хлорирования метана и последующего каталитического пиролиза хлористого метила.

Изобретение относится к усовершенствованному способу фторирования, в котором осуществляют контактирование потока фторируемого органического соединения с потоком элементного фтора с образованием HF или другого водородсодержащего соединения в качестве побочного продукта, где потоки исходных реагентов попадают в реакционную зону реактора фторирования, которая заполнена стехиометрическим избытком фторид-адсорбирующей композиции по отношению к мольным количествам фторируемого органического соединения и элементного фтора.

Изобретение относится к способу получения хлороформа, включающему термическое хлорирование метана, последующую конденсацию полученной смеси хлорметанов, возврат неконденсирующихся компонентов на хлорирование, выделение из конденсата целевого продукта и метиленхлорида методом ректификации и возврат выделенного метиленхлорида на хлорирование, дополнительное хлорирование метана совместно с метиленхлоридом и неконденсирующимися компонентами.

Изобретение относится к способу получения винилхлорида, включающему подачу газообразного хлора и этана к области реакции хлорирования этана, расположенной в нижней части реактора пиролиза, в которой присутствуют твердые частицы; проведение реакции хлорирования этана при контакте газообразного хлора и этана с твердыми частицами таким образом, что продукт реакции хлорирования этана и твердые частицы поднимаются в верхнюю часть реактора пиролиза одновременно, при этом образовавшийся кокс оседает на твердых частицах, причем реакция хлорирования этана происходит при температуре от 400-800°С под давлением 1-25 атм при молярном отношении этана к газообразному хлору 0,5-5 и времени от 0,5-30 секунд; проведение реакции пиролиза в области реакции пиролиза, расположенной в верхней части реактора пиролиза, при контакте продукта реакции хлорирования этана с твердыми частицами таким образом, что продукт реакции хлорирования этана и твердые частицы поднимаются одновременно, при этом образовавшийся кокс оседает на твердых частицах, причем реакция пиролиза протекает при температуре от 300 до 800°С, давлении 1-50 атм и времени от 0,05 до 20 секунд; разделение твердых частиц, полученных при реакции пиролиза, и продукта реакции пиролиза в сепараторе; перемещение отделенных твердых частиц к реактору регенерации с последующим сжиганием кокса, отложившегося на твердых частицах для регенерирования твердых частиц, и повторную подачу регенерированных твердых частиц к реактору пиролиза.

Изобретение относится к способу переработки углекарбонатного минерального сырья, включающему обжиг известняка в реакторе с получением окиси кальция, производство карбида кальция реакцией части окиси кальция, полученной при обжиге известняка, с углеродом, контактирование части объема полученного карбида кальция с водой с получением ацетилена и едкого кальция, контактирование газообразных отходов процесса обжига известняка с водой для получения угольной кислоты, при этом для обжига известняка используют тепло, получаемое сжиганием части объема ацетилена, получаемого из части объема карбида кальция.

Изобретение относится к способу получения хлорметанов, включающему газофазное термическое хлорирование метана, конденсацию полученных хлорметанов, удаление из конденсата хлористого метила с получением смеси хлорметанов, ректификацию этой смеси с выделением легкой фракции, жидкофазное хлорирование легкой фракции при фотохимическом инициировании, объединение кубовой фракции с продуктами жидкофазного хлорирования, выделение индивидуальных хлорметанов известными методами.
Изобретение относится к способу получения метилхлорида путем селективного каталитического хлорирования метана, включающему пропускание исходной газовой реакционной смеси, содержащей, по меньшей мере, метан и хлорирующий агент, представляющий собой либо элементарный хлор, либо смесь хлористого водорода с кислородом через, по меньшей мере, один слой катализатора.
Изобретение относится к способу превращения гидрофторуглеродов, таких как HFC-227, HFC-236, HFC-245, HFC-125, HFC-134, HFC-143, HFC-152 и их соответствующих изомеров в пергалогенированное соединение.
Изобретение относится к способу получения хлороформа путем хлорирования метиленхлорида в жидкой фазе при температуре 35-50°С при фотоинициировании с последующим выделением хлороформа ректификацией.
Изобретение относится к стереоселективному методу получения напряженных каркасных карбоциклических соединений на основе норборнадиена. .

Изобретение относится к способу формирования высокоэффективного катализатора на основе катионного комплекса никеля для аддитивной полимеризации норборнена (NB). .

Изобретение относится к способам получения органических карбонатов и карбаматов. .
Изобретение относится к области производства модифицированных катализаторов крекинга углеводородов, в частности нефтяных фракций, обладающих повышенной активностью и селективностью, и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к способу получения высокоразветвленных тримеров пропилена (2,6-диметилгептена-3, 2,6-диметилгептена-2, 4,6-диметилгептена-3, 2-метилоктена-2, 7-метилоктена-3) в гетерогенной каталитической системе, включающей оксиды кремния, характеризующемуся тем, что в качестве катализатора используют бис-аллил никель Ni(С3Н5)2, нанесенный на кремнистые створки диатомовых водорослей с удельной поверхностью от 20 до 165 м2/г, каталитическую тримеризацию пропилена осуществляют в среде толуола при активном перемешивании суспензии катализатора в толуоле в атмосфере пропилена, при этом содержание никеля в катализаторе составляет 0.4-10.5% по массе, реакцию ведут при температуре 20-25°С и атмосферном давлении.

Изобретение относится к способу гидрообработки нефтяных фракций. .

Изобретение относится к катализатору (со)полимеризации сложных циклических эфиров, представляющему собой станнилены и гермилены общей формулы 1 в которой М обозначает атом олова или германия; L1 и L2 независимо обозначают группу формулы -E14(R14)(R'14)(R''14 ), -E15(R15)(R'15) или -E 16(R16), E14 обозначает элемент группы 14; E15 обозначает элемент группы 15; E16 обозначает элемент группы 16; E14, R'14 , R''14, R15, R'15 и R16 независимо обозначают атом водорода, один из следующих замещенных или незамещенных радикалов: алкил, циклоалкил или арил, в которых названным выше заместителем является атом галогена, радикал алкил, циклоалкил, арил, нитро или циано; радикал формулы -E'14RR'R''; E'14 обозначает элемент группы 14; R, R' и R'' независимо обозначают атом водорода или один из следующих замещенных (одним или несколькими одинаковыми или разными заместителями) или незамещенных радикалов: алкил, циклоалкил или арил, в которых названным выше заместителем является атом галогена, радикал алкил, арил, нитро или циано.
Наверх