Зеркально-линзовый объектив

Зеркально-линзовый объектив состоит по ходу луча из плосковыпуклой линзы, обращенной выпуклостью к плоскости предметов, на центральную часть плоской поверхности которой нанесено зеркальное покрытие, зеркала Манжена, обращенного вогнутостью к плоскости предметов, в центре которого выполнено отверстие, и положительного склеенного мениска, обращенного выпуклостью к плоскости предметов. Плосковыпуклая линза и зеркало Манжена выполнены из одного материала, средняя дисперсия которого находится в интервале 63≥υD≥66. Расстояние от первой линзы до склеенного мениска находится в пределах от 0,35×f′ до 0,45×f′, где: υD - средняя дисперсия (число Аббе) для линии D спектра, а f′ - фокусное расстояние объектива. Технический результат - повышение качества изображения путем снижения хроматизма положения, исправления кривизны изображения и уменьшение габаритов прибора, в котором используется данный объектив. 4 ил., 1 табл.

 

Предлагаемое изобретение относится к оптическому приборостроению и может быть использовано в качестве объектива различных приборов, например приборов ночного видения.

Известны зеркально-линзовые объективы RU №2047201, МПК G02B 17/08, опубл. 27.10.95 г., RU №2012907, МПК G02B 17/08, опубл. 03.01.91 г., RU №2093869, МПК G02B 17/08, опубл. 20.10.97 г., RU №2261461, МПК G02B 17/08, опубл. 27.09.2005 г., US №4398809, МПК G02B 17/08, опубл. 06.06.81 г., US №4487483, МПК G02B 17/08, опубл. 09.12.82 г. Но данные объективы при работе в широком спектральном диапазоне от 436 нм до 920 нм имеют значительные хроматические аберрации, что не позволяет получить изображение высокого качества в приборах с электронно-оптическими преобразователями 3-го поколения с фотокатодами типа GaAs и GaAsP (Бегучев В.П., Чапкевич А.Л., Филачев А.М. «Электронно-оптические преобразователи. Состояние и тенденции развития», журнал «Прикладная физика» №2, Москва, 1999 г.)

Наиболее близким аналогом к заявляемому техническому решению является катодиоптрическая система (патент DE №2929678, МПК G02B 17/08, опубл. 05.02.1981 г.). Данный объектив состоит по ходу лучей из фронтальной собирающей линзы, выполненной в виде плосковыпуклой линзы, обращенной выпуклостью к плоскости предмета, зеркала Манжена, обращенного вогнутостью к плоскости предметов, и линзового компенсатора, причем центральная часть плосковыпуклой линзы имеет зеркальное покрытие, нанесенное на поверхность, обращенную к зеркалу Манжена. Зеркало Манжена выполнено с отверстием в центральной части, а линзовый компенстор выполнен в виде положительного склеенного мениска, обращенного выпуклостью к плоскости предмета. В данном объективе значительный хроматизм положения в спектральном диапазоне от 436 нм до 920 нм, равный 0,00038хf′ неисправленная кривизна изображения на поле 3,5°, равная 0,00021×f′ и большое расстояние от первой поверхности объектива до фокальной плоскости, равное 0,67×f′, что значительно увеличивает габариты прибора, в котором используется данный объектив.

Задача изобретения - создание зеркально-линзового объектива с улучшенными эксплуатационными характеристиками.

Технический результат - повышение качества изображения путем снижения хроматизма положения и исправления кривизны изображения и снижение габаритов прибора, в котором используется данный объектив.

Это достигается тем, что в зеркально-линзовом объективе, состоящем по ходу луча из плосковыпуклой линзы, обращенной выпуклостью к плоскости предметов, на центральную часть плоской поверхности которой нанесено зеркальное покрытие, зеркала Манжена, обращенного вогнутостью к плоскости предметов, в центре которого выполнено отверстие, и положительного склеенного мениска, обращенного выпуклостью к плоскости предметов, в отличие от известного плосковыпуклая линза и зеркало Манжена выполнены из одного материала, средняя дисперсия которого находится в интервале 63≥υD≥66, а расстояние от первой линзы до склеенного мениска находится в пределах от 0,35×f′ до 0,45×f′, где: υD - средняя дисперсия (число Аббе) для линии-D спектра, а f′ - фокусное расстояние объектива.

На фиг.1 представлена оптическая схема предложенного объектива, на фиг.2 - функция передачи модуляции, на фиг.3 - хроматизм положения, на фиг.4 - кривизна поля и дисторсия.

Зеркально-линзовый объектив (фиг.1) состоит по ходу лучей из плосковыпуклой линзы 1, обращенной выпуклостью к плоскости предметов, зеркала Манжена 2 с отверстием в центре, обращенного вогнутостью к плоскости предметов, причем выпуклая поверхность зеркала Манжена 2 имеет зеркальное внутреннее покрытие, и положительного склеенного мениска 3, обращенного выпуклостью к плоскости предметов. Кроме того, на плоскую поверхность центральной части плосковыпуклой линзы 1 нанесено зеркальное покрытие 4. Мениск 3 расположен между линзой 1 и зеркалом Манжена 2.

Зеркально-линзовый объектив работает следующим образом: световой поток, исходящий из плоскости предметов, попадает на периферийную часть плосковыпуклой линзы 1, преломляется, попадает на зеркало Манжена 2, затем на зеркальное покрытие 4 плосковыпуклой линзы 1 и через мениск 3 образует изображение предмета в фокальной плоскости объектива.

Таблица 1
Радиус, мм Толщина, мм Марка материала nDD Световой диаметр, мм
R1=394,613 104
d1=9,6 K8 1,51637/64,03
R2=∞ 104
d2=88 -
R3=-225,291 95
d3=8 K8 1,51637/64,03
R4=-348,116 95
d4=-8 Зеркало
R5=-225,291 95
d5=-88 -
R6=∞ 46
d6=59,18 Зеркало
R7=50,456 d7=9 ТК21 1,65691/51,15 30
R8=-50,456 d8=3,2 Ф1 1,61294/36,94 30
R9=190.418 30

В соответствии с предложенным решением рассчитан конкретный объектив, конструктивные параметры которого приведены в таблице 1.

Характеристики рассчитанного зеркально-линзового объектива:

фокусное расстояние f′=160 мм

диаметр входного зрачка - 100 мм

угол поля зрения 2ω=7°.

На фигурах 2, 3, 4 приведены аберрации рассчитанного зеркально-линзового объектива с учетом входного окна электронно-оптического преобразователя толщиной 5,6 мм.

Предлагаемый зеркально-линзовый объектив имеет высокое качество изображения, хроматизм положения в спектральном диапазоне от 436 нм до 920 нм, равный 0,00027×f′, кривизну изображения на поле 3,5°, равную 0,00005×f′ и расстояние от первой поверхности объектива до фокальной плоскости, равное 0,57×f′.

Таким образом, достигнут технический результат - создан зеркально-линзовый объектив с уменьшенным хроматизмом положения в спектральном диапазоне от 436 нм до 920 нм, уменьшенной кривизной изображения на поле 3,5° и уменьшенным расстоянием от первой поверхности объектива до фокальной плоскости, что позволяет значительно уменьшить габариты прибора, в котором используется данный объектив.

Зеркально-линзовый объектив, состоящий по ходу луча из плосковыпуклой линзы, обращенной выпуклостью к плоскости предметов, на центральную часть плоской поверхности которой нанесено зеркальное покрытие, зеркала Манжена, обращенного вогнутостью к плоскости предметов, в центре которого выполнено отверстие, и положительного склеенного мениска, обращенного выпуклостью к плоскости предметов, отличающийся тем, что плосковыпуклая линза и зеркало Манжена выполнены из одного материала, средняя дисперсия которого находится в интервале 63≥υD≥66, а расстояние от первой линзы до склеенного мениска находится в пределах от 0,35×f′ до 0,45×f′, где: υD - средняя дисперсия (число Аббе) для линии D спектра, а f′ - фокусное расстояние объектива.



 

Похожие патенты:

Предлагаемое изобретение относится к оптическому приборостроению, а именно к объективам коллиматора, работающим в среднем ИК-диапазоне длин волн (для спектрального диапазона от 3 до 5 мкм), и может быть использовано в тепловизионных коллиматорах или в приемных тепловизионных объективах (в обратном ходе лучей) в различных приборах.

Способ может быть использован для наблюдения Земли из космоса с использованием матричной телевизионной системы для измерения ориентации визирной оси телекамеры по изображению горизонта Земли с помощью построения местной вертикали.

Объектив может быть использован для визуального наблюдения, фото и видео регистрации. Объектив содержит расположенные по ходу лучей четыре компонента: главное зеркало, вторичное зеркало с внутренним отражением, расположенный вблизи плоскости промежуточного изображения третий компонент и оборачивающую систему, состоящую из двух линз, одна из которых - отрицательный мениск, обращенный вогнутой стороной ко второй двояковыпуклой линзе.

Изобретение относится к оптическому приборостроению, в частности, может быть использовано в космических телескопах. .

Изобретение относится к области оптической техники и предназначено для визуальных наблюдений и астрофотографических работ с ПЗС-матрицами. .

Изобретение относится к области оптического приборостроения и позволяет улучшить технические характеристики приемной оптической системы панорамного оптико-электронного прибора.

Система может быть использована при исследовании свойств газовых сред, в том числе, с химическими реакциями, в малых объемах, методами спектроскопии рассеяния или поглощения света. Система включает способные перемещаться в направлении к точке фокуса сборки оптических элементов, каждая из которых содержит два плоских поворотных зеркала в юстировочной головке, обеспечивающей независимый наклон каждого зеркала в двух направлениях, и линзу между ними, установленную на двойном фокусном расстоянии по ходу пучка от измерительного объема. Сборки обеспечивают фокусировку отраженного пучка в той же точке. Одна сборка, содержащая линзу и плоское зеркало или только вогнутое зеркало, направляет лазерный пучок так, что он проходит весь свой путь в обратном направлении, при этом число проходов равно от 4 и более в зависимости от числа установленных сборок оптических элементов. Технический результат - повышение интенсивности полезного сигнала и уменьшение оптических искажений лазерного пучка за счет многократного прохождения лазерного пучка через измерительный объем. 2 н.п. ф-лы, 2 ил.

Оптический элемент (2) для коллимирования света из источника (3) света выполнен из единого куска материала и содержит: впускную сторону (5), выполненную с возможностью приема света, выпускную сторону (6), выполненную с возможностью обеспечения излучения коллимированного света, и тело элемента, продолжающееся от впускной стороны (5) до выпускной стороны (6). Тело элемента имеет поперечное сечение, перпендикулярное оптической оси (z), образованное посредством осей x и y, перпендикулярных друг другу. Выпускная сторона (6) имеет овальную форму в поперечном сечении. Оптический элемент (2) имеет радиус y кривизны вдоль оси y больше, чем радиус x кривизны вдоль оси x, благодаря чему распределение коллимированного света, излучаемого из выпускной стороны (6), имеет поперечное сечение овальной формы (CE), перпендикулярное оптической оси (z). Коэффициент преломления тела элемента выше, чем коэффициент преломления окружающей его среды, и радиусы x и y кривизны выбираются таким образом, чтобы соответствовать условию полного внутреннего отражения. Технический результат - обеспечение асимметричного распределения света с увеличенной разностью в ширине пучка в двух перпендикулярных направлениях визирования. 2 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к формирующей изображение оптической системе, датчику для проверки ценных документов с такой оптической системой и к способу отображения точки предмета. Оптическая система имеет плоский анизотропный ретроотражающий участок, который зеркально отражает компоненты излучения в первой плоскости падения, но ретроотражает компоненты излучения во второй плоскости падения. Первый отображающий участок формирует на ретроотражающем участке растянутое в виде линии во второй плоскости падения промежуточное изображение точки предмета. Второй отображающий участок отображает растянутое в виде линии промежуточное изображение в точку изображения. Технический результат - компактность конструкции. 3 н. и 13 з.п. ф-лы, 7 ил.

Объектив может использоваться для работы в видимом и ближнем ИК-диапазоне длин волн. Объектив коллиматора содержит первичное зеркало, на первую по ходу лучей поверхность которого нанесено зеркальное покрытие, вторичное зеркало с зеркальным покрытием на кольцевой периферийной части, причем отражающие поверхности зеркал обращены друг к другу, двухлинзовый оптический элемент, установленный за первичным зеркалом со стороны пространства изображений и состоящий по ходу лучей из одиночной отрицательной линзы, обращенной вогнутой поверхностью к пространству изображений, и одиночной двояковыпуклой линзы. Первичное и вторичное зеркала выполнены в виде сплошных плоско-параллельных пластин, на первичном зеркале зеркальное покрытие нанесено в его центральной зоне, периферийная часть - прозрачная. На первой со стороны предмета поверхности в центральной зоне вторичного зеркала расположен тест-объект, выполненный в виде прозрачной марки или перекрестия на непрозрачном фоне. Технический результат - увеличение фокусного расстояния, диаметра выходного зрачка при упрощенной конструкции и повышенной технологичности при сохранении высокого качества изображения. 1 ил., 2 табл.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, линзовый корректор аберраций, выполненный в виде трех одиночных осесимметричных линз из разных оптических материалов: двояковыпуклой, двояковогнутой и положительного мениска, второе зеркало в виде внеосевого фрагмента выпуклого зеркала, обращенного выпуклостью к линзовому корректору аберраций, третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала, обращенного вогнутостью к плоскости предметов, и апертурную диафрагму, совпадающую с оправой первой поверхности второй линзы корректора аберраций. Центры кривизны всех оптических поверхностей расположены на одной общей оси. В меридиональном сечении объектива первое зеркало расположено ниже оптической оси, а второе и третье - выше оптической оси. Оптические силы, показатели преломления и коэффициент дисперсии удовлетворяют соотношениям, приведенным в формуле изобретения. Технический результат - повышение качества изображения зеркально-линзового объектива с относительным отверстием не менее 1:6 без центрального экранирования в пределах углового поля 13,8° в широком спектральном диапазоне (450÷1800) нм и повышение его технологичности. 1 з.п. ф-лы, 3 ил., 1 табл.

Объектив может быть использован в космических телескопах. Объектив содержит первое зеркало в виде внеосевого фрагмента вогнутого гиперболического зеркала, линзовый компенсатор аберраций видимого канала из плосковыпуклой и двояковыпуклой линз и отрицательного мениска, второе зеркало в виде внеосевого фрагмента сферического выпуклого зеркала и третье зеркало в виде внеосевого фрагмента вогнутого сферического зеркала. На первую поверхность первой линзы линзового компенсатора аберраций видимого канала нанесено спектроделительное покрытие, пропускающее излучение в диапазоне 450-1000 нм и отражающее в диапазоне 1500-1700 нм. В ходе отраженных лучей введен линзовый компенсатор аберраций инфракрасного канала из трех линз в виде внеосевых фрагментов двояковыпуклой, двояковогнутой и двояковыпуклой линз, в меридиональном сечении расположенных выше оптической оси. Центры кривизны всех оптических поверхностей расположены на одной общей оси. В меридиональном сечении первое зеркало расположено ниже оптической оси, а второе и третье зеркала - выше оптической оси. Выполняются соотношения, указанные в формуле изобретения. Технический результат - повышение качества изображения в пределах углового поля 10° в широком спектральном диапазоне 450-1700 нм объектива без центрального экранирования и повышение технологичности. 2 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к оптическому приборостроению и касается зеркального автоколлимационного спектрометра. Спектрометр состоит из входной щели, объектива и плоской отражательной дифракционной решетки. Входная щель расположена в фокальной плоскости объектива и смещена относительно его оптической оси. Объектив состоит из трех зеркал. Первое зеркало выполнено внеосевым в виде эллипсоида с положительной оптической силой, в 1,5-2,5 раза большей, чем у третьего зеркала. Второе зеркало выполнено сферическим с отрицательной оптической силой, в 2,5-3,5 раза большей, чем у третьего зеркала. Третье зеркало выполнено в виде внеосевого гиперболического фрагмента с положительной оптической силой, близкой к силе всего объектива. Расстояния между первым, вторым и третьим зеркалами в 1,5…2 раза меньше фокусного расстояния всего объектива. Оптические оси зеркал совмещены с оптической осью объектива. Перед плоскостью изображения расположена плоскопараллельная пластина с показателем преломления 1,4-1,6 и толщиной 0,005-0,02 от фокусного расстояния объектива. Дифракционная решетка выполнена с углом блеска, рассчитанным для спектра первого порядка. Технический результат заключается в повышении качества и однородности изображения. 3 ил., 1 табл.

Изобретение может быть использовано в тепловизионных приборах на основе охлаждаемых матричных приемников излучения. Объектив состоит из расположенных по ходу лучей первого компонента, содержащего два асферических зеркала, из которых первое имеет центральное отверстие и выполнено вогнутым, а второе - выпуклым, и второго компонента, содержащего первую отрицательную, вторую положительную и третью отрицательную выпукло-вогнутые линзы, при этом оптическая сила второго компонента в целом - положительная. Между первым и вторым компонентами формируется промежуточное изображение. Выходной зрачок расположен между вторым компонентом и плоскостью изображения. Технический результат - повышение качества изображения путем повышения разрешающей способности за счет увеличения относительного отверстия, а также путем улучшения освещенности и контраста изображения за счет оптимального сопряжения объектива с охлаждаемым матричным приемником излучения. 1 ил., 3 табл.

Изобретение может использоваться в оптических системах, работающих в широком спектральном диапазоне. Зеркально-линзовый объектив содержит на входе афокальный компенсатор с близкой к нулю оптической силой, состоящий из обращенного вогнутостью к предмету отрицательного мениска и положительной линзы, выполненных из одного материала, а на выходе - второй отрицательный двухлинзовый компенсатор, содержащий обращенный вогнутостью к изображению отрицательный мениск, являющийся выходным элементом объектива, и расположенный перед ним мениск, выпуклость которого обращена к выпуклости выходного мениска. Оба мениска изготовлены из того же материала, что и линзы первого компенсатора. Между компенсаторами расположены последовательно по ходу распространения лучей два зеркала, первое из которых выполнено вогнутым с отверстием в центральной части, а второе - выпуклым. Технический результат - расширение спектрального диапазона за счет уменьшения вторичного спектра при сохранении дифракционного качества изображения по всему полю изображения. 3 ил.

Изобретение может быть использовано для головок самонаведения, оптико-электронных систем обнаружения, распознавания и автосопровождения, в частности, в составе бортовой аппаратуры, работающей в нескольких спектральных диапазонах. Система содержит первый канал и второй канал, соосный первому и установленный перед ним. Первый канал содержит главное зеркало, вторичное зеркало (ВЗ), отражающее спектральное излучение Δλ1=8-12,5, линзовый компенсатор аберраций (ЛКА) и фотоприемник излучения спектрального диапазона Δλ1. Второй канал содержит главное зеркало, ВЗ, пропускающее спектральное излучение Δλ2=0,4-0,7 мкм, ЛКА, установленный в зоне центрального экранирования первого канала, и фотоприемник излучения спектрального диапазона Δλ2. Cпектроделительное покрытие нанесено на выпуклую поверхность ВЗ. ЛКА обоих каналов выполнены с положительным линейным увеличением β: 0.8<β<1.2. Технический результат - повышение качества изображения, увеличение светосилы второго канала до светосилы первого канала, обеспечение атермальности обоих каналов, упрощение конструкции и уменьшение габаритно-массовых характеристик. 4 з.п. ф-лы, 1 ил., 1 прилож.
Наверх