Стенд для исследования автомобильной шины

Тело вращения, выполненное в виде конического барабана 5, совместно с автомобильным колесом 8 и установленной на нем исследуемой шиной 9 помещены в закрытую камеру 1. Камера содержит фильтр 3 очистки поступающего в нее атмосферного воздуха и заборник воздуха 17 с патрубками 21 и 22, помещенными напротив зоны контакта шины с барабаном. Патрубки соединены воздуховодом с аспиратором 19 через фильтр 20 для сбора и отложения на нем продуктов износа автомобильной шины. Для имитации различных климатических условий с необходимой температурой и необходимой влажностью закрытая камера оснащена электрическим нагревательным элементом и соединена паропроводом с парогенератором. Технический результат - возможность получать продукты износа различных автомобильных шин в условиях умеренно форсированного износа для проведения экспресс-анализов их токсичности с использованием методов биотестирования и оценить вредность продуктов износа различных шин при их сопоставлении между собой. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к сухопутным транспортным средствам, а именно к шинам колес. Оно касается исследования автомобильных шин.

Известны различные стенды для исследования автомобильных шин, показанные, например, в авторских свидетельствах №№1215014, 1805313, выданных в СССР, в заявках №№2141475, 2141476 на выдачу европейского патента.

В качестве ближайшего аналога принят стенд для исследования автомобильной шины, изображенный в патенте №4335740, G01M 17/02, выданном в Японии. На этом стенде производят качение шины по телу вращения, сделанному в виде цилиндрического барабана, и измеряют ее температуру в зоне контакта с опорной поверхностью. На этом стенде определяют возможный нагрев шины, влияющий на ее свойства, но не оценивают экологическую опасность продуктов ее износа. Экологическая опасность автомобильных шин обусловлена тем, что в процессе эксплуатации в окружающую среду из шины выделяется более ста видов химических веществ, часть которых представляют токсичные и канцерогенные соединения. Загрязнение атмосферы происходит за счет образования резиновой пыли и газовой эмиссии, которые, попадая в легкие человека, способны вызвать онкологические заболевания.

Задача - оценить экологическую опасность образующихся при износе автомобильной шины продуктов ее износа путем получения продуктов износа автомобильных шин для дальнейшего их исследования на предмет экологического воздействия на живую природу.

Решение задачи оценки экологической опасности продуктов износа шины обеспечено тем, что стенд для исследования автомобильной шины содержит тело вращения, выполненное в виде конического барабана, который совместно с автомобильным колесом и установленной на нем исследуемой шиной помещен в закрытую камеру, имеющую фильтр очистки поступающего в камеру атмосферного воздуха и заборник воздуха к аспиратору, помещенный напротив зоны контакта шины с барабаном для сбора и последующего отложения на фильтрах продуктов износа автомобильной шины.

Такой стенд обеспечивает возможность ускоренного получения, для целей исследования, продуктов износа различных автомобильных шин и позволяет выполнять оперативную оценку их токсичности.

Конический барабан стенда покрыт абразивным материалом, сделанным в виде зернистой пленки, наклеенной на коническую поверхность барабана.

Заборник воздуха содержит два вытяжных патрубка, расположенных по разные стороны от места касания шины с зернистой пленкой, наклеенной на барабан.

Для обеспечения возможности проводить испытания шин в тропических условиях закрытая камера снабжена электрическим нагревателем и посредством паропровода соединена с парогенератором.

На фигуре 1 изображен стенд для исследования шины для определения экологической опасности продуктов ее износа, вид сбоку.

На фигуре 2 показан вид сверху на упомянутый стенд.

На фигуре 3 представлена кинематика взаимодействия шины с опорной поверхностью.

Представленный на фигурах 1 и 2 стенд для исследования автомобильной шины на предмет определения экологической опасности продуктов ее износа содержит испытательную камеру 1, закрытую кожухом 2. На кожухе 2 расположены фильтры 3 для очистки поступающего в камеру 1 атмосферного воздуха. В камере 1 на кронштейне 4, прикрепленном к основанию стенда, установлен конический барабан 5, покрытый абразивным материалом. Абразивный материал сделан в виде зернистой пленки, наклеенной на коническую поверхность барабана 5. Конический барабан 5 имеет привод от электродвигателя 6 через редуктор 7. Напротив барабана 5 в камере 1 вертикально установлено колесо 8, имеющее обод для установки на него исследуемой шины 9. Колесо 8 подвешено на двух стойках 10, расположенных по разные стороны колеса 8. Стойки 10 шарнирно соединены с подставкой 11, прикрепленной к полу камеры 1. Со стойками 10 шарнирно соединен хомут 12, к которому прикреплен шток 13 пневмоцилиндра 14. Корпус пневмоцилиндра 14 шарнирно соединен с расположенным снаружи камеры 1 кронштейном 15, прикрепленным резьбовыми крепежными элементами к основанию стенда. Шток 13 охвачен резиновой манжетой 16, прикрепленной к стенке кожуха 2.

Напротив зоны контакта шины 9 с коническим барабаном 5 помещен заборник 17 воздуха, направляемого по воздуховоду 18 к электрическому аспиратору 19 через установленный в фильтродержателе фильтр 20 сбора продуктов износа шины. Заборник 17 содержит два вытяжных патрубка 21 и 22, расположенных по разные стороны от места касания шины 9 с барабаном 5, то есть сверху и снизу от места их касания. Внутри защитного кожуха на основании стенда установлен электрический нагревательный элемент 23 испытательной камеры 1. Посредством паропровода 24 испытательная камера 1 соединена с парогенератором 25.

При исследовании автомобильной шины, для определения ее экологической опасности, с помощью электродвигателя 6 вращают конический барабан 5, по коническому участку которого катят исследуемую шину 9. Кинематика взаимодействия шины с конической поверхностью барабана создает разнонаправленную эпюру скорости ее скольжения по барабану, представленную на фиг.3, что создает фиксированные условия умеренно форсированного износа. Вследствие переменного радиуса кривизны наружной поверхности барабана происходит интенсивное скольжение крайних участков шины по барабану, что вызывает ускоренный ее износ. По мере износа шины собирают продукты ее износа и газообразной эмиссии путем их отсоса аспиратором 19 из зоны контакта шины с барабаном и осаждают их на фильтре 20.

Собранные на фильтре 20 продукты износа для исследования их физических свойств и химического состава передают в физико-химическую лабораторию. Для экологического экспресс-анализа, после сбора продуктов износа шины за определенное время, фильтр 20 помещают в сосуд с фиксированным объемом жидкости, представляющей собой дистиллированную воду или водно-органическую смесь. После выдержки фильтра в указанной жидкости, в которую происходит экстракция химических веществ из продуктов износа шины, экстракт помещают в емкость с биосенсором, представляющим собой культуры люминесцентных бактерий, и измеряют параметры биолюминесценции. По уменьшению интенсивности биолюминесценции полученной пробы по сравнению с пробой, не содержащей токсических веществ, судят об уровне токсического эффекта продуктов износа автомобильной шины. Для испытания шин в тропических условиях в испытательной камере устанавливают необходимые климатические параметры с помощью нагревательного элемента 23 и парогенератора 25, соединенного с камерой 1 паропроводом 24.

Необходимое для исследований количество продукта износа забирают из зоны контакта колеса посредством вытяжных патрубков 21 и 22 (фиг.1) при помощи электроаспиратора 19 и накапливают на фильтре 20. В первом варианте отбор продуктов износа производят с фиксированным объемом отбираемого воздуха. Во втором варианте фиксируют массу шинной пыли посредством взвешивания на лабораторных весах. В третьем варианте фиксируют время или пройденный шиной путь, при которых происходит генерация продуктов износа. При необходимости выполнять исследования физического и химического состава продуктов износа фильтр 20 с собранными на нем продуктами износа шины передают в физико-химическую лабораторию.

Для оперативного экспрессного анализа токсичности продуктов износа выполняют подготовку измерительных проб в соответствии с нормативным документом по применению способов интегрального биотестирования МР 01.018-07. Для чего фильтр 20 с накопленными на нем продуктами износа шины опускают в фиксированный объем дистиллированной воды или водно-органической смеси. После выдержки фильтра в указанной жидкости, в которую происходит экстракция химических веществ из продуктов износа шины, экстракт помещают в емкость с биосенсором, представляющим собой культуры люминесцентных бактерий, и измеряют параметры биолюминесценции с помощью прибора «Биотокс-10М». По уменьшению интенсивности биолюминесценции полученной пробы по сравнению с пробой, не содержащей токсических веществ, судят об уровне токсического эффекта продуктов износа автомобильной шины.

1. Стенд для исследования автомобильной шины, содержащий тело вращения, отличающийся тем, что тело вращения выполнено в виде конического барабана, который совместно с автомобильным колесом и установленной на нем исследуемой шиной помещен в закрытую камеру, имеющую фильтр очистки поступающего в камеру атмосферного воздуха и заборник воздуха с патрубками, помещенными напротив зоны контакта шины с барабаном и соединенными воздуховодом с аспиратором через фильтр для сбора и отложения на нем продуктов износа автомобильной шины.

2. Стенд для исследования шины по п.1, отличающийся тем, что барабан покрыт абразивным материалом, сделанным в виде зернистой пленки, наклеенной на коническую поверхность барабана.

3. Стенд для исследования шины по п.2, отличающийся тем, что заборник воздуха содержит два вытяжных патрубка, расположенных по разные стороны от места касания шины с зернистой пленкой, наклеенной на барабан.

4. Стенд для исследования автомобильной шины по п.1, отличающийся тем, что для имитации различных климатических условий с необходимой температурой и необходимой влажностью закрытая камера оснащена электрическим нагревательным элементом и соединена паропроводом с парогенератором.



 

Похожие патенты:

При исследовании шины ее катят по участку поверхности тела вращения, имеющему поперек шины переменный радиус кривизны. Собирают продукты износа путем их отсоса из зоны контакта шины с телом вращения и осаждают их на фильтре.

Изобретение относится к системам и способам улучшения однородности шины выборочным удалением материала вдоль участков борта вулканизированной шины. .

Изобретение относится к измерительным устройствам, предназначенным для определения силы, действующей на шину колеса с шиной в сборе транспортного средства, в частности автомобиля.

Изобретение относится к испытательной технике и может быть использовано при изучении механизма сцепления автомобильного колеса с дорожным полотном. .

Изобретение относится к виброакустике машин и может быть использовано для идентификации составляющих виброакустических спектров трибосопряжений, обусловленных процессами нестационарного трения, а также для оценки вклада трения в общий уровень вибрации и шума узлов трения машин.

Изобретение относится к измерительным системам, а именно к средствам контроля состояния конструкции и шасси летательного аппарата, и может быть использовано в различных транспортных средствах (самолетах, вертолетах, беспилотных летательных аппаратах и др.).
Изобретение относится к области транспортного машиностроения, в частности к испытаниям автотранспортных средств. .
Изобретение относится к области транспортного машиностроения, в частности к испытаниям автотранспортных средств. .

Изобретение относится к испытательной технике и может быть использовано при исследованиях кинематических параметров шин на плоской твердой опорной поверхности. .

Изобретение относится к способам для определения коэффициента сцепления на искусственных поверхностях, преимущественно взлетно-посадочных полос аэродромов, а также дорожных покрытий. Способ осуществляют методом торможения, когда по поверхности искусственного покрытия катят измерительное колесо, которое тормозят в соответствии с состоянием поверхности покрытия. При этом определяют нормальную силу P нагрузки измерительного колеса на поверхность покрытия. Определяют момент силы M сцепления измерительного колеса с поверхностью покрытия, и в соответствии с полученным значением момента силы M сцепления измерительного колеса увеличивают или уменьшают момент силы Mg торможения электромагнитного тормоза или другого устройства торможения. При этом получают и поддерживают максимальное тормозное усилие Ртор.макс измерительного колеса с поверхностью искусственного покрытия, которое равно силе сцепления F измерительного колеса с поверхность покрытия (Ртор.макс=F). Коэффициент сцепления Ксцп вычисляют по формуле Ксцп=M/PR, R - радиус измерительного колеса. Технический результат - повышение точности измерений коэффициента сцепления. 3 ил.

Устройство содержит, по меньшей мере, один микрофон и камеру, при этом оно снабжено измерительной плитой из поликристаллического материала, ультразвуковым спектральным анализатором, устройством машинного распознавания удара шипа по измерительной плите в ультразвуковом диапазоне, представляющим собой компьютер, устройством машинного распознавания изображения шипа на протекторе шины, также представляющим собой компьютер, и представляющим собой компьютер устройством сопоставления данных, полученных устройствами машинного распознавания удара шипа и изображения шипа, датчиком скорости движения автомобиля по плите и датчиком влажности на поверхности измерительной плиты. Камера выполнена инфракрасной, а ультразвуковой микрофон жестко закреплен на измерительной плите или жестко заделан в измерительную плиту и соединен линией связи с ультразвуковым спектральным анализатором, который в свою очередь соединен линией связи с устройством машинного распознавания удара шипа. Оба устройства машинного распознавания подключены своими выходами к устройству сопоставления данных. Технический результат - получение данных не только о факте наличия и количестве шипов на погонный метр протектора шины, но и косвенные данные о массе шипа, а также о его разрушающей способности способом анализа спектра события удара шипа по измерительной плите с последующим вводом данных. 4 з.п. ф-лы, 1 ил.

Способ контроля состояния конструкции летательного аппарата относится к измерительным системам контроля конструкции и шасси летательного аппарата (ЛА). Производят мониторинг ряда зон с помощью пьезоэлектрических датчиков на частях конструкции. Производят определенным образом измерения сигнала акустической волны, которые преобразуют в аналоговые электрические сигналы. Считывают и обрабатывают сигналы в цифровом блоке обработки. Контролируют исправную работу совокупности пьезоэлектрических датчиков. При помощи установленных в обшивке планера ЛА в районе шасси микрорадаров излучают в район шасси радиолокационный сигнал и принимают отраженный сигнал до момента взлета и от момента посадки до остановки ЛА. По анализу отраженного сигнала определяют техническое состояние каждой шины шасси. Обеспечивается безопасность взлета и посадки ЛА. 2 ил.

Изобретение относится к измерительным системам, а именно к средствам контроля состояния конструкции и шасси летательного аппарата, и может быть использовано в различных транспортных средствах. Согласно способу контроля состояния конструкции летательного аппарата измеряют во время взлета и посадки летательного аппарата число оборотов колес основных стоек шасси, определяют пробег каждой шины колеса шасси летательного аппарата за период текущей взлет-посадки, суммируют данный пробег с уже имеющимся, определяют пробег каждой шины с начала эксплуатации, фиксируют текущую взлет-посадку, суммируют последнюю взлет-посадку каждой шины с уже имеющимися, определяют для каждой шины количество взлетов-посадок с начала эксплуатации, записывают информацию о количестве взлетов-посадок для каждой шины и ее пробег с начала эксплуатации в бортовой накопитель информации. При превышении количества взлетов-посадок и (или) пробега какой-либо из шин заданных величин осуществляют информирование об этом экипажа (оператора) летательного аппарата. В устройстве для осуществления способа колеса основных стоек шасси летательного аппарата оснащены датчиками числа оборотов, выходы которых соединены через вторую группу входов третьего элемента И, первый блок усилителей, первый блок аналого-цифровых преобразователей, первый блок формирователей импульсов и первый блок счетчиков с шестой группой входов устройства сбора информации. В результате повышается качество мониторинга технического состояния шин шасси летательного аппарата на этапах движения по аэродрому, взлета и посадки. 2 н. и 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области оперативного контроля коэффициента сцепления колеса с дорожным покрытием. Способ определения коэффициента сцепления колеса с дорожным покрытием заключается в определении величины силового вращающего момента, приложенного к ступице или к диску тестируемого колеса. После чего дважды меняют вертикальную силовую нагрузку, действующую на тестируемое колесо, за счет поддомкрачивания автомобиля, и вновь определяют вращающий силовой момент. По разности измеренных в экспериментах силовых вращающих моментов для различных случаев поддомкрачивания судят о коэффициенте сцепления колеса с дорогой. Устройство для определения коэффициента сцепления колеса с дорожным покрытием, содержащее систему нагружения колеса вертикальной нагрузкой и крутящим моментом. Устройство содержит станину, домкрат для поддомкрачивания автомобиля, имеющий датчик усилия, воспринимаемый домкратом. Достигается повышение точности определения коэффициента сцепления отдельного колеса с полотном дороги и расширение диапазона использования способа для тестирования колес большого диаметра. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения, в частности к способу определения коэффициента вязкого сопротивления пневмоколес. Способ заключается в том что, включает операцию свободного падения тарированного груза с колесом на опорную поверхность из недеформированного состояния пневмошины в состояние максимальной нормальной деформации. После чего измеряют величину нормальной деформации при падении колеса и времени падения колеса и операцию определения средней скорости падения колеса на опорную поверхность. Затем вычисляют коэффициент вязкого сопротивления пневмоколеса с помощью теоремы об изменении кинетической энергии. Достигается повышение точности получаемого результата за счет определения средней скорости перемещения оси колеса из верхнего недеформированного состояния в положение максимальной динамической деформации. 4 ил.

Изобретение относится к автомобильной промышленности. Способ заключается в нагружении исследуемой ошипованной шины, смонтированной на диске, давлением с усилием 70% от индекса нагрузки этой шины, измерении высоты выступающей части испытываемого шипа противоскольжения и размещении напротив выступающей части испытываемого шипа противоскольжения наконечника тензодатчика с последующим введением указанного наконечника в контакт с этой выступающей частью. Затем после осуществления соосности положения продольных осей указанного наконечника и контактной части элемента, осуществляющего нагружение шипа противоскольжения, осуществляют нагружение шипа противоскольжения для его утапливания в тело протектора исследуемой ошипованной шины на величину, равную высоте выступающей части испытываемого шипа противоскольжения, с последующей регистрацией усилия, снятого с тензодатчика. Технический результат - повышение точности измерений. 2 н.п. ф-лы, 1 ил.

Изобретение относится к автомобильной промышленности. Способ включает следующие этапы: образование в стенке пневматической шины нескольких перфораций путем введения через упомянутую стенку нескольких перфорирующих предметов, осуществление движения пневматической шины с перфорирующими предметами на заданное расстояние с регулируемым давлением накачки, остановка движения и определение для каждой перфорации индекса сопротивления потере давления, основанного на оценке расхода утечки перфорации. Технический результат – повышение эффективности определения сопротивления пневматических шин. 24 з.п. ф-лы, 8 ил., 4 табл.

Изобретение относится к области сельского хозяйства, в частности к способам создания схем уплотнения грунта, представляющих распределение давления в почве на глубине под нагруженной шиной, а также к отображениям, в которых используются такие схемы уплотнения грунта. Панель измерения давления помещают на относительно жесткую плоскую опорную поверхность. Панель измерения давления покрывают слоем зернистого материала. На зернистый материал помещают нагруженную шину и с помощью панели измерения давления создают схему уплотнения грунта. Отображение уплотнения грунта можно создавать путем наложения схемы уплотнения грунта на физическую трехмерную модель зоны контакта зернистого материала и нагруженной шины. Технический результат – демонстрация уплотнения почвы для усовершенствования конструкции шин, используемых в сельском хозяйстве. 2 н. и 26 з.п. ф-лы, 9 ил.

Изобретение относится к автомобильной промышленности. Способ содержит по меньшей мере одну рабочую станцию (10), по меньшей мере одну станцию (20) контроля и по меньшей мере одну станцию (30) вулканизации. Согласно способу подают n изготавливаемых шин (T) в заданный временной интервал (PT) на вход по меньшей мере одной станции (20) контроля. Испускают электромагнитное излучение (ER) в по меньшей мере одной станции (20) контроля на каждую из n изготавливаемых шин (T). Регулируют взаимное положение каждой из n изготавливаемых шин (T) и устройств (21, 22) испускания и обнаружения во время операций испускания и обнаружения так, что по меньшей мере положения, из которых создается электромагнитное излучение (ER), описывают путь (P), связанный с тороидальной конструкцией каждой из n изготавливаемых шин (T). Выполняют томографический контроль, создающий по меньшей мере одно множество параметров контроля (СР). Создают сигнал оповещения (NS) как функцию от сравнения между параметрами (CP) контроля и соответствующими эталонными параметрами (Ref). В одном и том же заданном временном интервале (PT) вводят в производственную линию (1) k изготавливаемых шин (Tk), где k≤n, выходящих из по меньшей мере одной станции (20) контроля, и перемещают n-k изготавливаемых шин (Tn-k) наружу производственной линии (1) как функцию от сигнала оповещения (NS). Технический результат – сокращение времени и повышение качества контроля шин. 3 н. и 35 з.п. ф-лы, 12 ил.
Наверх