Теплоизоляционная система

Изобретение относится к криогенной технике. Теплоизоляционная система содержит изоляцию и внешний кожух. Также система содержит находящийся в тепловом контакте с криогенным оборудованием теплообменник-вымораживатель. Выход теплообменника-вымораживателя направлен вовнутрь теплоизоляции, а на вход теплообменника-вымораживателя поступает воздух из окружающей среды. Влага в теплообменнике-вымораживателе из воздуха в процессе работы конденсируется и вымораживается и затем удаляется назад в окружающую среду в процессе работы оборудования или при его отогреве. Достигается сохранение постоянного значения теплоизоляционной эффективности криогенного оборудования в течение длительного времени и, как следствие, увеличение срока службы криогенного оборудования. 6 з.п. ф-лы, 3 ил.

 

Изобретение относится к криогенной технике и может быть использовано при проектировании и изготовлении криогенных трубопроводов, резервуаров, сосудов, аппаратов и установок для транспортировки, хранения или производства жидких и газообразных сред, имеющих сверхнизкую температуру.

Известна теплоизоляция криогенных емкостей (SU 1695028 А1, опубл. 30.11.1991), в которой в качестве теплоизоляции используются два слоя пенопласта, каждый из которых покрыт герметиком. Первый, прилегающий к емкости, слой пенопласта включает распределенный адсорбент. Введение частиц адсорбента в первый слой изоляции способствует поглощению диффундирующих в него через герметик газов, в частности паров влаги. А для снижения диффузии газов и особенно влаги в изоляцию из атмосферы предназначены оба слоя герметика. Однако данная конструкция теплоизоляции криогенных емкостей имеет существенные недостатки. Так, внутренний слой герметика при низких температурах, имеющих место в изоляции, остекловывается, становится хрупким, местами растрескивается, и его защитная функция как барьера для водяного пара резко снижается. Также введение больших количеств адсорбента в первый, контактирующий с криогенной емкостью, слой изоляции повышает теплопроводность пенопласта, что снижает теплозащитные свойства изоляционной системы. Малое же количество адсорбента не позволяет длительное время поглощать все поступающие в слой изоляции пары влаги.

Известна конструкция теплоизоляционной системы воздухоразделительных установок (М.Г. Каганер / «Тепловая изоляция в технике низких температур», издательство «МАШИНОСТРОЕНИЕ», Москва, 1966 год, стр.232), в которой аппараты помещают в общий кожух и изолируют волокнистыми материалами. Изоляционный материал занимает все пространство между кожухом и расположенными в нем аппаратами и трубопроводами. Для защиты изоляции от увлажнения внутрь кожуха подают под небольшим избыточным давлением часть отходящего из блока разделения сухого азота, препятствующего проникновению во внутреннее пространство кожуха влажного атмосферного воздуха. С этой целью в изоляционном пространстве помещают несколько перфорированных трубок, в которые подают газ с помощью специального вентиля на линии выхода азота из блока разделения. Однако данная конструкция изоляционной системы обладает существенным недостатком - имеет место постоянная утечка сухого газа в окружающую среду. Так же, как недостаток данной теплоизоляционной системы, следует отметить, что в ряде случаев криогенные установки или хранилища криогенных продуктов не имеют доступного источника сухого газа. В этом случае для реализации данной конструкции теплоизоляционной системы приходится создавать дорогостоящую систему снабжения установки сухим газом.

Наиболее близкой к предлагаемому изобретению является выбранная как прототип теплоизоляционная система (см. SU 117299 А, заявлено 12.06.1958, заявка №601811) - способ хранения сжиженных газов при низких температурах в сосудах с пористой охлаждающей изоляцией. В теплоизоляционной системе уменьшается количество испаряющегося сжиженного газа при его хранении вследствие того, что изоляция сосуда охлаждается атмосферным воздухом, предварительно охлажденным, осушенным и очищенным в холодильниках путем теплообмена с отходящими парами испаряющегося сжиженного газа. Однако теплоизоляционная система по данному способу имеет ряд существенных недостатков. Так, в системе используется постоянное в процессе хранения механическое переключение клапанов, что снижает надежность системы хранения. Более того, для части периода работы каждого из регенераторов теплообмен в теплообменниках протекает при низком температурном напоре, что снижает термодинамический коэффициент полезного действия, а влага и другие примеси, находящиеся в подсосанном атмосферном воздухе, не полностью выносятся из регенераторов.

Задачей настоящего изобретения является предотвращение накопления воды в слоях низкотемпературной изоляции и, как следствие, исключение снижения изоляционных свойств теплоизоляционной системы.

Одна из значимых проблем при функционировании теплоизоляционных систем криогенного оборудования - это попадание и накопление в ее изоляционной полости влаги.

Влага попадает в полость вместе с атмосферным воздухом, который попадает в полость из-за периодически возникающего перепада давления между атмосферным воздухом и давлением газа в полости. Перепад давления возникает по следующим причинам:

- при захолаживании криогенного оборудования.

В этом случае происходит снижение средней температуры газа в полости, и, соответственно, снижение в ней давления и подсос воздуха из окружающей среды. При отогреве происходит обратный процесс;

- из-за изменений атмосферного давления.

При погодных изменениях атмосферного давления темп падения или роста давления в отдельных случаях достигает 1 мм рт.ст. в час. Поскольку изменения атмосферного давления должны быть компенсированы в теплоизоляционной полости, то происходит натекание атмосферного воздуха в полость, если атмосферное давление растет, и истечение газов из полости, если атмосферное давление падает;

- из-за изменения температуры окружающего воздуха.

Когда происходит падение температуры окружающей среды и, соответственно, происходит падение средней температуры газа в изоляционной полости, падение давления газа в полости и натекание атмосферного воздуха в теплоизоляционную полость для компенсации этого падения.

Влагосодержание воздуха, например, при 20°С составляет примерно 17,3 г на куб.м при 100% влажности. Это означает, что при каждом захолаживании в теплоизоляционную полость попадает и оседает в ней примерно 17,3 грамма воды на каждый 1 куб.м теплоизоляционной полости. При каждом колебании атмосферного давления и температуры окружающей среды в полость попадает некоторая доля от этого количества воды. Поскольку криогенное оборудование функционирует длительное время, то в полость попадает значительное количество воды.

Объем изоляционного пространства у различного криогенного оборудования может существенно различаться. Так, сосуды Дьюара имеют объемы изоляционного пространства от 0,5 л до 500 л, криогенные резервуары внутренним объемом от 3 до 200 куб.м имеют объемы изоляционного пространства от 0,5 до 130 куб.м. В то же время крупные воздухоразделительные установки (ВРУ) имеют объемы изоляционного пространства до 4 тыс. куб.м. Соответственно пропорционально объему варьируется и количество всасываемой в полость воды.

Влага, попадая в теплоизоляционную полость, практически полностью вымораживается в слое изоляции и на поверхностях оборудования, охлажденных до сверхнизких температур, что приводит к повышению средней плотности изоляции и к существенному снижению ее теплопроводности. При этом обратная миграция влаги из изоляции практически отсутствует.

Технический результат изобретения заключается в сохранении постоянного значения теплоизоляционной эффективности криогенного оборудования в течение длительного времени и, как следствие, увеличение срока службы криогенного оборудования.

Технический результат достигается тем, что конструкция теплоизоляционной системы криогенного оборудования содержит теплообменник-вымораживатель, через который проходит воздух, всасываемый в теплоизоляционную систему из окружающей среды при возникновении перепада давления между газом в теплоизоляционной системе и окружающим оборудование воздухом. В данном теплообменнике-вымораживателе воздух охлаждается, и из него конденсируется или вымораживается вода. Сконденсировавшаяся в жидкую фазу вода самотеком вытекает из теплообменника-вымораживателя назад наружу кожуха. Вымороженная вода оседает на элементах теплообменника-вымораживателя. В процессе работы оборудования или при отогреве оборудования вымороженная вода тает, превращается в жидкую фазу и также самотеком вытекает из теплообменника-вымораживателя и корпуса оборудования наружу в окружающую среду. Благодаря данному процессу в изоляционной системе не происходит накопления влаги.

Теплоизоляционная система включает изоляцию и внешний кожух, содержит находящийся в тепловом контакте с криогенным оборудованием теплообменник-вымораживатель, выход которого направлен вовнутрь теплоизоляции, а на вход поступает воздух из окружающей среды, при этом влага из воздуха в процессе работы теплообменника-вымораживателя конденсируется и вымораживается, затем влага удаляется назад в окружающую среду в процессе работы оборудования или при его отогреве.

В теплоизоляционную систему может быть добавлен теплообменник-вымораживатель, расположенный в слое теплоизоляции. При этом оба теплообменника-вымораживателя представляют собой змеевики

Теплообменник-вымораживатель может представлять собой змеевик, находящийся в тепловом контакте с криогенным оборудованием.

Выход из теплообменника-вымораживателя может происходить в перфорированную трубу, расположенную между изоляцией и криогенным оборудованием.

Теплоизоляционная система может содержать дополнительную трубу, подведенную к теплообменнику-вымораживателю, предназначенную для выдува влаги из теплообменника-вымораживателя.

Теплообменник-вымораживатель может быть оснащен электрическим отогревателем или иметь дополнительную трубку, по которой в процессе регенерации внутрь теплообменника-вымораживателя подается горячий воздух.

Сущность изобретения поясняется чертежами, где:

на Фиг.1 изображен поперечный разрез теплоизоляционной системы криогенного резервуара или аппарата по настоящему изобретению;

на Фиг.2 изображен поперечный разрез теплоизоляционной системы криогенного резервуара или аппарата по настоящему изобретению, когда в качестве теплообменников-вымораживателей используются змеевики;

на Фиг.3 изображен поперечный разрез теплоизоляционной системы криогенного трубопровода по настоящему изобретению, когда в качестве теплообменников-вымораживателей используются змеевики.

Рассмотрим предлагаемую конструкцию теплоизоляционной системы по Фиг.1:

1 - герметичный кожух криогенного оборудования;

2 - внутренний сосуд криогенного резервуара или аппарата, охлажденного до криогенных температур, или криогенный трубопровод;

3 - выпускной трубопровод криогенного резервуара;

4 - заправочный трубопровод резервуара;

5 - тепловая изоляция криогенного резервуара или аппаратов.

Изоляция расположена между внутренним сосудом или аппаратами и внешним герметичным кожухом.

В качестве изоляции могут быть порошковые материалы (вспученный перлитовый песок, аэрогель, микросферы и др.), могут быть волокнистые материалы (вата или маты из стеклянного, базальтового или другого волокна), могут быть ячеистые материалы (пенополиуретановые пены, обладающие недостаточно низкой паропроницаемостью, а также пеностекло и другие пены);

6 - криогенная жидкость;

7 - теплообменник-вымораживатель, расположенный в тепловом контакте с внутренним сосудом криогенного резервуара или криогенного аппарата.

Теплообменник-вымораживатель предпочтительно должен быть расположен в нижней части внутреннего сосуда, которая при наличии в сосуде криогенной жидкости всегда охлаждена вне зависимости от ее количества в сосуде. Однако теплообменник может быть конструктивно расположен и на других частях внутреннего сосуда, учитывая высокую теплопроводность материала внутреннего сосуда. Теплообменник-вымораживатель может быть достаточно произвольной конструкции при условии, что его объем и площадь поверхности ребер достаточны, чтобы выморозить всю влагу, поступающую из окружающей среды за цикл работы криогенного оборудования. Также конструкция теплообменника-вымораживателя должна позволять вытеканию из него всей влаги, которая в нем образуется при отогреве;

8 - теплообменник-вымораживатель, расположенный в слое теплоизоляции. Данный теплообменник-вымораживатель 8 имеет более высокую температуру, чем теплообменник-вымораживатель 7. Теплообменник-вымораживатель 8 предназначен для вымораживания паров воды при колебаниях атмосферного давления и может быть по размерам рассчитан на меньшее количество влаги, чем теплообменник-вымораживатель 7. Теплообменник-вымораживатель 7 предназначен для вымораживания влаги в первую очередь при захолаживании оборудования;

9 - перфорированный трубопровод, предназначенный для вывода из теплообменника-вымораживателя 7 осушенного воздуха и распределения его по теплоизоляционному слою. Предпочтительное перфорированный трубопровод 9 расположен вдоль внутреннего сосуда, что снижает излишний теплоприток к внутреннему сосуду;

10 - трубопровод, по которому поступает для выравнивания давления атмосферный воздух в теплоизоляционную полость оборудования.

На Фиг.2 изображена теплоизоляционная система криогенного резервуара или аппарата, когда в качестве теплообменников-вымораживателей применены змеевики как наиболее простой и технологичный вариант данных устройств. При этом змеевики должны быть навиты и расположены таким образом, чтобы влага могла беспрепятственно вытекать из них в период отогрева или регенерации.

На Фиг.3 рассмотрен вариант теплоизоляционной системы криогенного трубопровода со змеевиками в качестве теплообменников вымораживателей. При этом теплообменник-вымораживатель 7 в виде змеевика и перфорированный трубопровод 9 располагаются на внешней стороне внутренней трубы.

В случаях когда криогенное оборудование имеет длительный ресурс работы и когда в теплообменниках-вымораживателях может происходить накопление избыточного количества льда, который перекрывает движение воздуха, возможно оснащение теплообменников-вымораживателей электрическими отогревателями. Эти отогреватели периодически включаются, и под действием выделяемого ими тепла происходит плавка льда и вытекание образовавшейся воды наружу оборудования. Также возможно выдувать образовавшуюся воду через дополнительный трубопровод либо осуществлять плавку льда нагнетанием в теплообменники-вымораживатели горячего воздуха.

Устройство работает следующим образом.

Теплоизоляционная система осуществляет защиту и снижение теплового потока из окружающей среды к работающему оборудованию, внутренние части которого имеют криогенную температуру. При этом для криогенных сосудов, резервуаров или аппарата под работой подразумевается хранение криопродуктов, для криогенных трубопроводов - транспортирование криопродуктов, для газоразделительных (воздухоразделительных) и других установок - функционирование, при котором в установке есть какие-либо элементы, охлажденные до криогенных температур. Отогрев оборудования имеет место после удаления криопродуктов из аппаратов или при регенерации аппаратов, когда осуществляется цикл отогрева, а затем вновь цикл захолаживания устройств.

При захолаживании оборудования происходит одновременное охлаждение изоляции оборудования и теплообменника-вымораживателя 7. С понижением температуры в изоляции происходит падение давления наполняющего ее газа. Из-за возникшего перепада давления между давлением газа в изоляции и давлением окружающей среды воздух из окружающей среды начинает поступать внутрь оборудования через трубопровод 10. Из трубопровода 10 влажный воздух поступает в теплообменник вымораживатель 7, где влага вымораживается как при захолаживании оборудования, так и если перепад давления обусловлен изменением внешних давления или температуры. В теплообменнике-вымораживателе 7 может происходить конденсация влаги в жидкое состояние или вымораживание ее в лед. Осушенный воздух после теплообменника-вымораживателя 7 попадает в изоляционное пространство оборудования, в результате чего происходит выравнивание давления.

В случае если в теплоизоляционную систему добавлен второй теплообменник-вымораживатель 8, который расположен в слое теплоизоляции, то устройство работает аналогичным образом, однако при этом теплообменник-вымораживатель 8 является первым по потоку воздуха из окружающей среды, он находится в слое изоляции, имеет более высокую температуру, чем теплообменник-вымораживатель 7. Поэтому в теплообменнике-вымораживателе 8 при работе устройства происходит предварительное вымораживание влаги, а в теплообменнике-вымораживателе 7 - окончательное вымораживание влаги, чем достигается более эффективная работа устройства. Теплообменники-вымораживатели могут иметь конструкцию в виде змеевиков, как показано на Фиг.2. В этом случае в процессе работы устройства образующаяся в змеевиках влага вытекает из них самотеком. В случае если теплообменники-вымораживатели имеют отличную от змеевика конструкцию, влага из них удаляется, например, продувкой через дополнительную трубу.

Выходящий из теплообменника-вымораживателя 7 осушенный воздух в процессе работы направляется в перфорированную трубу 9, из которой он равномерно распределяется в массиве изоляции. Если в процессе работы в теплообменниках-вымораживателях происходит накопление значительного количества водяного льда, он растапливается электрическим отогревателем или горячим воздухом, который подается внутрь теплообменников-вымораживателей по дополнительной трубке. При этом вода от растопленного льда самотеком выводится наружу теплоизоляционной системы или удаляется выдуванием.

1. Теплоизоляционная система, включающая изоляцию и внешний кожух, отличающаяся тем, что содержит находящийся в тепловом контакте с криогенным оборудованием теплообменник-вымораживатель, выход которого направлен вовнутрь теплоизоляции, а на вход поступает воздух из окружающей среды, при этом влага из воздуха в процессе работы теплообменника-вымораживателя конденсируется и вымораживается, затем влага удаляется назад в окружающую среду в процессе работы оборудования или при его отогреве.

2. Теплоизоляционная система по п.1, отличающаяся тем, что в нее добавлен теплообменник-вымораживатель, расположенный в слое теплоизоляции.

3. Теплоизоляционная система по п.1, отличающаяся тем, что теплообменник-вымораживатель представляет собой змеевик, находящийся в тепловом контакте с криогенным оборудованием.

4. Теплоизоляционная система по п.2, отличающаяся тем, что оба теплообменника-вымораживателя представляют собой змеевики.

5. Теплоизоляционная система по п.1, отличающаяся тем, что выход из теплообменника-вымораживателя происходит в перфорированную трубу, расположенную между изоляцией и криогенным оборудованием.

6. Теплоизоляционная система по п.1, отличающаяся тем, что содержит дополнительную трубу, подведенную к теплообменнику-вымораживателю и предназначенную для выдува влаги из теплообменника-вымораживателя.

7. Теплоизоляционная система по п.1, отличающаяся тем, что теплообменник-вымораживатель оснащен электрическим отогревателем или имеет дополнительную трубку, по которой в процессе регенерации внутрь теплообменника-вымораживателя подается горячий воздух.



 

Похожие патенты:

Изобретение относится к теплоизоляции магистральных и технологических нефтепроводов и нефтепродуктопроводов. Способ включает операции измерения геометрических размеров вантуза, при этом проектируют и изготавливают индивидуально под конструкцию вантуза в заводских условиях кожух из двух или более частей тонколистовой оцинкованной стали, на кожух устанавливают с помощью мастики теплоизоляционный слой из пеностекла, швы теплоизоляционного слоя, установленного на части кожуха, соединяют с применением герметизирующих материалов, на поверхность пеностекла, контактирующего с вантузом, наносят антиабразив для защиты антикоррозионного покрытия вантуза, при помощи замков, металлических стяжек с замками и самонарезающих винтов соединяют части кожуха с теплоизоляционным слоем.

Устройство и способ предназначены для формирования секций трубной изоляции из минеральной ваты. Устройство содержит участок отверждения секций трубной изоляции из минеральной ваты, содержащий одну или более форм (31, 32), цилиндрических со стороны внутренней поверхности, при этом участок отверждения секций трубной изоляции из минеральной ваты дополнительно содержит сердечники (51, 52), установленные по одному внутри каждой формы или выполненные с возможностью установки в нее и извлечения из нее, причем для каждой формы (31, 32) предусмотрены первые элементы для нагревания формы, по меньшей мере, по ее внутренней поверхности, и вторые элементы для воздействия на секции трубной изоляции из минеральной ваты, установленные в формах, с помощью микроволнового излучения, причем указанные вторые элементы представляют собой генераторы (61, 62), служащие для передачи микроволновой энергии к каждой форме посредством проводящих модулей (11, 12) и переходных элементов (21, 22), при этом указанные сердечники выполнены из материала, нагревающегося под воздействием микроволнового излучения.

Группа изобретений относится к области транспортного машиностроения. Трехмерный структурированный металлический лист для использования в автомобильных тепловых экранах имеет множество углублений или выпуклостей.
Изобретение относится к теплоизоляции магистральных и технологических нефтепроводов и нефтепродуктопроводов, а именно к способу теплоизоляции запорно-регулирующей арматуры (ЗРА) малых диаметров.

Изобретение относится к изоляционной кассете, предназначенной для использования в качестве части изоляционной оболочки трубы. Сущность изобретения: Изоляционная кассета в качестве части оболочки устройств парогенератора, находящихся под средним давлением, например, в качестве изоляционного кожуха трубы.

Изобретение относится к области теплоизоляции трубопроводов и позволяет повысить механическую прочность покрытия. Способ включает подготовку подлежащей теплоизоляции поверхности очисткой ее от продуктов коррозии, нанесение теплоизоляционного слоя и полимеризацию полученного покрытия.

Изобретение относится к теплоизоляционной технике, в частности к тепловой изоляции оборудования атомных электростанций. Блочная съемная тепловая изоляция содержит расположенные последовательно по длине теплоизолируемого оборудования и состыкованные между собой одинаковые секции из N одинаковых теплоизоляционных блоков, состыкованных между собой, по расположенным под углом φ=2π/N продольным боковым стенкам.

Изобретение относится к области машиностроения. .

Изобретение относится к области машиностроения и направлено на совершенствование гибких газоводов, работающих в условиях высоких температур порядка 1000-2000°С и переменных давлений в диапазоне 2-10 МПа.
Изобретение относится к промышленности строительных материалов и может быть использовано в качестве защитно-механического покрытия монолитной тепловой изоляции бесканальных тепловых сетей.

Изобретение относится к способу производства теплоизоляционной композиции, включающему введение в композицию жидкого стекла связующее наполнителей в виде стеклянных микросфер, углеродистых микроволокон с фибриллами, красителей. Способ характеризуется тем, что в поверхностно-активную жидкость - олеиновую кислоту, взятую в объеме 13,5-15,2% от объема композиции, вводят наночастицы магнетита размером от 10-20 нанометров, покрытые поверхностно-активным веществом - олеиновой кислотой объемом 8-10% от объема композиции, накладывают вращающееся электромагнитное поле силой 700-800 кА/м, затем после начала вращения смеси поверхностно-активного вещества - олеиновой кислоты и наночастиц магнетита вводят жидкое стекло 10-15% от объема композиции, после чего вводят стеклянные микросферы в количестве 20-25% от объема композиции и осуществляют 5000-6000 оборотов в минуту вращающегося магнитного поля (в течение 3-4 минут при частоте вращения магнитного поля 1500 оборотов в минуту), после чего во вращающуюся смесь поверхностно-активного вещества - олеиновой кислоты, наночастиц магнетита, жидкого стекла вводят стеклянные микросферы 30-35% от объема композиции и осуществляют не менее 10000 оборотов в минуту вращающегося электромагнитного поля (не менее 7 минут при частоте вращения магнитного поля 1500 об/мин), затем в смесь поверхностно- активного вещества - олеиновой кислоты вводят углеродистые микроволокна с фибриллами в объеме 5-7% от объема композиции, красители 2-3% от объема композиции и вводится жидкое стекло до заданного объема композиции и осуществляется наложение вращающегося электромагнитного поля не менее 15000 оборотов в минуту (не менее 10 минут при частоте вращения магнитного поля 1500 об/мин). Использование настоящего изобретения позволяет повысить равномерность распределения стеклянных микросфер и различных наполнителей по всему объему композиции и устранение их взаимного контакта. 1 ил.

Изобретение относится к области машиностроения и направлено на разработку способа сборки гибких газоводов, работающих в условиях высоких температур и переменных давлений. Гибкий газовод содержит подвижный телескопический узел в виде металлических оболочек, сопряженных по цилиндрическим поверхностям с уплотнительным кольцом, и эластичный шарнир. Способ сборки основан на фланцевом соединении металлических оболочек с одной стороны и телескопическим соединением с другой. Первоначально газовод фиксируют от радиальных и осевых перемещений торцовыми упорами и прикладывают осевую нагрузку. Это позволяет обеспечить неподвижность эластичного шарнира и предотвратить его разрушение на этапе сборки. Затем газовод соединяется с ответным телескопическим узлом, а с противоположной стороны с ответным фланцевым узлом. После этого проводят испытания на герметичность газовода и снимают осевое усилие. Задачей изобретения является разработка способа сборки газовода, при котором исключается разрушение эластичного шарнира, тем самым повышается надежность работы газовода. 2 н.п. ф-лы, 1 ил.
Изобретение относится к жидкой фенольной смоле, предназначенной для введения в проклеивающий состав для минеральных волокон, которая содержит главным образом феноло-формальдегидные конденсаты и феноло-формальдегид-глициновые конденсаты. Изобретение относится также к способу получения вышеуказанной смолы, к проклеивающему составу, содержащему смолу, и к изоляционным материалам на основе минеральных волокон, проклеенных посредством указанного проклеивающего состава. 4 н. и 12 з.п. ф-лы, 2 табл., 9 пр.

Группа изобретений относится к области машиностроения, в частности газоводам систем подачи газов при повышенных температурах и переменных давлениях в условиях ограниченных пространств расположения источников газа и его потребителей. Газовод представляет пространственно-изогнутую конструкцию с внутренней герметизирующей оболочкой из теплостойкой резины и наружной силовой оболочкой из прорезиненной легкодеформируемой ткани, соединенных между собой с образованием уплотнительных буртов на концах, прижимаемых фланцами к местам присоединения при применении. Сущность способа изготовления заключается в формировании герметизирующей и силовой оболочек из композиционных материалов, в оформлении их соединения с образованием уплотнительных буртов на концах газовода и деформировании исходной цилиндрической заготовки до требуемых размеров и формы. Достигается повышение надежности и технологичности конструкции, а также расширение области применения за счет придания газоводу любой требуемой формы. 2 н. и 2 з.п. ф-лы, 5 ил.
Изобретение относится к пенопласту на основе фенольных смол и его применению. Пенопласт изготавливается по меньшей мере с применением следующих стадий: а) изготовление преполимера путем конденсации по меньшей мере фенольного соединения и формальдегида в соотношении 1:1,0-1:3,0 с применением 0,15-5 мас.% от количества используемого сырья основного катализатора при температуре от 50 до 100°C с получением коэффициента преломления реакционной смеси 1,4990-1,5020, измеренного при 25°C в соответствии с DIN 51423-2; б) добавка от 5 до 40 мас.% от количества используемого сырья по меньшей мере одного натурального полифенола при температуре от 50 до 100°C; в) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких эмульгаторов и их смесей; г) добавка от 2 до 10 мас.% от количества используемого сырья одного или нескольких порообразователей и их смесей; д) добавка от 10 до 20 мас.% от количества используемого сырья отвердителя и е) отверждение. Результатом является создание основанного на биологическом материале термореактивного пенопласта с улучшенными свойствами, в частности улучшенными огнезащитными свойствами, при, по существу, неизменных свойствах пенопласта. 2 н. и 8 з.п. ф-лы, 6 пр.

Настоящее изобретение касается устойчивых к высоким температурам пеноматериалов и их получения в результате превращения реакционных смесей из органических полиизоцианатов и органических полиэпоксидов путем добавления вспенивающих агентов и катализаторов, ускоряющих реакцию изоцианат/эпоксид, в окончательно вспененную, более не плавящуюся смолу на стадии С, а также их применения. Описаны устойчивые к высоким температурам пеноматериалы, которые получают в результате взаимодействия a) по меньшей мере одного органического полиизоцианата с b) по меньшей мере одним органическим соединением, содержащим по меньшей мере две эпоксидные группы, в таком количестве, которое соответствует эквивалентному соотношению изоцианатных групп и эпоксидных групп от 1,2:1 до 500:1, e) при необходимости в присутствии вспомогательных веществ и добавок, причем взаимодействие осуществляют в присутствии муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид. В изобретении раскрыты способы получения устойчивых к высоким температурам пеноматериалов путем взаимодействия описанного компонента a) с компонентами b), е), причем взаимодействие проводят в присутствии муравьиной кислоты в качестве вспенивающего агента и в присутствии d) стабилизатора из группы, состоящей из органических сложных эфиров сульфокислот, метил-йодида, диметилсульфата, ангидрида бензолсульфокислоты, хлорангидрида бензолсульфоксилоты, бензолсульфокислоты, триметилсилилтрифторметансульфоната, продукта взаимодействия бензолсульфокислоты с эпоксидами, а также их смесей, и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, со вспениванием. Также раскрыт способ получения устойчивых к высоким температурам пеноматериалов при помощи (i) смешивания компонентов a) и b), ii) реакции этой смеси с добавлением c) третичного амина в качестве катализатора до промежуточного продукта и (iii) прерывания реакции при достижении превращения не более 60% изоцианатных групп изоцианата а) путем добавления по меньшей мере эквивалентного количеству амина с) количества d) стабилизатора, так что получают промежуточную устойчивую смолу на стадии В с вязкостью в интервале от 1500 до 20000 мПа·с при 25°C, е) при необходимости в присутствии вспомогательных веществ и добавок, причем полученную на стадии (iii) смесь в результате добавления муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, переводят во вспененное состояние. В изобретении также описано применение получаемых устойчивых к высоким температурам пеноматериалов и применение пенообразующих смесей в конце вспенивания до устойчивого к высокой температуре пеноматериала. Технический результат - получение устойчивых к высоким температурам пеноматериалов с очень хорошими механическими свойствами, которые могут быть получены простым способом, так что при промышленном производстве они могут изготавливаться за короткое время заполнения формы. 7 н. и 4 з.п. ф-лы, 3 табл., 10 пр.
Изобретение относится к способам теплогидроизоляции труб для подземной, бесканальной и надземной прокладки трубопроводов. Способ нанесения двухслойной теплогидроизоляции труб, заключающийся в послойном нанесении навивкой на вращающуюся трубу теплоизолирующего слоя на основе полимерной смеси пенофенопласта и наружного гидроизолирующего резинового слоя на основе синтетических каучуков с последующей прикаткой, и термообработкой в автоклаве, отличающийся тем, что процесс навивки и прикатки обоих слоев проводится в горячем состоянии при температуре 65-90°C, процесс вспенивания и отверждения внутреннего теплоизолирующего слоя проводится в автоклаве при температуре 115-135°C в течение 30-60 мин с одновременным деформированием наружного гидроизолирующего резинового слоя, процесс вулканизации внешнего гидроизолирующего слоя проводится в том же автоклаве при температуре 143-170°C в течение 45-90 мин. Технический результат - повышение контакта внутреннего теплоизолирующего слоя к трубе, повышение адгезии между теплоизолирующим и гидроизолирующим слоями, предотвращение растрескивания при транспортировке, монтаже и эксплуатации.

Изобретение относится к способам изготовления изотермических изделий и изотермическим изделиям, которые могут быть использованы, в частности, для внутренней и внешней отделки помещений. Техническим результатом, достигаемым при реализации настоящего изобретения, является создание долговечных, прочных, герметичных изотермических изделий любой геометрической формы и обладающих улучшенными теплоизоляционными свойствами и прочностными характеристиками. Способ изготовления фигурного изотермического изделия заключается в последовательном выполнении этапов, на которых: определяют форму фигурного изотермического изделия, определяют формы фигурных элементов, изготавливают теплоизоляционные слои фигурных элементов, временно соединяют эти теплоизоляционные слои, наносят на полученный теплоизоляционный слой фигурного изотермического изделия композитный материал и осуществляют его полимеризацию. 4 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области теплоизоляции трубчатых изделий и направлено на повышение эксплуатационных и физико-механическими качеств/характеристик, что приводит к повышению теплоизоляционных свойств и увеличению срока эксплуатации теплоизолированной конструкции трубы. Указанный технический результат в способе изготовления теплоизолированной трубы, включающем установку ее в защитную оболочку, герметизацию защитной оболочки и нанесение на трубу полимерных теплоизоляционных материалов, достигается тем, что предварительно на внешнюю поверхность трубы наносят антикоррозионное покрытие, после чего монтируют на внешней поверхности трубы или на внутренней поверхности защитной оболочки полимерные теплоизоляционные материалы, выполненные в виде сегментов на основе прямоугольной формы или скорлуп и над или под которые устанавливают центрирующие опоры, затем собирают защитную оболочку и трубу для получения конструкции «труба в трубе», после чего проводят заливку свободного межтрубного пространства пенополиуретаном с применением заливочных машин высокого давления, при этом центрирующие опоры выполнены из материала с коэффициентом теплопроводности, подобным коэффициенту теплопроводности пенополиуретана. 6 з.п. ф-лы, 4 ил.

Изобретение относится к технологии производства теплоизоляционных материалов и может быть использовано в авиакосмической технике, в приборостроении, машиностроении, строительстве и других областях техники. Микропористый теплоизоляционный материал состоит из аморфных сферических частиц диоксида кремния размером 100 мкм и плоских частиц диоксида кремния с размерами до 20 нм, кремнеземных волокон диаметром 2-3 мкм, и минерального порошкового наполнителя пластинчатой формы с размером частиц 2-7 мкм, в следующем соотношении компонентов, мас.%: аморфный диоксид кремния сферические частицы 37,4-43,6; кремнеземное волокно 4,5-8,4; аморфный диоксид кремния плоские частицы 19,3-24,8; диоксид титана 27,3-33,2. Изобретение позволяет уменьшить коэффициент теплопроводности микропористого теплоизоляционного материала без существенных ухудшений его прочностных характеристик. 1 табл., 3 пр.
Наверх