Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhxcuy

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из RhxCuy согласно изобретению заключается в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, при этом накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления меди из интерметаллического соединения RhxCuy при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 0,8 В на фоновом электролите 1 М HCl, а концентрацию ионов родия определяют по высоте анодного пика меди на вольтамперной кривой в диапазоне потенциалов от 0,1 до 0,2 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает возможность снизить предел и нижнюю границу определяемых содержаний родия (III) по пику электроокисления меди из интерметаллического соединения RhxCuy. 2 ил., 2 пр.

 

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из RhxCuy.

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ).

Известен метод полярографического определения родия на платиновом электроде. При определении используется платиновая проволока на фоне 0,1 N NaNO3. Волна наблюдается при потенциале электролиза 0,2 В относительно насыщенного каломельного электрода. Определяемая концентрация родия составила 4,5×10-3 г/л [Бардин М.Б., Ляликов Ю.С., Темянко В.С. «Полярографическое определение некоторых благородных металлов с применением платиновых электродов» // Сб. «Анализ благородных металлов». - 1959. - М.: АН СССР, - С.80-87]. Недостатком метода является низкая чувствительность и использование дорогостоящей платиновой проволоки.

Известен метод определения родия инверсионной вольтамперометрии с использованием стеклоуглеродного электрода в растворе 1 М HCl с добавлением соли Hg(I). Электродом сравнения служит насыщенный каломельный электрод. В исследованиях концентрация родия составляла 2×10-5 г/л. Потенциал электролиза - 0,5 В, время электролиза составляет 6 мин [Попов Г.Н., Пнев В.В., Захаров М.С. «Определение родия методом инверсионной вольтамперометрии» // Журнал аналитической химии. - 1972. - Т.27. - Вып.12. - С.2456-2458]. Недостатком метода является низкая чувствительность и использование токсичных соединений ртути.

Известен метод определения родия в водном растворе методом пленочной полярографии на твердых электродах в 0,1 М HCl с добавлением Hg(NO3)2. Определяемая концентрация родия составила 1,03×10-4 г/л [Чемерис М.С., Колпакова Н.А., Стромберг А.Г., Васильев Ю.Б. «Механизм разряда и ионизации ионов родия и иридия на графитовом электроде в присутствии ионов ртути (II)» // Электрохимия - 1976. - Т.12. - №.5. - С.717-722]. Недостатком метода является низкая чувствительность и использование солей токсичной ртути.

Известен метод определения родия вольтамперометрическим методом [Шифрис Б.С., Колпакова Н.А. «Совместное определение родия и иридия методом инверсионной вольтамперометрии в медно-никелевых концентратах» // Журнал аналитической химии. - 1982. - Т.37. - Вып.12. - С.2217-2220] (прототип). Определение родия проводят по следующей методике. В качестве фонового электролита используют раствор 0,5 М HCl. Электроосаждение проводилось при потенциале электролиза Еэ=-0,6 В относительно насыщенного каломельного электрода, время накопления tнак составляет от 1 до 25 мин. В качестве модификатора поверхности электрода используется соль ртути (II). Недостатком метода является использование токсичных солей ртути и низкая чувствительность 1 мг/л.

В работе была поставлена задача снизить предел и нижнюю границу определяемых содержаний родия (III) по пику электроокисления меди из интерметаллического соединения RhxCuy, полученном после осаждения Rh-Cu на сажевом электроде методом ИВ.

Поставленная задача достигается тем, что родий (III) переводят в растворе в хлоридный комплекс и проводят вольтамперометрическое определение. Накопление ионов родия на сажевом электроде (СЭ) в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 60-120 секунд с последующей регистрацией анодных пиков селективного электроокисления меди из интерметаллического соединения RhxCuy при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 0,8 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика меди на вольтамперной кривой в диапазоне потенциалов от 0,1 до 0,2 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Новым в способе является то, что для получения полезного сигнала, зависящего от концентрации родия (III), используется процесс электроокисления меди из ИМС RhxCuy.

В предлагаемом способе впервые установлена способность осадка родия с медью окисляться с поверхности СЭ. В качестве индикаторного применяли СЭ модифицированный медью (в прототипе применяли графитовый электрод). Использование таких электродов обусловлено высокой химической и электрохимической устойчивостью графита, широкой областью рабочих потенциалов, а также простотой механического обновления поверхности и требованиям техники безопасности. Нижняя граница определяемых содержаний по данному методу составила 0,1 мг/дм3 (в прототипе 1 мг/дм3).

Результаты определения родия из ИМС на СЭ модифицированным медью приведены в: таблице 1 результат определения родия (III) в фоновом электролите (1 М HCl) и таблице 2 результат определения родия (III) в водопроводной воде. Как видно из таблиц, максимальная погрешность измерений составляет порядка 15%. Расчет определяемых концентраций родия проводится по методу «Введено-найдено».

Проводят накопление ионов родия (III) на поверхность сажевого электрода в перемешиваемом растворе в присутствии ионов меди (II) в течение 60-120 с при потенциале электролиза минус 0,8 В. При потенциале минус 0,8 В анодный пик достигает своего предельного значения. Дальнейшее увеличение потенциала электролиза вызывает пассивацию поверхности электрода водородом и количество меди электровосстановленной на поверхности СЭ снижается, что приводит к искажению формы или уменьшению пика ИМС меди с родием, поэтому выбирался потенциал электролиза минус 0,8 В. Измерения проводились на фоне 1 М HCl, с последующей регистрацией анодных пиков в накопительном режиме и съемки вольтамперограмм при скорости развертки 60-100 мВ/с. Концентрацию ионов родия (III) определяют по высоте анодного пика меди в диапазоне потенциалов от 0,1 до 0,2 В относительно насыщенного хлоридсеребряного электрода (нас. х.с.э). На фиг.1 представлены вольтамперные кривые электроокисления осадка RhxCuy с поверхности СЭ модифицированного медью. Кривая 1 - фон 1М HCl, где CCu(II) равна 0,01 мг/дм3, кривая 2 - CRh(III) равна 0,02 мг/дм3, кривая 3 - CRh(III) равна 0,04 мг/дм3.

Таким образом, установленные условия впервые позволили количественно определять содержание ионов родия (III) на основе реакции селективного электроокисления меди из ИМС RhxCuy, полученного на стадии предварительного электроконцентрирования в интервале 0,1-10 мг/дм3 (фиг.2).

Предлагаемый вольтамперометрический способ позволил существенно улучшить метрологические характеристики анализа родия (III); повысить чувствительность определения (0,1·мг/дм3), что на порядок ниже по сравнению с прототипом.

Примеры конкретного выполнения

Пример 1. (фиг.1). Измерения были проведены на искусственных смесях. 10 мл фонового электролита (1М HCl) помещают в кварцевый стаканчик. Не прекращая перемешивания, проводят электролиз раствора, при Еэ=-0,8 В и при τэ=100 сек, снимают вольтамперную кривую электроокисления при скорости развертки 80 мВ/с. Затем добавляют аттестованный раствор Cu (II) 0,01 мл из 10 мг/дм3 и проводят электрохимическое концентрирование осадка при аналогичных условиях. Отсутствие пиков на вольтамперной кривой в интервале от 0,1 до плюс 0,2 В свидетельствует о чистоте фона. Вносят добавку стандартного образца родия 0,02 мл из 0,1 мг/дм3, регистрируют аналитический сигнал родия при потенциале накопления -0,8 В. Затем вносят еще одну добавку стандартного образца родия 0,02 мл из 0,1 мг/дм3 и регистрируют аналитический сигнал родия при аналогичных условиях. По разнице токов пиков меди вычисляют концентрацию родия в растворе. Пик тока меди регистрируют в диапазоне потенциалов от 0,1 до 0,2 В (нас. х.с.э.).

Пример 2. Измерения родия были проведены в водопроводной воде (таблица 2). 100 мл раствора, помещают в коническую колбу и выпаривают до минимального объема. Количественно переносят раствор в кварцевый стакан объемом 20 мл и добавляют 37% HCl, чтобы в 10 мл водного раствора концентрация по соляной кислоте составила 1М, для перевода солей родия в хлориды.

Снимают фоновую кривую: 10 мл фонового электролита (1М HCl) помещают в кварцевый стаканчик, добавляют аттестованный раствор Cu (II) 0,01 мл из 10 мг/дм3, не прекращая перемешивания, проводят электролиз раствора, при Еэ=-0,8 В и при τэ=100 сек, снимают вольтамперную кривую электроокисления при скорости развертки 80 мВ/с. Отсутствие пиков на вольтамперной кривой в интервале от 0,1 до плюс 0,2 В свидетельствует о чистоте фона.

Добавляют аликвотную часть 1-2 мл полученного раствора и снимают вольтамперную кривую электроокисления при потенциале накопления -0,8 В. Затем вносят добавку стандартного образца родия 0,02 мл из 0,1 мг/дм3 и регистрируют аналитический сигнал при потенциале накопления -0,8 В. По разнице токов пиков меди вычисляют концентрацию родия в растворе. Пик тока меди регистрируют в диапазоне потенциалов от 0,1 до 0,2 В (нас. х.с.э.).

Таким образом, впервые установлена способность количественного анализа родия по пикам селективного электроокисления меди из интерметаллического соединения RhxCuy.

Способ может быть применен в любой химической лаборатории, имеющей компьютеризированные анализаторы типа СТА и ТА.

Предложенный способ может быть использован для определения родия в водных растворах.

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из RhxCuy, заключающийся в том, что родий (III) в растворе переводят в хлоридный комплекс и проводят вольтамперометрическое определение, отличающийся тем, что накопление ионов родия на сажевом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 60-120 с с последующей регистрацией анодных пиков селективного электроокисления меди из интерметаллического соединения RhxCuy при скорости развертки потенциала 60-100 мВ/с при потенциалах электролиза минус 0,8 В на фоновом электролите 1 М HCl, концентрацию ионов родия определяют по высоте анодного пика меди на вольтамперной кривой в диапазоне потенциалов от 0,1 до 0,2 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.



 

Похожие патенты:

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtxCuy методом инверсионной вольтамперометрии заключается в том, что платину (IV или II) переводят из пробы в раствор, проводят накопление платины на сажевом или углеситалловом электроде в перемешиваемом растворе в присутствии ионов меди (II) в течение 50-100 с при потенциалах электролиза - 0,62 B с последующей регистрацией пиков селективного электроокисления меди из интерметаллического соединения PtxCuy при скорости развертки потенциала 50-150 мВ/с на фоновом электролите 0,1-1 М HCl, концентрацию ионов платины определяют по высоте пика меди на вольтамперной кривой в диапазоне потенциалов от -0,3 до -0,1 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения таллия в водных растворах методом хронопотенциометрии заключается том, что таллий (I) переводят в растворе в гидроокисное соединение и проводят хронопотенциометрическое определение, при этом проводят определение ионов таллия (I) на импрегнированном графитовом электроде в перемешиваемом растворе при контролируемом потенциале плюс 0,8 B и регистрации отклика на фоновом электролите 0,1М NaOH относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Изобретение относится к аналитической химии и может быть использовано в различных геологических изысканиях в случае анализа вод различного происхождения (родники, геотермальные источники, смывы хвостов обогащения), а также технологических сливов концентраций ионов таллия методом инверсионной вольтамперометрии (ИВ).

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ).

Изобретение относится к аналитической химии и может быть использовано в гидрогеологии, изысканиях в случае анализа вод различного происхождения. .

Изобретение относится к аналитической химии, а именно к анализу объектов природного и техногенного происхождения методом инверсионной вольтамперометрии для определения ионов осмия на графитовом электроде, модифицированном золотом.

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа. .

Изобретение относится к аналитической химии, а именно к анализу объектов природного и техногенного происхождения методом инверсионной вольтамперометрии для определения ионов осмия, и может быть использовано для его определения в присутствии растворенного кислорода в объектах природного и техногенного происхождения.
Изобретение относится к аналитической химии платиновых металлов. .

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов, и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд и рудных концентратов методом инверсионной вольтамперометрии (ИВ).

Изобретение относится к электроаналитической химии. В способе определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде согласно изобретению проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале электронакопления -1,0 В с последующей регистрацией обратных максимумов электроокисления глутатиона на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, концентрацию глутатиона определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Техническим результатом изобретения является разработка более чувствительного способа определения глутатиона в модельных водных растворах методом циклической вольтамперометрии. 2 пр., 2 табл., 2 ил.

Изобретение направлено на определение рения в породах и рудах кинетическим инверсионно-вольтамперометрическим методом и может быть использовано в различных производственных отраслях для определения содержания в растворах концентраций различных ионов металлов. Способ согласно изобретению включает определение рения на фоне 0,1 М H2SO4 с добавлением 0,03 мл 30% H2O2 методом кинетической инверсионной вольтамперометрии, при котором производится электроконцентрирование рения на ртутно-пленочном электроде с последующей регистрацией катодных пиков, съемки вольтамперограмм при скорости развертки потенциала 100 мВ/с, при этом концентрацию определяют по высоте катодного пика в диапазоне потенциалов от 0,0 до 0,20 В методом добавок аттестованных смесей. Изобретение позволяет исключить использование сильно токсичных материалов при определении ионов рения (VII), а также обеспечивает повышенную точность, разрешающую способность и экспрессность определения. 1 пр., 2 табл., 2 ил.

Изобретение относится к области аналитической химии. Способ вольтамперометрического определения наночастиц Fe2O3 на угольно-пастовом электроде согласно изобретению включает электрохимическое превращение наночастиц Fe2O3 на угольно-пастовом электроде в фоновом электролите - 0,02 моль/дм3 раствор трилон Б (рН 3 - 4) при потенциале электролиза (-0,12±0,01)В, относительно хлоридсеребряного электрода, с последующей регистрацией анодного пика в постояннотоковом режиме регистрации вольтамперограмм при скорости развертки потенциала 80 - 90 мВ/с, при этом концентрацию Fe2O3 определяют по высоте анодного пика в диапазоне потенциалов (-0,12±0,01)В. Изобретение обеспечивает возможность получения аналитического сигнала электропревращений наночастиц Fe2O3, позволяющего в свою очередь проводить идентификацию и количественное определение наночастиц Fe2O3 на угольно-пастовом электроде методом вольтамперометрии. 3 ил., 1 пр., 1 табл.

Изобретение относится к области количественного определения аскорбата кальция в БАД с целью контроля качества выпускаемых на рынок биологически активных добавок. Способ определения аскорбата кальция в биологически активных добавках включает стадию пробоподготовки и вольтамперометрическое определение. Согласно изобретению проводят анодную вольтамперометрию на индикаторном стеклоуглеродном электроде при потенциале +0,32 В относительно насыщенного хлорид-серебряного электрода на фоне хлористого калия 0,1 моль/дм3 при постояннотоковой форме развертки потенциала со скоростью 30 мВ/с с областью определяемых содержаний аскорбата кальция от 1,5·10-5 до 6,7·10-4 моль/дм3. Изобретение обеспечивает возможность эффективного чувствительного и экспрессностного определения аскорбата кальция в БАД методом вольтамперометрии. 1 табл., 2 ил., 1 пр.

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития. Способ определения аскорбата лития в лекарственной форме включает стадию пробоподготовки и вольтамперометическое определение. Согласно изобретению проводят анодную вольтамперометрию на индикаторном стеклоуглеродном электроде при потенциале +0,24 В относительно насыщенного хлорид-серебряного электрода на фоне хлористого калия 0,1 моль/дм3 при постояннотоковой форме развертки потенциала со скоростью 30 мВ/с с областью определяемых содержаний аскорбата лития от 2,1·10-4 до 17·10-6 моль/дм3. Изобретение обеспечивает способ эффективного чувствительного и экспрессностного определения аскорбата лития в лекарственной форме методом вольтамперометрии. 1 пр., 1 табл., 2 ил.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого изобретения является определение концентрации молочной кислоты методом вольтамперометрии. Молочную кислоту переводят из пробы в раствор и проводят вольтамперометрическое накопление молочной кислоты в перемешиваемом растворе при барботировании инертным газом в течение 30 с при потенциале электронакопления 1,2÷1,4 В, относительно насыщенного хлоридсеребряного электрода на фоновом электролите - 0,1 М Na2HPO4 с последующей регистрацией катодных пиков в дифференциальном режиме съемки вольтамперограмм при скорости развертки потенциала 30÷40 мВ/с, концентрацию молочной кислоты определяют по высоте пика в диапазоне потенциалов 0,25÷0,40 В методом добавок аттестованных смесей. Предложенный способ прост, не требует большого количества реактивов и трудозатрат. 2 пр., 1 табл.

Изобретение относится к области аналитической химии. Способ определения молибдена включает в себя определение комплексного соединения молибдена с диэтилдитиокарбаминатом катодной вольтамперометрией. Согласно изобретению в универсальный буферный раствор вносят 0,02 мл 1·10-4 М диэтилдитиокарбамината натрия, затем вводят пробу, содержащую молибден, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,4 В в течение 180 с на стеклоуглеродный электрод и регистрируют ток пика молибдена при скорости развертки потенциала 100 мВ/с. Сигнал молибдена регистрируют и оценивают методом добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода. Изобретение позволяет снизить нижнюю границу определяемых содержаний молибдена на 2-3 порядка. 2 ил., 1 табл.

Изобретение относится к области аналитической химии и может быть использовано для определения микроконцентраций ртути в водных растворах. Способ определения ртути катодно-анодной вольтамперометрией с использованием электрода и фоновых растворов включает в себя следующую последовательность действий. Вначале выдерживают стеклоуглеродный электрод в фоновом растворе при потенциале от -0,4 до -0,7 В в течение 120 с, затем переключают на потенциал от +0.4 до +0,5 В и выдерживают в течение 10 с с последующей регистрацией вольтамперограммы с линейной разверткой потенциала от 0,4 В при 100 мВ/с и пиком восстановления ртути, наблюдаемым при потенциале в пределах (-0,05-0,05) В и линейно зависящим от концентрации ртути в водных растворах. Сигнал ртути регистрируют и оценивают методом добавок аттестованных растворов относительно насыщенного хлоридсеребряного электрода. Изобретение обеспечивает возможность определения малого количества ртути в водных растворах методом катодно-анодной вольтамперометрии. 2 табл.

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин B1 переводят из пробы в раствор и проводят вольтамперометрическое накопление микотоксина в перемешиваемом растворе в течение 30 с при потенциале электролиза (0,0±0,05)B относительно насыщенного хлоридсеребряного электрода на фоне хлората аммония (NH4ClO4), pH 2,0÷3,0 с последующей регистрацией анодных пиков при скорости развертки 30 мВ/с, а концентрацию афлатоксина B1 определяли по высоте пика в диапазоне En=(0,625±0,045)В методом добавок аттестованных смесей. Изобретение обеспечивает возможность применения электродов из нетоксичного материала и определения афлатоксина B1 методом анодной инверсионной вольтамперометрии в присутствии растворенного кислорода без дополнительного введения в фоновый электролит восстановителя, а также расширение диапазона определяемых концентраций и разработки экспресс-технологии оценки афлатоксина B1 в течение 30-40 мин. 2 табл., 2 пр., 1 ил.
Изобретение относится к электроаналитической химии и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения фенола в воде и водных объектах с помощью трехэлектродной системы, включающий предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, проведение измерений концентрации фенола в воде, включающих электрохимическое осаждение фенола на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление фенола при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика фенола на вольтамперной кривой и определение концентрации фенола по величине пика фенола, характеризующийся тем, что предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,2 М сульфата аммония с добавлением ацетона в соотношении объемных частей 19:1, соответственно. Способ, в котором в качестве электродов измерительной системы: индикаторного, сравнения и вспомогательного электродов используют идентичные стеклоуглеродные стержневые электроды, и в котором при предварительной модифицирующей электрохимической обработке индикаторного электрода проводят также обработку поверхности электрода сравнения и вспомогательного электрода в водном растворе 0,1 М гидроксида калия с добавлением ацетона в соотношении объемных частей 19:1, соответственно. 2 з.п. ф-лы.
Наверх