Способ размещения виброизолирующих опор под рамой технологического агрегата

Изобретение относится к машиностроению. Количество опор определяется несущей способностью одной опоры. Первую и последнюю опоры размещают от левого края рамы на заданных расстояниях. Промежуточные опоры размещают вдоль каждой из сторон рамы на расстояниях от края рамы, ближайшего к центру тяжести агрегата, вычисляемых по формулам. Достигается исключение перегрузки опор и наклона рамы агрегата. 1 ил.

 

Область техники

Изобретение относится к машиностроению, а именно к системам виброизоляции фундаментов технологических агрегатов, симметричных относительно вертикальной плоскости, проходящей через технологическую ось агрегата.

Уровень техники

Известен способ установки технологического агрегата, при котором одинаковые виброизолирующие опоры размещаются по углам рамы агрегата [1, 2], [3, стр.305, рис.148]. Известен также способ установки технологического агрегата на заданное число однотипных виброизолирующих опор, которые размещаются с одинаковым шагом вдоль каждой из сторон рамы агрегата, являющийся прототипом [3, стр.313, рис.154, а].

Недостатком прототипного способа установки агрегата на заданное число однотипных виброизолирующих опор, симметричного относительно вертикальной плоскости, проходящей через технологическую ось агрегата, с центром тяжести, смещенным вдоль технологической оси агрегата, является появление наклона агрегата по отношению к горизонтальной плоскости и возможная перегрузка части опор, наиболее удаленных от вертикальной плоскости, проходящей через центр тяжести агрегата и перпендикулярной его технологической оси, с короткой стороны участка рамы, отсчитываемого от этой же плоскости, что приводит к резкому снижению долговечности и эффективности работы виброизолирующих опор, а также к появлению, дополнительных составляющих сил, возникающих при вращении неуравновешенных частей агрегата.

Раскрытие изобретения

Задачей заявленного способа является устранение указанных недостатков, а именно, размещение конечного числа однотипных виброизолирующих опор под рамой агрегата вдоль каждой из ее сторон, параллельной технологической оси агрегата, которое исключает перегрузку опор и наклон рамы агрегата, причем исходное количество опор определено из равенства силы тяжести агрегата и суммарной допускаемой нагрузки на каждую опору.

Поставленная задача решается тем, что при соблюдении условия близости расстояния между соседними опорами к расстоянию между ними в случае их равномерного размещения, опоры размещаются под рамой агрегата вдоль каждой из ее сторон, параллельной оси агрегата, так, чтобы исключить наклон агрегата и сохранить несущую способность опор.

Способ размещения однотипных виброизолирующих опор, количество которых определяется несущей способностью одной опоры, под рамой технологического агрегата, симметричного относительно вертикальной плоскости, проходящей через технологическую ось агрегата, центр тяжести которого расположен в этой же плоскости на расстоянии от одного из краев рамы не равном половине ее длины, обеспечивает установку рамы агрегата параллельно горизонтальной плоскости и сохранение несущей способности виброизолирующих опор. При этом первую и последнюю опоры размещают от левого края рамы на заданных расстояниях, а промежуточные опоры, в количестве более одной, размещают вдоль каждой из сторон рамы, параллельной оси агрегата, на расстояниях от края рамы, ближайшего к центру тяжести агрегата, приближаясь к равномерному распределению, вычисляемых по формулам:

-2xi-1+4xi-2xi+1=0,

i = 2 n 1 x i = n l L 1 L 2 ,

где: xi - искомые значения координат точек размещения виброизолирующих опор вдоль каждой из сторон рамы агрегата, параллельной технологической оси; i=2, 3, …, (n-1) - номер соответствующей координаты; х1=L1 и xn=Ln - координаты первой и последней опор; n - общее количество опор, m - масса агрегата с рамой; g - ускорение свободного падения; L - длина стороны рамы агрегата вдоль его технологической оси; l - координата центра тяжести агрегата, отсчитываемая от края рамы, ближайшего к центру тяжести агрегата.

Перечень фигур

На фиг.1 представлена схема размещения виброизолирующих опор по заявляемому способу.

Осуществление изобретения

Для описания координат точек размещения опор и центра тяжести агрегата используется система ортогональных осей Ozxy (Фиг.1), начало отсчета которой совмещено с левым краем рамы, причем ось Oz вертикальна и совпадает с направлением вектора силы тяжести, а горизонтальная ось Ох совпадает с технологической осью. Под рамой 1 технологического агрегата 2, симметричного относительно вертикальной плоскости Ozx, устанавливается n-ое количество однотипных виброизолирующих опор 3, которое определяется из уравнения равновесия проекций всех сил на вертикальную ось Oz [1], причем

где m - масса агрегата с рамой, g - ускорение свободного падения, [Nном] - номинально допускаемая нагрузка на одну виброизолирующую опору заданного типоразмера; множитель 1/2 учитывает двухрядную установку виброизолирующих опор с каждой стороны рамы вдоль оси Ох.

В случае когда координата l центра тяжести агрегата (точка А на фиг.1) не равна половине длины рамы L/2, размещение виброизолирующих опор в точках с координатами xi, где i=1, 2, …, n - порядковый номер соответствующей координаты, причем, когда крайние опоры установлены в точках с координатами x1=L1; xn=L2, должно исключать наклон рамы и, тем самым, обеспечивать одинаковую статическую осадку zст, каждой виброизолирующей опоры, равную , где cz - коэффициент жесткости виброизолирующей опоры заданного типоразмера в направлении оси Oz.

Условие отсутствия наклона рамы выводится из уравнения моментов всех сил относительно оси Ох и имеет вид [1]:

i = 2 n 1 x i = n l L 1 L 2 . ( 2 )

Для получения однозначных значений координат xi (i=2, 3, …, n-1) точек размещения виброизолирующих опор вдоль каждой из сторон рамы используется условие близости расстояния (xi+1-xi) между соседними опорами к расстоянию между ними L 2 L 1 n 1 в случае их равномерного размещения вдоль каждой из ее сторон, которое имеет вид:

Уравнения, дополнительные к уравнению (2), однозначно определяющие координаты xi (i=2, 3, …, n-1), получаются из условия минимума функции (3):

-2xi-1+4xi-2xi+1=0, i = 2,  3 , n-1 .                      (4)

Пример расчета координат опор

Требуется разместить виброизолирующие опоры под рамой магистрального насосного агрегата, представляющего собой электродвигатель с центробежным насосом.

Дано: масса соответственно, электродвигателя m1=3000 кг, насоса m2=400 кг, рамы m3=1000 кг; длина рамы L=3,9 м; координаты крайних опор L1=0; L2=L=3,9 м; координаты центров масс соответственно, электродвигателя l1=1,3 м, насоса l2=3,3 м, рамы l3=1,95 м.

Вычисляем общую массу агрегата:

m=m1+m2+m3=3000+400+1000=4400 кг.

Вычисляем положение общего центра тяжести агрегата:

l = m 1 l 1 + m 2 l 2 + m 3 l 3 m = 3000 1,3 + 400 3,3 + 1000 1,95 4400 = 1,63  м .

Выбираем опоры с номинальной рабочей нагрузкой [Nном]=5,5-5,7 КН и коэффициентом жесткости cz=350 КН/м.

Общее количество опор, устанавливаемых с одной стороны рамы вдоль оси Ох, вычисляется по формуле (1) n = 4400 9,8 2 5500 4 .

Определяем статическую осадку каждой виброизолирующей опоры:

z с т = m g 2 с z n = 4400 9,8 2 350000 4 = 0,0154 м .

По формулам (2) и (4) вычисляем координаты опор:

x1=0; x2=0,445 м; х3=2,172 м; x4=3,9 м.

Проверка по нагрузкам N на каждую опору:

N=czzст=350000·0,0154=5390 Н<[Nном]=5500 H.

Для сравнения определим осадки и нагрузки на каждую опору при их равномерном размещении, когда x1=0; х2=1,3 м; х3=2,6 м; x4=3,9 м.

Осадки: z1=0,0199 м; z2=0,0169 м; z3=0,0138 м; z4=0,0108 м.

При равномерной расстановке опор наклон рамы составляет 0,13°. При этом нагрузки на первые две опоры: N1=czz1=350000·0,0199≈7000 Н;

N2=czz2=350000·0,0169≈5900 Н превышают допустимую нагрузку [Nном]=5500 Н.

Источники информации

1. Вибрации в технике. Том 6. Защита от вибрации и ударов. Под ред. К.В. Фролова. 1981. 456 с.

2. Справочник по динамике сооружений. Под ред. Б.Г.Коренева. И.М. Рабиновича. М., Стройиздат, 1972. 511 с.

3. О.А. Савинов. Современные конструкции фундаментов под машины и их расчет. Л., Стройиздат, 1964. 346 с.

Способ размещения однотипных виброизолирующих опор, количество которых определяется несущей способностью одной опоры, под рамой технологического агрегата, симметричного относительно вертикальной плоскости, проходящей через технологическую ось агрегата, центр тяжести которого расположен в этой же плоскости на расстоянии от одного из краев рамы, не равном половине ее длины, обеспечивающий установку рамы агрегата параллельно горизонтальной плоскости и сохранение несущей способности виброизолирующих опор, отличающийся тем, что первую и последнюю опоры размещают от левого края рамы на заданных расстояниях, а промежуточные опоры в количестве более одной размещают вдоль каждой из сторон рамы, параллельной оси агрегата, на расстояниях от края рамы, ближайшего к центру тяжести агрегата, приближаясь к равномерному распределению, вычисляемых по формулам:
-2xi-1+4xi-2xi+1=0,
i = 2 n 1 x i = n l L 1 L 2 ,
где xi - искомые значения координат точек размещения виброизолирующих опор вдоль каждой из сторон рамы агрегата, параллельной технологической оси; i=2, 3, …, (n-1) - номер соответствующей координаты; x1=L1 и xn=Ln - координаты первой и последней опор; n - общее количество опор; l - координата центра тяжести агрегата, отсчитываемая от края рамы, ближайшего к центру тяжести агрегата.



 

Похожие патенты:

Изобретение относится к устройствам для стабилизации вращения высокоскоростных вертикальных роторов сепараторов, центрифуг, накопителей энергии. .

Изобретение относится к средствам защиты от вибрации машин и приборов. .

Изобретение относится к машиностроению. .

Изобретение относится к машиностроению. .

Изобретение относится к виброзащитной технике. .

Изобретение относится к области строительства и машиностроения. .

Изобретение относится к машиностроению, в частности к металлообработке, и может быть использовано для гашения колебаний при токарной или шлифовальной операциях деталей типа тел вращения.

Изобретение относится к области машиностроения и может быть использовано в подвесках транспортных средств, оборудования, различных приборов и аппаратуры, а также в конструкциях кресел человека-оператора.

Изобретение относится к машиностроению. Устройство содержит упругие элементы и систему динамического гашения колебаний в виде упруго присоединенной массы. Объект защиты содержит настраиваемую систему динамического гашения колебаний. Система динамического гашения содержит пневмобаллон с клапаном, компрессор с трубопроводом и систему управления с датчиками. Пневмобаллон закреплен на опорной плите, перемещающейся в соединении типа «ласточкин хвост» при помощи самотормозящегося винтового устройства. Датчики установлены на объекте защиты и на динамическом гасителе колебаний и передают информацию о состоянии объекта защиты и динамического гасителя в блок обработки информации для принятия решения о включении компрессора и винтового устройства. Достигается динамическое гашение колебаний по двум степеням свободы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению. Система стабилизации включает установленный на раме технологический агрегат в виде насоса и электродвигателя. Между рамой технологического агрегата и неподвижным основанием со стороны подводящей трубы установлены компенсирующие гидроцилиндры. Расположенные над поршнем полости соединены между собой и с отводящей трубой. Расположенные под поршнем полости соединены между собой и с подводящей трубой. Достигается устранение сдвига рамы относительно установочных осей агрегата. 2 ил.

Изобретение относится к машиностроению. Виброизоляцию объектов с переменной массой осуществляют посредством упругих элементов, имеющих внутреннее демпфирование. Дополнительно в систему вводят демпфирование во всем диапазоне амлитудно-частотной характеристики. Каждый из упругих элементов выполняют в виде двух плоских упругих коаксиально расположенных колец, внешнего и внутреннего, расположенных в параллельных горизонтальных плоскостях. Кольца жестко соединены между собой посредством двух упругих элементов, радиально расположенных в горизонтальной плоскости, и под углом - в вертикальной плоскости. Полости, образованные упругими кольцами, заполняют упруго-демпфирующим сетчатым элементом, выполненным армированным из сетчатого каркаса, залитого эластомером, например полиуретаном. Достигается повышение эффективности виброизоляции. 4 ил.

Изобретение относится к машиностроению. Средство поглощения вибрации содержит корпус произвольной формы, например цилиндрической, герметично закрытый упругой мембраной. В корпусе размещены соединенные между собой пневмоэлементы, выполненные в виде замкнутых эластичных полостей. Полости пневмоэлементов заполнены сжатым воздухом и связаны между собой демпфирующими элементами. К одному из пневмоэлементов подсоединен источник сжатого воздуха, а к другому - клапан для регулирования давления в полостях пневмоэлементов. Достигается повышение эффективности виброизоляции. 2 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению. Устройство для динамического гашения колебаний состоит из рычагов и упругих элементов. Дополнительные рычаги одним концом шарнирно соединены с центром объекта защиты. Другим концом дополнительные рычаги соединены с разных сторон с дополнительным упругим элементом. Жесткость дополнительного упругого элемента изменяется в зависимости от внешних вибраций. Достигается возможность гашения колебаний с различными частотами, а также повышение чувствительности устройства. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к машиностроению. Способ уменьшения естественных вибраций детали заключается в следующем. Определяются вибрационные характеристики детали. В местах с амплитудами вибраций, превышающими предварительно заданное предельное значение, локально крепится демпферный элемент. Демпферный элемент представляет собой многослойный клейкий элемент с несущим слоем (1.1) и самоклеющейся демпфирующей массой (1.2) и применяется для осуществления указанного выше способа. Достигается уменьшение естественных вибраций деталей. 2 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к машиностроению. Вибродемпфирующий механизм содержит множество утяжелительных элементов, расположенных в цилиндрическом полом участке. Участок образован внутри стержневой секции. Элементы разделены радиально друг от друга в окружном направлении вокруг оси полого участка. Поджимающий элемент для поджатия утяжелительных элементов к оси. Разделительные поверхности смежных утяжелительных элементов приводятся в поверхностный контакт друг с другом. Достигается увеличение поглощения энергии вибрации. 2 з.п. ф-лы, 5 ил.

Изобретение касается способа динамической амортизации вала для передачи мощности, в частности сверхкритического вала, а также амортизирующего устройства для осуществления этого способа. Система динамического амортизатора на валу (10) мощности содержит входной (12) и выходной (14) подшипники качения для передачи мощности (12r, 14r), установленные в двух корпусах (32, 34) и охватывающие зубья (15) зубчатой передачи для уменьшения скорости. Выходной подшипник (14) спарен, по меньшей мере, с дополнительным подшипником качения (20, 20r), сочлененным с компрессионным амортизатором (26) для образования осевого выходного амортизатора (20, 26), эксцентричного относительно входного подшипника (12) напротив зубчатого зацепления зубьев (15). Два выходных подшипника (12, 14) могут быть соединены упругим сепаратором (24), установленным на общем корпусе (34). Система используется в валах передач и мощности, в частности в сверхкритических валах в турбомашинах. Технический результат: создание системы, позволяющей использовать достаточную амортизацию на валу мощности при сохранении твердости на уровне переднего подшипника, чтобы не нарушить зацепление зубьев зубчатой передачи мощности ведущего зубчатого колеса. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области машиностроения. Способ включает создание между смежными телами системы последовательно соединенных друг с другом посредством упругих элементов тел, одно из которых упруго связано с опорой. Создают силы, равные по величине и направлению демпфирующей или возбуждающей силе, прикладываемой между выбранным для демпфирования или возбуждения колебаний телом и смежным с ним со стороны опоры телом. Дополнительные силы создают между всеми смежными телами, начиная от ближайшего тела к выбранному со стороны опоры и кончая ближайшим к опоре телом. Демпфирующие, возбуждающие и дополнительные силы создают путем деформирования упругих элементов или электромагнитным воздействием. Деформирование упругих элементов осуществляют при помощи установленных последовательно с упругими элементами гидроцилиндров. Электромагнитное воздействие создают при помощи установленных параллельно упругим элементам соленоидов или линейных электродвигателей. Достигается эффективное воздействие на колебания многомассовой динамической системы при демпфировании или возбуждении колебаний одного или нескольких выбранных тел системы. 2 з.п. ф-лы, 11 ил.

Изобретение относится к области машиностроения. Опора содержит корпус, подшипник и демпфер. Подшипник размещен в корпусе. Демпфер расположен между корпусом и подшипником. Датчик виброперемещений установлен в демпфере. Датчик соединен через аналогово-цифровой преобразователь, микроконтроллер и цифроаналоговый преобразователь с исполнительным пьезомеханизмом. Пьезомеханизм связан с поджимным кольцом. Кольцо установлено с возможностью включения и выключения демпфера из работы. Достигается увеличение надежности и долговечности опоры ротора. 2 ил.
Наверх