Способ потенциометрического определения антиоксидантной/оксидантной активности с использованием комплексов металлов

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.

 

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности.

Известен способ количественного определения оксидантов и/или антиоксидантов в коже [Международная публикация WO/1996/013193], заключающийся в определении потенциала тестового раствора, содержащего FeCl3 или комплекс ADP-Fe(III) для определения антиоксидантов и систему I2/Nal для определения оксидантов, введенного в контакт с кожей.

К недостаткам данного способа можно отнести то, что в тестовом растворе используются только водные среды, что не позволяет анализировать широкий круг важных органических антиоксидантов и оксидантов. Кроме того, используется кислый раствор (pH=2), что не моделирует реальные процессы, происходящие в организме в нейтральной среде. Измеряется только одно значение потенциала, которое зависит от множества факторов и не дает достоверной информации о количестве антиоксидантов/оксидантов, т.к. не учитывается исходное состояние системы. Также результат измерения выражают в виде потенциала. Не оценивается собственно величина оксидантной и/или антиоксидантной активности, что усложняет интерпретацию получаемых результатов. Также использование системы I2/Nal снижает достоверность получаемых результатов из-за повышенной летучести I2.

Известен способ определения антиоксидантов в растворе [Международная публикация US 6177260 B1], основанный на использовании в качестве окислителя комплекса Fe(III)-трипиридилтриазина, который при взаимодействии с антиоксидантами восстанавливается до Fe(II)-трипиридилтриазина, окрашенного в синий цвет (максимум поглощения при 593 нм).

Недостатком этого способа является то, что метод является не чувствительным к сульфгидрильным SH-содержащим антиоксидантам, таким как глутатион и цистеин, являющимся одним из основных звеньев антиоксидантной системы защиты организма, поэтому метод не позволяет оценить суммарное содержание антиоксидантов в исследуемом объекте. Кроме того, в способе используется также кислый раствор, что не моделирует реальные процессы, происходящие в организме в нейтральной среде.

Наиболее близким решением служит способ определения оксидантной/антиоксидантной активности растворов (RU 2235998), заключающийся в том, что предварительно готовят исходный раствор, в который вводят медиаторную систему, содержащую одновременно окисленную и восстановленную формы реагента, а оценку оксидантной/антиоксидантной активности проводят по изменению окислительно-восстановительного потенциала раствора, определенного до и после введения в исходный раствор анализируемого вещества.

К недостаткам данного способа можно отнести то, что в данном способе в качестве медиаторной системы могут быть Ox/Red пары химических элементов или соединений. Использование одновременно двух форм системы существенно усложняет выбор компонентов медиаторной системы, которые необходимо варьировать в зависимости от круга анализируемых соединений, особенно в апротонных средах для анализа органических соединений. Кроме того, при предложенном алгоритме не учитывается влияние матрицы изучаемого объекта на изменение потенциала системы. Также в данном способе в органических растворителях предлагается применять систему ферроцен/феррициний, использование которой несмотря на хорошую обратимость крайне затруднительно из-за неустойчивости ионов феррициния. И как было отмечено, использование системы I2/I- снижает точность получаемых результатов.

Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга используемых реагентов и растворителей, анализируемых веществ.

Задача решается тем, что в качестве реагента используют только одну окисленную или восстановленную форму металла в составе комплексного соединения. Таким образом, расширяется круг используемых реагентов и круг исследуемых объектов в различных растворителях. Благодаря тому, что концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла. За счет быстрого протекания реакции и быстрого установления равновесия в растворе увеличивается экспрессность анализа. Измерение потенциала проводится после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом и последующей добавки раствора реагента или анализируемого вещества, что также приводит к увеличению экспрессности анализа. Анализ проводится путем введения двух последовательных добавок сначала анализируемого вещества в раствор реагента, а затем добавки также раствора анализируемого вещества или реагента. Таким образом, это позволяет учесть влияние матрицы сложных объектов на изменение потенциала и повысить воспроизводимость, точность, достоверность. Также в случае второй добавки реагента, а не анализируемого вещества, значительно экономится объем исследуемого объекта в тех случаях, когда это необходимо.

Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки реагента или анализируемого вещества.

В качестве реагента может быть использована окисленная форма металла в составе комплексного соединения. В этом случае антиоксиданты в составе анализируемого вещества реагируют с окисленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Антиоксидантную активность в этом случае рассчитывают по формуле:

A O A = C ( h α А О А ) h ( 1 α А О А ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αАОА=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Антиоксидантную активность в этом случае рассчитывают по формуле:

A O A = C ( 1 α A O A ) α A O A C h ( 1 α A O A ) ,

где АОА - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,203

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C′ - концентрация окисленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагента может быть использована восстановленная форма металла в составе комплексного соединения. В этом случае оксиданты в составе анализируемого вещества реагируют с восстановленной формой реагента. Определение проводят по двукратной добавке анализируемого вещества. Оксидантную активность рассчитывают по формуле:

O A = C ( h α O A ) h ( 1 α O A ) ,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Если объем анализируемого вещества ограничен, то определение проводят по однократной добавке анализируемого вещества и последующей добавке реагента. Оксидантную активность в этом случае рассчитывают по формуле:

O A = C ( 1 α O A ) α O A C h ( 1 α O A ) ,

где OA -оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303

Е1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора восстановленной формы реагента, B;

C′ - концентрация восстановленной формы реагента во второй добавке, М;

h - отношение объема второй добавки к общему объему раствора.

Таким образом, в обобщенном виде антиоксидантную/оксидантную активность рассчитывают по формулам:

1) по двукратной добавке анализируемого вещества:

A O A / O A = C ( h α A O A / α O A ) h ( 1 α A O A / α O A ) ,

где AOA - антиоксидантная активность, М-экв;

OA - оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора;

2) по однократной добавке анализируемого вещества и последующей добавке реагента

A O A / O A = C ( 1 α A O A / α O A ) α A O A / α O A C h ( 1 α A O A / α O A ) ,

где AOA - антиоксидантная активность, М-экв;

OA- оксидантная активность, М-экв;

C - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303

αOA=10(E2-E1)·n·F/R·T·2,303

E1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, B;

C - концентрация окисленной/восстановленной формы реагента во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

В качестве реагентов могут быть использованы комплексные соединения металлов переменной валентности с неорганическими лигандами, например K3[Fe(CN)6], K4[Fe(CN)6], K3[Mn(CN)6], K4[Mn(CN)6], K3[Mo(CN)8], K4[Mo(CN)8], [Fe(SCN)3], [Fe(SCN)2], также комплексные соли металлов переменной валентности с органическими лигандами, например тетраэтиламмония гексацианоферрат (III), тетраэтиламмония гексацианоферрат (II), тетрабутиламмония гексацианоманганат (III), тетраэтиламмония тетрахлороферрат (III), тетраэтиламмония тетрахлороферрат (II), Fe(II)-PDT, Fe(II)-TPTZ, Fe(III)-TPTZ, дикетонаты железа, никеля, кобальта. В качестве растворителей используются гидрофильные, гидрофобные и смешанные растворители.

В качестве протонных растворителей могут быть использованы вода, спирты и др., в качестве апротонных: хлороформ, ацетонитрил, гексан, ацетон и различные эфиры. Также может быть использована смесь растворителей.

Рабочий электрод может быть изготовлен из платины, золота стеклоуглерода.

Электродом сравнения в водных растворах может служить стандартный хлорсеребряный электрод, в органических растворителях - двуключевой хлоридсеребрянный электрод, первая емкость которого заполнена водой, содержащей хлорид-ионы, вторая емкость - органическим растворителем, например ацетонитрилом, содержащим, например, перхлорат лития или тетраэтиламмония тетрафторборат. В органических средах также может быть использован электрод первого рода Ag/AgNO3 в органическом растворителе.

Указанные отличия существенны. Использование в качестве реагента одной окисленной или восстановленной формы металла в составе комплексного соединения позволяет расширить круг используемых реагентов и круг исследуемых объектов в различных растворителях. Концентрация исходного раствора окисленной/восстановленной формы значительно больше концентрации антиоксидантов/оксидантов в исследуемом образце, поэтому химическая реакция протекает быстро и устанавливается равновесие между избытком окисленной/восстановленной формы металла в составе комплексного соединения и образовавшейся восстановленной/окисленной формой комплекса металла, что увеличивает экспрессность метода. Измерение потенциала проводится после прохождения химической реакции, что сокращает число измерительных стадий и также увеличивает экспрессность метода. Введение двух последовательных добавок раствора анализируемого вещества существенно повышает точность, достоверность и воспроизводимость результатов, что позволяет анализировать различные объекты со сложной матрицей.

В настоящее время из патентной и научно-технической литературы не известен способ определения антиоксидантной/оксидантной активности в заявляемой совокупности признаков.

На фиг.1 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] двух добавок аскорбиновой кислоты в водной среде.

На фиг.2 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)2] двух добавок пероксида водорода в водной среде.

На фиг.3 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] аскорбиновой кислоты и последующей добавки [Fe(SCN)3].

На фиг.4 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] зеленого чая и последующей добавки [Fe(SCN)3].

На фиг.5 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок раствора токоферола в хлороформе (электролит: 0,05М тетраэтиламмония тетрофторборат).

На фиг.6 представлена зависимость потенциала от времени при добавлении к [Fe(SCN)3] в хлороформе двух добавок нерафинированного подсолнечного масла (электролит: 0,05М тетраэтиламмония тетрофторборат).

Способ иллюстрируется следующими примерами.

Пример 1

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,075 мл 0,02М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 446 мВ. Далее вносят вторую добавку 0,019 мл того же раствора аскорбиновой кислоты. Установившееся значение потенциала (E2) составляет 412 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+AKOX,

где AK - аскорбиновая кислота, AKOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.1. Антиоксидантную активность рассчитывают по формуле:

A O A = C ( h α A O A ) h ( 1 α A O A ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения второй добавки раствора аскорбиновой кислоты, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,04 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 2

В 1 мл водного раствора, содержащего 0,01М [Fe(SCN)2], в фосфатном буферном растворе опускают рабочий электрод и электрод сравнения и вносят 0,060 мл 0,01М раствора Н2O2. Установившееся значение потенциала (E1) составляет 272 мВ. Далее вносят вторую добавку 0,060 мл того же раствора Н2O2. Установившееся значение потенциала (E2) составляет 298 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)2]+H202=n[Fe(SCN)3]+H2O2Red,

где H2O2Red - продукты восстановления пероксида водорода.

Результаты измерений приведены на фиг.2.

Оксидантную активность в этом случае рассчитывают по формуле:

O A = C ( h α O A ) h ( 1 α O A ) ,

где OA - оксидантная активность, М-экв;

C - концентрация восстановленной формы реагента [Fe(SCN)2] в исходном растворе, М;

αOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора Н2O2, B;

E2 - потенциал, измеренный после введения второй добавки раствора Н2O2, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления OA равна 0,02 M-экв, что соответствует двухэлектронному восстановлению пероксида водорода.

Пример 3

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл 0,01375М аскорбиновой кислоты. Установившееся значение потенциала (E1) составляет 442 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 464 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+AK=n[Fe(SCN)2]+АКOX,

где AK - аскорбиновая кислота, АКOX - продукт окисления аскорбиновой кислоты.

Результаты измерений приведены на фиг.3. Антиоксидантную активность в этом случае рассчитывают по формуле:

A O A = C ( h α A O A ) α A O A C h ( 1 α A O A ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора аскорбиновой кислоты, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C - концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что AOA равна 0,027 М-экв, что соответствует наличию двух функциональных групп в молекуле аскорбиновой кислоты, определяющих ее антиоксидантные свойства, т.е. n равно 2, что соответствует действительности.

Пример 4

В 5 мл водного раствора, содержащего 0,002М [Fe(SCN)3], опускают рабочий электрод и электрод сравнения и вносят 0,1 мл зеленого чая в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 431 мВ. Далее вносят 0,04 мл 0,025М [Fe(SCN)3]. Установившееся значение потенциала (E2) составляет 455 мВ.

Результаты измерений приведены на фиг.4.

Антиоксидантную активность в этом случае рассчитывают по формуле:

A O A = C ( 1 α A O A ) α A O A C h ( 1 α A O A ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M; α=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения добавки раствора зеленого чая, B;

E2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента [Fe(SCN)3], B;

C′- концентрация реагента [Fe(SCN)3] во второй добавке, M;

h - отношение объема второй добавки к общему объему раствора.

Расчет показывает, что АОА равна 0,036 М-экв.

Пример 5

В 5 мл раствора, содержащего 0,01М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 0,25 мл 0,060 М раствора токоферола в хлороформе. Установившееся значение потенциала (E1) составляет 469 мВ.

Далее вносят такое же количество токоферола. Установившееся значение потенциала (E2) составляет 438 мВ.

Изменение потенциала при этом происходит в результате протекания химической реакции в растворе:

n[Fe(SCN)3]+токоферол=n[Fe(SCN)2]+токоферолOX,

где токоферолOX - продукт окисления токоферола.

Результаты измерений приведены на фиг.5.

Антиоксидантную активность рассчитывают по формуле:

A O A = C ( h α A O A ) h ( 1 α A O A ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, M;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора токоферола, B;

E2 - потенциал, измеренный после введения второй добавки раствора токоферола, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления AOA равна 0,058 M-экв, что соответствует наличию одной функциональной группы в молекуле токоферола, определяющей его антиоксидантные свойства, что соответствует действительности.

Пример 6

В 5 мл раствора, содержащего 0,001М [Fe(SCN)3] в хлороформе и тетраэтиламмония тетрафторборат в качестве электролита, опускают рабочий электрод и электрод сравнения и вносят 1 мл подсолнечного нерафинированного масла в качестве реального объекта, содержащего антиоксиданты. Установившееся значение потенциала (E1) составляет 515 мВ. Далее вносят такое же количество нерафинированного масла. Установившееся значение потенциала (E2) составляет 469 мВ.

Результаты измерений приведены на фиг.6.

Антиоксидантную активность рассчитывают по формуле:

A O A = C ( h α A O A ) h ( 1 α A O A ) ,

где AOA - антиоксидантная активность, М-экв;

C - концентрация окисленной формы реагента [Fe(SCN)3] в исходном растворе, М;

αAOA=10(E1-E2)·n·F/R·T·2,303;

E1 - потенциал, измеренный после введения первой добавки раствора нерафинированного масла, B;

E2 - потенциал, измеренный после введения второй добавки раствора нерафинированного масла, B;

h - отношение общего объема добавленного раствора к объему первой добавки раствора.

Расчет показывает, что с учетом разбавления АОА равна 0,0022 М-экв.

1. Способ определения антиоксидантной/оксидантной активности раствора анализируемого вещества, включающий приготовление исходного раствора комплексного соединения и оценку антиоксидантной/оксидантной активности по электрохимическим параметрам раствора анализируемого вещества, отличающийся тем, что готовят исходный раствор, содержащий избыток окисленной/восстановленной формы реагента, вводят добавку раствора анализируемого вещества и измеряют окислительно-восстановительный потенциал раствора, затем вводят вторую добавку и измеряют окислительно-восстановительный потенциал раствора и в случае, если в качестве второй добавки используют раствор анализируемого вещества, то антиоксидантную/оксидантную активность рассчитывают по формуле:

где
АОА - антиоксидантная активность, М-экв;
ОА - оксидантная активность, М-экв;
С - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;
;
;
Е1 - потенциал, измеренный после введения первой добавки раствора анализируемого вещества, В;
Е2 - потенциал, измеренный после введения второй добавки раствора анализируемого вещества, В;
h - отношение общего объема добавленного раствора к объему первой добавки раствора;
а в случае, если в качестве второй добавки используют раствор окисленной/восстановленной формы реагента, то антиоксид антную/оксидантную активность рассчитывают по формуле:

где
АОА - антиоксидантная активность, М-экв;
ОА - оксидантная активность, М-экв;
С - концентрация окисленной/восстановленной формы реагента в исходном растворе, М;
;
;
Е1 - потенциал, измеренный после введения добавки раствора анализируемого вещества, В;
Е2 - потенциал, измеренный после введения добавки раствора окисленной формы реагента, В;
С′ - концентрация окисленной/восстановленной формы реагента во второй добавке, М;
h - отношение объема второй добавки к общему объему раствора.

2. Способ по п.1, отличающийся тем, что в качестве растворителя используют воду, органические протонные и апротонные жидкости или их смесь.

3. Способ по п.1, отличающийся тем, что в качестве окисленной/восстановленной формы реагента используют К3[Fe(CN)6], К3[Mn(CN)6], К3[Мо(CN)8], Fe(SCN)3], тетраэтиламмония гексацианоферрат (III), тетрабутиламмония гексацианоманганат(III), тетраэтиламмония тетрахлороферрат(III), Fe(III)-TPTZ, дикетонаты Fe(III), Ni(III), Co(III), К4[Fe(CN)6], К4[Mn(CN)6], K4[Mo(CN)8], [Fe(SCN)2], тетраэтиламмония гексацианоферрат (II), тетраэтиламмония тетрахлороферрат(II), Fe(II)-PDT, Fe(II)-TPTZ, дикетонаты Fe(II), Ni(II), Co(II).



 

Похожие патенты:

Изобретение относится к медицине и представляет собой реагент для детектирования глюкозы, содержащий фермент FAD-глюкозодегидрогеназу, фенотиазиновый или феноксазиновый медиатор, по меньшей мере один сурфактант, полимер и буфер.

Настоящее изобретение относится к аналитической химии ауксинов, в частности к способам определения индолил-уксусной кислоты в верхушках концевых приростов побегов и листьев яблони, груши, сливы, черешни, винограда и проростков пшеницы.

Изобретение относится к аналитической химии и может быть использовано для определения цинка (II) в технических и природных объектах. Способ заключается в потенциометрическом титровании пробы комплексоном (III) с индикаторным электродом из металлического висмута с буферным раствором при рН 4,1 - 9,0.

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках.

Использование: для анализа химических или физических свойств, элементного и фазового состава, марки, характера термической обработки металлов и сплавов в машиностроении, металлообработке и металлургической промышленности.

Изобретение относится к аналитической химии фосфора, в частности к способу определения общего фосфора в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа.
Использование: в материаловедении, криминалистике, ювелирном деле, а также гальванотехнике для определения состава изделий, выполненных из металлов или металлических сплавов, в том числе и имеющих металлические покрытия.

Изобретение относится к способу измерения редокс потенциала биологических сред и может быть использовано для мониторинга с целью получения диагностической информации о состоянии пациента.
Изобретение относится к аналитической химии сахаров, в частности к способам определения глюкозы, сахарозы, фруктозы в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа сахаров.

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к области техники, которая может удаленно осуществлять мониторинг образования и роста трещин в металлических конструкциях. Устройство содержит оболочку, которая имеет магнитные ножки для прикрепления оболочки к ферромагнитной конструкции, по меньшей мере одну пару управляемых микропроцессором регуляторов напряжения, причем каждый регулятор напряжения имеет провод датчика к электрохимическому усталостному датчику, прикрепленному к конструкции, подлежащей анализу на наличие растущих трещин вследствие усталости металла в металлической конструкции, источник питания и заземление, при этом регулятор напряжения используется для осуществления мониторинга усталостного состояния металлической конструкции, при этом каждый регулятор напряжения электрически изолирован от остальной части электрической монтажной платы устройства и содержит аналого-цифровой преобразователь. Посредством регулятора напряжения прикладывают напряжение через упомянутые датчики во время циклической нагрузки и измеряют ток, проходящий через упомянутые датчики, и оцифровывают результат измерения для анализа усталостного состояния металлической конструкции. Технический результат: возможность предотвращения появление шумов и искажения данных при измерении. 5 н. и 29 з.п. ф-лы, 4 ил.

Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания ионов Cu(II), Pb(II), Fe(III) и Bi(III) в различных матрицах. Техническим результатом изобретения является расширение перечня определяемых компонентов, разработка простого, чувствительного и экспрессного способа определения ионов переходных металлов в объектах окружающей среды, отходах промышленных производств, сложнооксидных материалах и других объектах методом капиллярного зонного электрофореза. Сущность изобретения: способ совместного определения ионов Cu(II), Pb(II), Fe(III) и Bi(III) методом капиллярного зонного электрофореза включает в себя предварительное комплексообразование компонентов пробы с этилендиаминтетрауксусной кислотой, ввод зоны пробы в немодифицированный кварцевый капилляр, заполненный фосфатным буферным электролитом, после зоны диглицилглицина, разделение компонентов при отрицательной полярности источника напряжения, прямое спектрофотометрическое детектирование при длине волны 260 нм, идентификацию и количественное определение каждого компонента по предварительно построенному градуировочному графику либо методом стандартных добавок. 4 ил.

Устройство для определения концентрации кислорода и водорода в газовой среде относится к средствам измерительной техники и может быть использовано для контроля параметров газовых сред, в частности содержащих кислород и водород. Устройство состоит из канала (7), расположенного под углом к горизонту, входного сенсора водорода (2) и входного сенсора кислорода (3), расположенных во входной части полости канала (7), входного каталитически активного элемента (1), установленного в полости канала (7) над выходными сенсорами водорода (2) и кислорода (3), выходного сенсора водорода (5) и выходного сенсора кислорода (6), расположенных в полости канала (7) между входным (1) и выходным (4) каталитически активными элементами. Причем входной (2) и выходной (4) каталитически активные элементы выполнены из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием. В качестве входного сенсора водорода (5) и выходного сенсора водорода (7) использованы твердоэлектролитные датчики концентрации водорода с керамическим чувствительным элементом, выполненным из кислородпроводящей керамики. Технический результат заключается в повышении быстродействия и чувствительности устройства, обеспечении защиты от ошибочных показаний устройства. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитической химии. Способ характеризуется тем, что электрохимически концентрируют бензойную кислоту на поверхности графитового электрода в течение 90 с при потенциале электролиза (-0,500) В на фоне 0,1 моль/л натрия гидрофосфата, затем регистрируют поляризационные кривые при линейной скорости развертки потенциала 25 мВ/с и по высоте пика в диапазоне потенциалов 0,5-1,6 В относительно хлорсеребряного электрода определяют концентрацию бензойной кислоты. Способ позволяет с высокой чувствительностью и экспрессностью определить бензойную кислоту в лекарственных препаратах. 3 пр., 6 табл.

Изобретение относится к электрохимическому процессору, включающему: a) первый электрод и второй электрод, каждый из которых имеет первую и противоположно расположенную вторую поверхности, причем первый электрод и второй электрод имеют различные электродные потенциалы и физически отделены друг от друга в направлении оси X, b) электролит, который покрывает по меньшей мере часть первой поверхности первого электрода и часть первой поверхности второго электрода в направлении оси Y и электрически соединяет указанный первый электрод со вторым электродом. При этом по меньшей мере часть первой поверхности второго электрода, не покрытая электролитом, покрыта в направлении оси Y электроизоляционным материалом, который граничит с электролитом, причем активация электрохимического процессора содействует латеральному расслоению второго электрода и изоляционного материала, начиная с места контакта второго электрода и изоляционного материала, что обеспечивает канал между вторым электродом и изоляционным материалом. Кроме того, изобретение относится к применению этого электрохимического процессора и способу сборки такого электрохимического процессора. Настоящий процессор обеспечивает постоянное время реакции. 3 н. и 14 з.п. ф-лы, 12 ил.

Изобретение относится к области аналитической химии и может быть использовано для автоматического или экспресс-анализа в лабораторных или промышленных условиях. Способ контроля основных компонентов хлоралюминатного расплава включает определение мольного соотношения этих компонентов в жидком хлоралюминатном расплаве потенцометрическим методом, при этом измерение разности потенциалов осуществляют между находящимися в электролите рабочим электродом из алюминия и алюминиевым электродом сравнения, который отделен диафрагмой от основного расплава и представляет собой сборку из керамического чехла и алюминиевой проволоки, погруженной в находящийся в чехле хлоралюминатный расплав, насыщенный по твердому хлориду калия, причем мольное соотношение основных компонентов в расплаве определяют по величине разности потенциалов между электродами с помощью заранее построенных градуировочных зависимостей в координатах «разница потенциалов - отношение концентраций хлорида калия к хлориду алюминия». Достигаемый при реализации изобретения технический результат заключается в компактности установки, дешевизне используемых материалов и простоте технологического оборудования, применяемого для реализации данного способа. 1 з.п. ф-лы, 2 пр., 2 ил.
Изобретение относится к медицине, а именно к лабораторной диагностике, и предназначено для исследования глюкозы и общего белка в сыворотке крови. Способ предусматривает для исследования сыворотки крови применять биполярный метод поличастотной электроимпедансометрии с определением модульного значения импеданса (|Z|) и фазового угла (φ) на частотах 20, 98, 1000, 5000, 10000, и 20000 Гц переменного электрического тока малой мощности с помощью программно-аппаратного комплекса, оснащенного программой для ЭВМ «БИА-лаб Композитум», при этом проводят измерение в микрокамере объемом 50 мкл, при этом программа автоматически рассчитывает концентрацию общего белка, глюкозы, хлоридов и двухвалентных ионов в сыворотке крови на основании решения системы математических уравнений, а результат отображается на дисплее и может быть распечатан на принтере. Достигается повышение эффективности диагностики за счет устранения необходимости в применении химических реактивов, уменьшение времени выполнения исследования, снижение себестоимости и расширение показаний для применения метода. 3 пр.

Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по заданной формуле. Технический результат: обеспечение возможности повышения точности контроля и определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала. 2 табл.

Группа изобретений относится к медицине, косметологии, производству продуктов питания, витаминов, БАДов, лекарственных средств и описывает варианты устройства для реализации неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающего прибор для измерения потенциалов и двухсторонний электрод, выполненный в виде пластины с одинаковыми рабочими поверхностями, покрытыми электропроводящим гелем, содержащим медиаторную систему. Электроды закрепляют на биологической ткани таким образом, что одна рабочая поверхность, выполняющая роль измерительного электрода, находится в непосредственном контакте с биологической тканью через гель, вторая рабочая поверхность выполняет роль электрода сравнения. При этом электроды через гель контактируют друг с другом, а оксидантную/антиоксидантную активность определяют по формулам, используя разность конечного и начального потенциалов. Достигается упрощение, а также повышение точности и достоверности определения. 2 н. и 12 з.п. ф-лы, 3 табл., 4 ил.

Изобретение относится к аналитической химии азота, в частности к определению общего азота в сельскохозяйственном сырье и продуктах его переработки. Способ характеризуется тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания аммонийного азота не более 1000 мг/дм3 и выполнение анализа методом капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм с получением электрофореграммы, причем общий азот определяют по содержанию аммонийного азота и остаточному содержанию нитрат- и нитрит- ионов, причем для определения аммонийного азота используют водный раствор ведущего электролита, содержащий бензимидазол, 18-краун-эфир-6, сульфат натрия при положительном напряжении на капилляре 12 кВ и длине волны детектирования - 254 нм, а для определения методом капиллярного электрофореза остаточного содержания нитрат- и нитрит-ионов применяют водный раствор ведущего электролита, содержащего хромат калия, уротропин и Трилон Б при отрицательном напряжении на капилляре 14 кВ и длине волны детектирования -254 нм. Достигается повышение экспрессности, достоверности и информативности анализа. 6 пр., 1 табл., 2 ил.
Наверх