Способ испытания компрессора и установка для испытания

Группа изобретений относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначена для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя. В качестве силового привода используют газотурбинный двигатель, компрессор вращают через суммирующий мультипликатор, а изменение режима вращения осуществляют путем подачи части отводимого сжатого воздуха на газотурбинный двигатель и/или преобразования энергии сжатого воздуха в энергию вращения и передачи ее на суммирующий мультипликатор.

Преобразование энергии сжатого воздуха в энергию вращения можно осуществлять с помощью дополнительной турбины, соединенной с суммирующим мультипликатором и установленной на трубопроводе отвода сжатого компрессорного воздуха. Часть отводимого сжатого воздуха можно подавать на газотурбинный двигатель через теплообменник. Установка для испытания компрессора снабжена подводящим трубопроводом с успокоителем, дополнительной турбиной и обводным трубопроводом с установленными в нем дросселями, в качестве силового привода она содержит газотурбинный двигатель, а мультипликатора - суммирующий мультипликатор, обводной трубопровод соединен с подводящим и выходным трубопроводами, а дополнительная турбина установлена с возможностью передачи вращения на суммирующий мультипликатор и соединена с подводящей стороны с выходным трубопроводом, а с отводящей стороны - патрубком с дросселем с обводным трубопроводом, при этом газотурбинный двигатель соединен с успокоителем и подводящим трубопроводом. Установка для испытания турбокомпрессора может быть снабжена байпасным трубопроводом с теплообменником, установленным на обводном трубопроводе, и снабжена дросселями, обеспечивающими подключение-отключение теплообменника от потока. Технический результат изобретений - снижение энергетических затрат и расширение возможностей по реализации режимов испытаний компрессоров. 2 н. и 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к компрессоростроению и установкам для испытаний компрессора, в частности, предназначено для использования при испытании осевых, центробежных и диагональных компрессоров, а также их комбинаций, при использовании регулируемого привода двигателя.

Наиболее близким по технической сущности и достигаемому результату является способ и установка для испытания компрессора, которые раскрыты в описании патента «Стенд для исследования компрессора и описание его работы».

Известный способ испытания компрессора включает вращение испытуемого компрессора от силового привода через мультипликатор, создание потока высокоэнергетического сжатого компрессорного воздуха и его отвод, изменение режима вращения компрессора для определения границы устойчивости его работы.

Известная установка для испытания компрессора содержит соединенные друг с другом силовой привод, мультипликатор, испытуемый компрессор, успокоительную камеру с выравнивающим воздушный поток устройством, воздухосборник, соединенный с выходным трубопроводом, дроссельные устройства.

/ RU 2253854, МПК 7 G01M 15/00, F04D 27/02, Опубл. 10.06.2005. / Недостатком способа и известного стенда для испытания компрессора является то, что для компрессоров большой мощности требуются значительные затраты электрической мощности, необходимой для достижения требуемых оборотов компрессора, а генерируемый при этом компрессором высокоэнергетический поток сжатого воздуха полезно не используется.

Задачей изобретения является создание экономичного способа испытания исследуемого компрессора и создание испытательной установки, полезно использующей высокоэнергетический поток сжатого воздуха, обеспечивающей требуемые обороты и необходимую мощность во всех режимах работы при снятии характеристик вплоть до границы устойчивой работы.

Ожидаемый технический результат - снижение энергетических затрат, расширение гибкости режимов испытаний.

Ожидаемый технический результат достигается тем, что в известном способе испытания компрессора, включающем вращение испытуемого компрессора от силового привода через мультипликатор, создание потока высокоэнергетического сжатого компрессорного воздуха и его отвод, изменение режима вращения компрессора для определения границы устойчивости, по предложению в качестве силового привода используют газотурбинный двигатель, компрессор вращают через суммирующий мультипликатор, а изменение режима вращения осуществляют путем подачи части отводимого сжатого воздуха на газотурбинный двигатель и/или преобразования энергии сжатого воздуха в энергию вращения и передачи ее на суммирующий мультипликатор. Преобразование энергии сжатого воздуха в энергию вращения можно осуществлять с помощью дополнительной турбины, соединенной с суммирующим мультипликатором, установленной на трубопроводе отвода сжатого компрессорного воздуха. Часть отводимого сжатого воздуха можно подавать на газотурбинный двигатель через теплообменник.

Технический результат достигается тем, что установка для испытания компрессора, содержащая соединенные друг с другом силовой привод, мультипликатор, испытуемый компрессор, успокоительную камеру с выравнивающим воздушный поток устройством, воздухосборник, соединенный с выходным трубопроводом, дроссельные устройства, согласно изобретению снабжена подводящим трубопроводом с успокоителем, дополнительной турбиной и обводным трубопроводом с установленными в нем дросселями, в качестве силового привода она содержит газотурбинный двигатель, а мультипликатора - суммирующий мультипликатор, обводной трубопровод соединен с подводящим и выходным трубопроводами, а дополнительная турбина установлена с возможностью передачи вращения на суммирующий мультипликатор и соединена с подводящей стороны с выходным трубопроводом, а с отводящей стороны - патрубком с дросселем с обводным трубопроводом, при этом газотурбинный двигатель соединен с успокоителем и подводящим трубопроводом. Установка для испытания турбокомпрессора может быть снабжена байпасным трубопроводом с теплообменником, установленным на обводном трубопроводе, и снабжена дросселями, обеспечивающими подключение-отключение теплообменника от потока.

Сущность предложения заключается в том, что электрические приводы вращения на традиционных установках по испытанию компрессоров высокой мощности достаточно затратны, в некоторых случаях развиваемая ими мощность недостаточна для испытания компрессоров во всех областях рабочего диапазона. Сжатый испытуемым компрессором воздух обладает значительной энергией, но в традиционных установках этот воздух выбрасывается в атмосферу. Для повышения мощности привода, расширения диапазона режимов испытаний компрессоров и использования энергии сжатого воздуха: привод вращения заменен газотурбинным двигателем, который соединен через суммирующий мультипликатор с компрессором. Установка оснащена системой трубопроводов и дросселей, позволяющей направить сжатый компрессором воздух либо на вход газотурбинного двигателя, либо пропустить воздух через дополнительную турбину, а выработанную энергию вращения передать на суммирующий мультипликатор либо пропускать воздух через дополнительную турбину и этот же воздух подавать на двигатель. Одновременно на двигатель можно подать и воздух непосредственно с компрессора. В установке предусмотрен байпасный трубопровод, позволяющий перед подачей сжатого воздуха на газотурбинный двигатель пропустить воздух через теплообменный аппарат и тем самым скорректировать температуру подаваемого на двигатель воздуха. Таким образом, изменяя параметры подаваемого на двигатель воздуха и суммируя мультипликатором дополнительно выработанную энергию, можно изменять мощность, подаваемую на испытуемый компрессор, достигая требуемого режима испытания.

На чертеже приведена схема установки для испытания компрессора, на которой реализуется способ испытания компрессора.

Установка содержит привод 1, суммирующий мультипликатор 2, исследуемый компрессор 3, успокоительную камеру с выравнивающим воздушный поток устройством 4. На входе в успокоительную камеру 4 расположен мерный коллектор 5 для измерения расхода воздуха через исследуемый компрессор 3, а на выходе из компрессора 3 установлен воздухосборник 6, соединенный с выходным трубопроводом 7. В качестве привода 1 применен газотурбинный двигатель, соединенный с успокоителем 4 и подводящим трубопроводом 8. Выходной трубопровод 7 и подводящий трубопровод 8 соединены обводным трубопроводом 9 с дросселями 10. Дополнительная турбина 11 установлена с возможностью передачи вращения на суммирующий мультипликатор 2 и соединена патрубком 12 с подводящей стороны турбины 11 с выходным трубопроводом 7, а с отводящей стороны - патрубком 13 с обводным трубопроводом 9. Байпасный 14 трубопровод с теплообменником 15 установлены на обводном 9 трубопроводе, обеспечивают с помощью дросселя подключение-отключение теплообменника 15 от потока.

Установка позволяет реализовать предложенный способ испытания компрессора.

Пример 1

Испытываемый компрессор 3 монтируют в установку, подключая привод и технологические трубопроводы. Закрывают дроссели Д1 Д3 и Д4 и открывают дроссели Д2, Д5 и Д6. Запускают двигатель 1, например: ГТУАЛ-31СТ (Газотурбинная установка типа АЛ-31 стационарная, далее турбина). По мере роста числа оборотов двигателя и компрессора 3 сжатый воздух от компрессора через воздухосборник 6, а далее по выходному 7, обводному 9, байпасному трубопроводу 14 с теплообменником 15 и подводящему 8 трубопроводам подают в успокоительную камеру 4 и двигатель 1. Масса поступающего на турбину воздуха значительно возрастает, что позволяет увеличить мощность двигателя. Перекрывая дроссель Д5, регулируют поток поступающего на турбину воздуха, достигают требуемой скорости вращения ротора турбины, например: nct=5300 об/мин, которую преобразуют в мультипликаторе 2 до частоты вращения, например: 10700 об/мин, необходимой для данного режима испытания компрессора 3. Продолжительность испытания компрессора и испытательные режимы определяются программой и планом испытания.

Пример 2

После установки испытуемого компрессора 3 в установку подключения привода и технологических трубопроводов закрывают дроссели Д4, Д5 и Д6 и открывают дроссели Д1, Д2, и Д3. Запускают двигатель и сжатый воздух от компрессора пропускают через воздухосборник 6, а далее частично по выходному трубопроводу 7, а другую часть - по патрубку 12 с подводящей стороны дополнительной 11 турбины, турбину 11, по патрубку 13 с отводящей стороны, обводному 9 и выходному 7 трубопроводам отводят в атмосферу. Дополнительная вращательная мощность, генерируемая турбиной, передается на суммирующий мультипликатор 2 и компрессор 3. Общая мощность вала суммируется по формуле NB=NCT+NДоп.СТ

где NB - суммарная мощность;

NCT - мощность силовой турбины;

NДоп.СТ - мощность дополнительной силовой турбины.

Перекрывая дроссели Д3 и Д2, регулируют поток поступающего на дополнительную 11 турбину воздуха, изменяя массу рабочего тела, достигают требуемой мощности при заданной частоте вращения вала после мультипликатора 2, например: 10700 об/мин, необходимой для данного режима испытания компрессора.

Пример 3

После установки испытуемого компрессора 3 в установку подключения привода и технологических трубопроводов закрывают дроссели Д1 и Д5 и открывают дроссели Д2, Д3, Д4 и Д6. Запускают двигатель 1 и сжатый воздух от компрессора 3 пропускают через воздухосборник 6, а далее по выходному 7 трубопроводу, и по патрубку 12 с подводящей стороны дополнительной 11 турбины, турбину 11, по патрубку 13 с ее отводящей стороны, обводному 9 и подводящему 8 трубопроводам подают в успокоительную 4 камеру и двигатель 1 (турбину). В этом случае масса рабочего тела (воздуха) максимально передается на двигатель для данной установки, при этом дополнительная вращательная мощность, генерируемая дополнительной турбиной, также передается на суммирующий мультипликатор 2 и компрессор 3. Регулируя открытие дросселей Д1 Д2, Д3 Д5 и Д6, устанавливают требуемую для испытания мощность вращения вала и подаваемую мощность.

Приведенные примеры реализации способа испытания компрессора на предложенной установке не исчерпывают все возможные варианты реализации способа в объеме предложенного изобретения и допускают другие варианты создания требуемых режимов вращения вала для испытания компрессоров, путем изменения порядка открытия-закрытия дросселей Д1 Д2, Д3, Д4, Д5 и Д6 и использования байпасных трубопроводов и теплообменных аппаратов.

Применение предложенного способа для испытания компрессоров и установки для испытания компрессоров позволяют снизить энергетические затраты, расширить возможности по реализации режимов испытаний компрессоров и обеспечить достижение требуемых режимов испытания.

1. Способ испытания компрессора, включающий вращение испытуемого компрессора от силового привода через мультипликатор, создание потока высокоэнергетического сжатого компрессорного воздуха и его отвод, изменение режима вращения компрессора для определения границы устойчивости, отличающийся тем, что в качестве силового привода используют газотурбинный двигатель, компрессор вращают через суммирующий мультипликатор, а изменение режима вращения осуществляют путем подачи части отводимого сжатого воздуха на газотурбинный двигатель и/или преобразования энергии сжатого воздуха в энергию вращения и передачи ее на суммирующий мультипликатор.

2. Способ по п.1, отличающийся тем, что преобразование энергии сжатого воздуха в энергию вращения осуществляют с помощью дополнительной турбины, соединенной с суммирующим мультипликатором и установленной на трубопроводе отвода сжатого компрессорного воздуха.

3. Способ по п.1, отличающийся тем, что часть отводимого сжатого воздуха подают на газотурбинный двигатель через теплообменник.

4. Установка для испытания компрессора, содержащая соединенные друг с другом силовой привод, мультипликатор, испытуемый компрессор, успокоительную камеру с выравнивающим воздушный поток устройством, воздухосборник, соединенный с выходным трубопроводом, дроссельные устройства, отличающаяся тем, что она снабжена подводящим трубопроводом с успокоителем, дополнительной турбиной и обводным трубопроводом с установленными в нем дросселями, в качестве силового привода она содержит газотурбинный двигатель, а мультипликатора - суммирующий мультипликатор, обводной трубопровод соединен с подводящим и выходным трубопроводами, а дополнительная турбина установлена с возможностью передачи вращения на суммирующий мультипликатор и соединена с подводящей стороны с выходным трубопроводом, а с отводящей стороны - патрубком с дросселем с обводным трубопроводом, при этом газотурбинный двигатель соединен с успокоителем и подводящим трубопроводом.

5. Установка для испытания турбокомпрессора по п.4, отличающаяся тем, что она снабжена байпасным трубопроводом с теплообменником, установленным на обводном трубопроводе и снабженным дросселями, обеспечивающими подключение-отключение теплообменника от потока.



 

Похожие патенты:

Цех подготовки авиационных двигателей к транспортировке содержит участок (10) монтажа измерительных и испытательных средств на двигатель, средства (14) для перемещения двигателя в испытательное помещение (16) и возврата двигателя в цех, участок (18) демонтажа измерительных и испытательных средств, участок (20) эндоскопического контроля, участок (22) доводки и участок (24) транспортировки.

Изобретение относится к области авиации, в частности к системам диагностики технического состояния летательных аппаратов. Система сбора данных, контроля и диагностики технического состояния агрегатов привода винтов вертолета включает пьезоэлектрические датчики вибрации, которые установлены на корпусе, по меньшей мере, одного из агрегатов привода винтов вертолета и расположены так, что получают данные с полнотой, достаточной для диагностики технического состояния деталей, узлов, по меньшей мере, одного агрегата привода винтов работающего вертолета, и бортовой электронный блок.

Изобретение относится к устройствам для отбора проб отработавших газов двигателя, позволяющего производить отбор проб на движущемся транспортном средстве, и может быть использовано при контроле технического состояния транспортных средств и для оценки опасности воздействия транспортного средства на окружающую среду.

Изобретение может быть использовано при испытаниях малогабаритных многоцелевых двигателей (Д), работающих при знакопеременных нагрузках. Стенд содержит амортизирующую знакопеременную передачу (АЗП), соединяющую выходной вал испытываемого Д с нагрузочным устройством через присоединительные фланцы (ПФ) АЗП.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания. Способ заключается в измерении расход масла через подшипник и определении степени износа коренных подшипников.

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение может быть использовано при диагностировании технического состояния двигателей внутреннего сгорания. Диагностирование проводят в процессе эксплуатации дизеля.

Способ определения эрозии крыльчатки центробежного турбокомпрессора ступени сжатия турбомашины. Крыльчатка (10) центробежного турбокомпрессора содержит ступицу (12), полотно (14), продолжающееся радиально от ступицы, и множество лопаток (16), установленных на крыльчатке.

Изобретение относится к контролю технического состояния авиационных газотурбинных двигателей (ГТД) и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени.

Изобретение относится к контролю технического состояния сложных энергетических объектов, например авиационных газотурбинных двигателей (ГТД), и может быть использовано для диагностики ГТД в процессе их эксплуатации в реальном времени, при техническом обслуживании и/или после ремонта. Способ определения технического состояния энергетического объекта включает контроль на заданных режимах работы энергетического объекта значений выбранных параметров работы объекта, сравнение их с эталонными и по их расхождению определение технического состояния объекта, причем по контролируемым параметрам работы определяют показатель нормированного размаха (показатель Хёрста), значение которого и сравнивают с эталонным значением, а показатель Хёрста определяют по значениям виброхарактеристики по значениям проточной части объекта энергетического объекта на заданных режимах работы объекта. 4 з.п. ф-лы, 1 ил.

Универсальная безмоторная установка может быть использована для определения параметров рабочего процесса ДВС и испытания кривошипно-шатунного механизма (КШМ), а также оценки механических потерь. Установка содержит вертикальный цилиндр с поршнем, датчик давления, регистратор давления, шатун, соединенный с КШМ горизонтального цилиндра с поршнем и рубашкой охлаждения, соединенного с источником высокого давления. Установка также содержит ресивер с нагревательным элементом, присоединенный к вертикальному цилиндру с поршнем, манометр, связанный с ресивером, свечу зажигания со стандартной батарейной системой зажигания, размещенную в вертикальном цилиндре с резьбовыми шпильками с регулировочными шайбами для изменения степени сжатия, датчик угла поворота кулисы, размещенный с возможностью определения положения поршня вертикального цилиндра, ресивер, пневмораспределитель и пневмодроссель, присоединенные к горизонтальному цилиндру. В состав установки включен электропривод, с возможностью шарнирного соединения с шатуном горизонтального цилиндра, вольтметр, амперметр, подключенные к электроприводу с возможностью обеспечения контроля его мощности, и тахометр, связанный с валом электродвигателя. Технический результат заключается в повышении точности определения параметров рабочего процесса и составляющих механических потерь в КШМ. 1 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ диагностирования газораспределительного механизма карбюраторного двигателя внутреннего сгорания заключается в измерении углового перемещения коленчатого вала двигателя от момента открытия впускного клапана первого опорного цилиндра до момента положения вала, соответствующего верхней мертвой точке поршня опорного цилиндра. Измерение углового перемещения коленчатого вала осуществляют на работающем двигателе через измерение угла перемещения распределительного вала, числовые значения которого определяют с помощью электрического устройства и установленных датчика (11) верхней мертвой точки и датчика (12) положения клапана (17). Полученное удвоенное числовое значение измеренного угла, соответствующее углу перемещения коленчатого вала, сравнивают с требованиями технической документации и судят о состоянии газораспределительного механизма. Раскрыто устройство измерения углового перемещения распределительного вала. Технический результат заключается в повышении достоверности измерения угла фаз газораспределения. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к испытательной технике и, в частности, к испытаниям камер сгорания и газогенераторов жидкостных ракетных двигателей (ЖРД) с целью оценки высокочастотной устойчивости процесса горения. Генератор содержит корпус с подсоединительным патрубком и форкамерой, в котором размещена втулка из диэлектрика, в которой размещены электроды. При этом один из электродов установлен по оси форкамеры и является общим, а остальные электроды расположены по окружности с одинаковым зазором между собой. Причем осевой электрод соединен с остальными электродами, размещенными по окружности, металлическими проволочками диаметром 0,02…0,5 мм. Другие концы электродов предназначены для подключения к источнику высокого напряжения, а концы электродов, размещенных внутри форкамеры, выполнены с утолщением, причем к форкамере подсоединен штуцер для подачи азота продувки. При размещении по окружности четного числа электродов на конце осевого электрода в радиальном направлении к электродам, расположенным по окружности, могут быть выполнены сквозные радиальные пересекающиеся каналы, в которых размещены металлические проволочки. При этом концы каждой из них соединены с соответствующей парой противолежащих электродов, расположенных по окружности, причем в торце осевого электрода выполнено глухое отверстие с резьбой, пересекающее сквозные радиальные каналы, в котором установлен винт, прижимающий металлические проволочки к внутренним кромкам сквозных каналов осевого электрода. Изобретение обеспечивает создание нескольких импульсов во время одного испытания камер сгорания и газогенераторов ЖРД на устойчивость при высокой стабильности величины импульса. 4 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения замеров параметров отработавших газов (ОГ) ДВС. Способ заключается в отборе газов в пробоотборник и последующем анализе материала пробы. Пробоотборник изолируют от окружающей среды и размещают в нем порцию дистиллированной воды, при этом формируют суспензию твердых частиц ОГ, для чего их выпускают в названную порцию воды. Формирование суспензии начинают после удаления из выхлопной трубы посторонних частиц пыли и сажи, осевших туда за время простоя ДВС. В процессе отбора пробы суспензию перемешивают и стерильным шприцем отбирают объем жидкости около 40 мл, который исследуют на лазерном анализаторе частиц для определения распределения в нем частиц по размерам и по форме. Проводят также вещественный анализ взвесей на световом микроскопе и электронном микроскопе с энергодисперсионным спектрометром для определения вещественного состава твердых частиц и распределения этих частиц по размерам и по форме. Технический результат заключается в выявлении содержания нанодисперсных и микродисперсных твердых частиц в ОГ. 3 ил.

Изобретение относится к авиации, в частности к способу определения настроечного значения температуры газа для выключения охлаждения турбины при испытаниях и эксплуатации газотурбинного двигателя. При реализации заявленного способа испытаний газотурбинного двигателя повышается точность подсчета температуры газа выключения охлаждения турбины за счет учета поправки на угол установки направляющего аппарата компрессора высокого давления, что обеспечит синхронное выключение охлаждения.

Изобретение относится к энергомашиностроению и представляет собой способ диагностики флаттера лопаток рабочего колеса в составе осевой турбомашины на заданном рабочем режиме. Изобретение основано на том, что увеличение длины лопатки при флаттере вследствие высоких амплитуд колебаний приводит не только к уменьшению радиального зазора, но и к касанию лопаток о внутреннюю поверхность корпуса турбомашины. Нанесение истираемого покрытия на внутренний корпус турбомашины и контроль характерных особенностей его износа позволит диагностировать наличие или отсутствие флаттера лопаток на данном режиме, а также определить диаметральную форму колебаний, по которой реализовался флаттер. Технический результат заключается в повышении надежности и снижении трудоемкости процесса диагностики флаттера рабочих лопаток турбомашин.1з.п.ф-лы, 2ил.

Изобретение относится к области транспорта и может быть использовано для оценки массы Ма свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Технический результат - повышение точности оценки массы свежего воздуха, поступающего внутрь камеры сгорания цилиндра двигателя. Согласно изобретению в процессе цикла двигателя оценку (128) общей массы Mtot газа, содержащегося в камере сгорания, осуществляют в конце впуска свежего воздуха, оценку (120, 124) массы выхлопных газов, содержащихся в камере сгорания, - в конце выпуска выхлопных газов и оценку (128) массы Ма свежего воздуха осуществляют исходя из разности между оцененными общей массой Mtot и массой Mb выхлопных газов. 5 н. и 8 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для определения общего технического состояния их смазочной системы. Перед определением общего технического состояния смазочной системы двигателя внутреннего сгорания, очищают масляный фильтр. Двигатель прогревают, устанавливают номинальную частоту вращения. Фиксируют значение давления масла перед фильтром и по истечении времени межконтрольной наработки вновь фиксируют значение давления масла перед фильтром. По полученным данным находят скорость повышения давления, сравнивают вычисленное значение с допускаемой скоростью повышения давления. По результатам сравнения определяют общее техническое состояние смазочной системы двигателя. Технический результат заключается в уменьшении затрат времени на техническое обслуживание двигателя. 2 ил.

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.
Наверх