Способ изготовления фотоприемников на основе эпитаксиальных p-i-n структур gan/ algan

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlGaN, преобразующих излучение ультрафиолетовой области спектра. Согласно изобретению предложен способ изготовления многоэлементного фотоприемника на основе эпитаксиальных p-i-n структур GaN/AlxGa1-xN. Изготовление осуществляют по меза-технологии ионным травлением до слоя n+ -AlGaN, затем поверхность меза p-i-n диодов подвергается тепловой обработке при температуре 450-550°C продолжительностью 90-200 сек для «залечивания» радиационных и стехиометрических дефектов, образовавшихся на периметре p-i-n диодов под действием ионного пучка или иных нарушений поверхности, возникших на технологических операциях изготовления меза-структуры. Изобретение обеспечивает уменьшение темновых токов многоэлементного фотоприемника. 2 ил.

 

Изобретение относится к технологии фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlGaN, преобразующих излучение ультрафиолетовой области спектра.

Матрицы фотодиодов на основе эпитаксиальных p-i-n структур GaN/AlGaN изготавливают по полупроводниковой технологии, включающей фотолитографию с использованием специально разработанных масок, ионного травления для выделения меза n-i-p переходов, пассивации поверхности и металлизации, обеспечивающей омические контакты к слоям n и p. Применение ионного травления при формировании меза структуры обусловлено химической устойчивостью соединений GaN и AlxGa1-xN к жидкостному химическому травлению.

Известен способ изготовления многоэлементного фотоприемника на основе AlxGa1-xN [Solar-blind AlGaN 256×256 p-i-n detectors and focal plane arrays. M.B. Reine, A. Hairston, P. Lamarre, K.K. Wong, S.P. Tobin, A.K. Sood and C. Cooke. SPIE Vol.6119 611901-3], по меза-технологии. Матрицы фотодиодов 256×256 элементов с размером пикселя 25×25-мкм2 и шагом между фотодиодами 30 мкм формируют ионным травлением эпитаксиальной структуры GaN/AlxGa1-xN с p-i-n переходом до слоя n+ -AlGaN (Фиг.1).

Однако известно, что при бомбардировке обрабатываемой поверхности ионами с энергией, значительно превышающей порог распыления (5-15 эВ), возможно образование радиационных и стехиометрических дефектов, изменение ее морфологии и шероховатости. Последствия ионной бомбардировки в процессе травления меза-структуры катастрофически отражаются на поверхности нелегированной i-области, разделяющей p и n слои. Образование выше перечисленных дефектов создает шунтирующие периметр i-области каналы проводимости, сопротивление которых на порядки меньше дифференциального сопротивления объемной части p-i-n диода, что приводит к увеличению темновых токов отдельных фотодиодов и соответственному ухудшению пороговой чувствительности фотоприемной матрицы.

В ближайшем аналоге предлагаемого изобретения [Low-damage wet chemical etching for GaN-based visible-blend p-i-n detector. CHEN Jie, XU Jintong, WANG Ling and other. SPIE Vol.6621 62211D-1] для уменьшения темновых токов фотодиодов, изготовленных ионным травлением, используется жидкостная обработка поверхности в растворе 20% щелочи КОН. Такая обработка поверхности p-i-n фотодиодов позволила авторам уменьшить токи утечки на порядок.

Задачей настоящего изобретения является уменьшение темновых токов многоэлементного фотоприемника на основе эпитаксиальных структур GaN/AlxGa1-xN с p-i-n переходом, изготовленного по меза-технологии ионным травлением до слоя n+ -AlGaN.

Технический результат предлагаемого изобретения достигается тем, что в способе изготовления многоэлементного фотоприемника на основе эпитаксиальных p-i-n структур GaN/AlxGa1-xN, изготовленного по меза-технологии ионным травлением до слоя n+ -AlGaN поверхность меза p-i-n диодов подвергается тепловой обработке при температуре 450-550°C продолжительностью 90-200 сек для «залечивания» радиационных и стехиометрических дефектов, образовавшихся на периметре p-i-n диодов под действием ионного пучка или иных неопределенных нарушений поверхности, возникших на технологических операциях изготовления меза-структуры, приводящих к шунтированию периметра i-области.

Далее выполняют стандартные процессы: наносят пленку нитрида кремния, вскрывают окна в нитриде кремния, изготавливают контакты к n и p областям.

На фиг.2 представлены типичные вольтамперные характеристики тестовых фотодиодов на основе эпитаксиальных p-i-n структур p-GaN/p-i Al0.45Ga0.55N n+ -Al0.61Ga0.39N, изготовленных по меза-технологии ионным травлением до слоя n+ -AlGaN в нормальных условиях (комнатная температура, дневное освещение). Размер фоточувствительной области 40×40 мкм2.

Из фиг.1 видно, что после травления в КОН поверхности меза- структуры, изготовленной ионным травлением, измеренные при напряжении смещения -0.1 В значения темновых токов тестовых диодов уменьшаются на порядок. Тогда как после термообработки уменьшение темнового тока более чем на два порядка наблюдается в широком диапазоне напряжений.

Способ изготовления многоэлементных фотоприемников на основе эпитаксиальных p-i-n структур GaN/AlGaN, состоящий в том, что единичные p-i-n фотодиоды в матрицах фотодиодов формируют ионным травлением эпитаксиальных структур с p-i-n переходом до слоя n+ -AlGaN, отличающийся тем, что восстановление поверхности, нарушенной ионной бомбардировкой, осуществляется термическим отжигом при температуре 550÷600°C и остаточном давлении 10-1÷10-2 Па.



 

Похожие патенты:

Изобретение может быть использовано в системах лазерной локации, обнаружения лазерного излучения, ИК-спектрометрии, многоспектральных ВОЛС, а также нового поколения систем ночного видения.

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления.

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста.

Изобретение относится к технологии гибридизации ИК-фотоприемника способом перевернутого монтажа (flip chip) и может быть использовано для выравнивания зазоров между кристаллами БИС и МФЧЭ, что приводит к увеличению надежности соединения и стойкости к термоциклированию соединения кристаллов, с помощью так называемых индиевых "подушек" на обоих кристаллах.

Изобретение относится к оптоэлектронике и вакуумной микроэлектронике и может быть использовано при создании сверхширокополосных фотодетекторов в ультрафиолетовой, видимой и ИК области спектра для оптической спектроскопии и диагностики, систем оптической связи и визуализации.

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц. В способе изготовления микроконтактов матричных фотоприемников согласно изобретению формируют на пластине с матрицами БИС или фотодиодными матрицами металлический подслой (например, Cr+Ni) круглой формы, защищают кристалл пленкой фоторезиста с окнами круглой формы в местах контактов, напыляют слой индия толщиной, соответствующей высоте микроконтактов, формируют на слое индия маску фоторезиста круглой формы, затем формируют микроконтакты травлением ионами инертного газа до полного распыления индия в промежутках между контактами, удаляют остатки фоторезистивной маски на вершинах микроконтактов и нижней защитной пленки в органических растворителях или травлением в кислородной плазме.

Изобретение относится к оптоэлектронным приборам. Полупроводниковый фотоэлектрический генератор содержит прозрачное защитное покрытие на рабочей поверхности, на которое падает излучение, и секции фотопреобразователей, соединенные оптически прозрачным герметиком с защитным покрытием.

Изобретение относится к области полупроводниковых приборов, предназначенных для регистрации инфракрасного излучения. Фотоприемный модуль на основе PbS представляет собой гибридную микросборку, состоящую из фоточувствительного элемента, в виде линейки на основе PbS и кристалла БИС-считывания (мультиплексора), соединенных между собой методом перевернутого монтажа (flip-chip).
Изобретение относится к области электрического оборудования, в частности к фотопреобразователям. Техническим результатом изобретения является улучшение качества контактов и увеличение выхода годных приборов.

Изобретение может быть использовано в различной оптико-электронной аппаратуре для обнаружения инфракрасного излучения. Фотоприемный модуль на основе PbSe согласно изобретению представляет собой гибридную микросборку, состоящую из фоточувствительного элемента, в виде линейки на основе PbSe и кристалла БИС-считывания (мультиплексора), соединенных между собой методом перевернутого монтажа (flip-chip), при этом индиевые столбики наносят на контактные площадки ламелей фоточувствительного элемента, которые помимо слоев Cr, Pd, An содержат подслой Cr и In, и стыкуют с индиевыми столбиками, нанесенными на БИС-считывания, образуя электрическую и механическую связь.
Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Согласно изобретению в способе изготовления кремниевых p-i-n фотодиодов для снижения концентрации электрически активных центров, создаваемых загрязняющими примесями с низкими значениями коэффициентов диффузии, процесс термического окисления проводят при температуре не выше 950°C и последующие процессы диффузии (диффузия фосфора для создания n+-областей, геттерирование диффузионным n+-слоем, диффузия бора для создания p+-области) проводят при температурах, не превышающих указанную. В этом случае из-за резкого уменьшения коэффициентов диффузии примесей с понижением температуры процессов (экспоненциальная зависимость от температуры) в объем кремния проникают в основном примеси с высокими коэффициентами диффузии, которые затем эффективно удаляются с помощью процессов геттерирования. Благодаря этому снижается концентрация генерационно-рекомбинационных центров в i-области фотодиода, что приводит к снижению темнового тока ФД (не менее, чем на порядок) и увеличению процента выхода годных приборов.

Изобретение относится к технологии сборки гибридных матричных фотоприемных устройств методом перевернутого монтажа. Согласно изобретению способ гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов фотоприемных устройств включает сдавливание индиевых микроконтактов, расположенных на стыкуемых кристаллах, при этом микроконтакты выполняют в форме вытянутых прямоугольников с размерами сторон менее зазоров между микроконтактами, как по вертикали, так и по горизонтали, причем микроконтакты на кристаллах БИС и матрицы фоточувствительных элементов расположены под углом по отношению к друг другу. Изобретение обеспечивает возможность повышения надежности стыковки кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ), исключая возможность закорачивания соседних микроконтактов. 5 ил.
Изобретение относится к технологии изготовления кремниевых p-i-n фотодиодов (ФД), чувствительных к излучению с длинами волн 0,9-1,06 мкм. Они предназначены для использования в различной электронно-оптической аппаратуре, в которой требуется регистрация коротких импульсов лазерного излучения (10-40 нс). Технический результат изобретения - снижение уровня темнового тока фоточувствительных площадок и охранного кольца, снижение значений коэффициентов взаимосвязи между фоточувствительными площадками многоэлементных ФД и увеличение процента выхода годных приборов, достигается тем, что после проведения высокотемпературных термодиффузионных процессов для создания структуры ФД: - термического окисления; - диффузии фосфора для создания областей n+-типа проводимости (фоточувствительных площадок и охранного кольца); - диффузии фосфора в тыльную поверхность пластины для генерирования загрязняющих примесей; - диффузии бора в тыльную поверхность пластины после стравливания геттерирующего n+-слоя для создания слоя p+-типа проводимости, перед операцией создания омических контактов проводят стравливание диэлектрической пленки с поверхности кремния и травление кремния на глубину менее одного микрона с последующим осаждением пленки двуокиси кремния одним из низкотемпературных методов при температуре, не превышающей 800°С. Затем производят формирование омических контактов известными методами.

Предлагаемое изобретение относится к технологии изготовления полупроводниковых приборов, в частности, к способам изготовления планарных pin-фотодиодов большой площади на основе высокоомного кремния p-типа проводимости. Способ включает подготовку пластины исходных p-кремния или кремниевой эпитаксиальной структуры p+-p-типа, формирование маски для имплантации ионов P+ в рабочую область и охранное кольцо, двухстадийную имплантацию ионов P+ с энергией и дозой соответственно (30÷40) кэВ и (3÷4)·1015 см-2 на первой и (70÷100) кэВ и (8÷10)·1015 см-2 на второй стадии для формирования n+-p переходов рабочей области и охранного кольца, имплантацию ионов B F + 2 с энергией (60÷100) кэВ и дозой (2÷3)·10 см-2 с обратной стороны пластины, двухстадийный постимплантационный отжиг при продолжительности и температуре соответственно не менее 1 часа и (570÷600)°C на первой и не менее 5 часов и (890÷900)°C на второй стадии, защиту и просветление поверхности рабочей области и защиту периферии охранного кольца нанесением пленки SiO2, причем отжиг, начальное снижение температуры после отжига до 300°C и нанесение пленки SiO2 при температурах выше 300°C производят в условиях отсутствия кислорода, а имплантацию ионов P+ и B F + 2 проводят одну за другой в любой последовательности. Оптимально подобранные дозы имплантации, режимы и условия постимплантационного отжига и условия нанесения защитного и просветляющего покрытия обеспечивают повышение токовой чувствительности pin-фотодиодов при высоких фоновых засветках с сохранением низкого уровня темновых токов при снижении сложности, трудоемкости и энергозатрат изготовления. 1 з.п. ф-лы,1 табл.

Изобретение относится к полупроводниковой электронике, а именно к способу изготовления фотопроводящих радиационно стойких структур. Способ включает предварительное формирование монослоя жирной кислоты на поверхности раствора свинецсодержащей соли в воде в концентрации 1·10-3-5·10-3 моль/л для получения свинецсодержащего монослоя жирной кислоты по методу Ленгмюра-Блоджетт, перенос одного свинецсодержащего монослоя жирной кислоты на поверхность фоточувствительной пленки, термическую сенсибилизацию фоточувствительной пленки. При этом перенос монослоя на поверхность фоточувствительной пленки осуществляют по методу Ленгмюра-Шеффера после процедуры термической сенсибилизации. Предварительное формирование свинецсодержащего монослоя жирной кислоты осуществляют на поверхности раствора свинецсодержащей соли в воде при pH раствора 8,0±0,4. Технический результат заключается в повышении радиационной стойкости структур на основе пленок сульфоселенида кадмия толщиной до нескольких микрон при сохранении их высокой фоточувствительности и спектрального диапазона фоточувствительности. 2 з.п. ф-лы, 5 ил., 6 табл., 3 пр.
Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе GaAs включает последовательное выращивание методом жидкофазной эпитаксии на подложке n-GaAs буферного слоя n-GaAs, базового слоя n-GaAs, эмиттерного слоя p-GaAs и слоя p-AlGaAs с содержанием Al в твердой фазе от 30-40 ат.% в начале роста слоя и при содержании Al в твердой фазе 10-15 ат.% в приповерхностной области слоя, а также осаждение тыльного контакта и лицевого контакта. На лицевую поверхность подложки наносят антиотражающее покрытие. Способ безопасен и позволяет с меньшими затратами совместить в одном слое функции широкозонного окна и контактного слоя, что приводит к увеличению кпд преобразования узкополосного, в частности лазерного излучения. 8 з.п. ф-лы.

Изобретение относится к технологии изготовления полупроводниковых приборов. Способ изготовления pin-фотодиодов с охранным кольцом (ОК) на высокоомном р-кремнии включает термическое окисление исходной пластины р-кремния или эпитаксиальной структуры, содержащей слой высокоомного р-кремния, вскрытие «окон» в термическом окисном слое, загонку атомов фосфора в «окна» и их разгонку, совмещенную с окислением, для формирования планарных n+-р переходов рабочей области и области ОК, создание на обратной стороне пластины геттерирующего слоя и проведение геттерирования, стравливание геттерирующего слоя и подлегирование подконтактной области базы атомами бора для создания омического контакта р+-р типа, вскрытие в окисном слое контактных «окон» к рабочей области и охранному кольцу и зондовый контроль их темновых токов, отбор пластин, не соответствующих заданным значениям темнового тока, стравливание с них термического окисного слоя и нанесение на свободную поверхность кремния нового защитного слоя окиси кремния при температуре не выше 300°С, вскрытие контактных «окон» в нанесенном слое и повторный зондовый контроль темновых токов и при соответствии темнового тока заданным значениям - нанесение металлизации, формирование контактного рисунка и вжигание металла, а при несоответствии заданным значениям темнового тока - повторение операций до получения заданных значений темнового тока. Изобретение обеспечивает повышение выхода годных фотодиодов за счет снижения уровня темнового тока рабочей области и области ОК до заданных значений. 1 з.п. ф-лы, 1 табл.

Пленки твердых растворов замещения PbSnSe - востребованный материал полупроводниковой оптоэлектроники и лазерной техники среднего и дальнего инфракрасного диапазона. Однако достигнутое на сегодня содержание олова в составе гидрохимически синтезируемых пленок PbSnSe не обеспечивает в полной мере их фоточувствительности к дальнему ИК-диапазону. В способе получения пленок твердых растворов замещения PbSnSe методом ионообменного замещения обработку предварительно полученных пленок PbSe проводят в водном растворе соли олова(II), содержащем растворимую уксуснокислую соль или уксуснокислую кислоту в количестве до 6,0 моль/л при температуре процесса 353-371 K с последующей обработкой на воздухе при температуре от 523 до 723 K. Технический результат изобретения состоит в сдвиге спектрального диапазона фоточувствительности пленок твердых растворов PbSnSe, получаемых из водного раствора методом ионного обмена, в дальний инфракрасный диапазон. 1 табл.

Изобретение относится к области микроэлектроники, в частности к созданию тонкопленочных элементов матрицы неохлаждаемого типа в тепловых приемниках излучения (болометров) высокой чувствительности. Способ получения чувствительного элемента матрицы теплового приемника на основе оксида ванадия представляет собой нанесение металлической пленки ванадия и электродов методами магнетронного распыления и последующей лифт-офф литографии на диэлектрическую подложку. Затем через металлическую пленку ванадия пропускают электрический ток высокой плотности, под действием которого она нагревается и термически окисляется. После нагрева структуры и образования оксида VOx ток отключают, и происходит остывание сформированного тонкопленочного элемента. Изобретение позволяет значительно упростить способ изготовления чувствительного элемента матрицы теплового приемника. 1 з.п. ф-лы, 1 ил.
Изобретение относится к области электрического оборудования, в частности к полупроводниковым приборам, а именно к способам получения трехкаскадных преобразователей. Технический результат, достигаемый в предложенном способе, изготовления фотопреобразователя заключается в улучшении однородности и воспроизводимости стравливания контактного слоя структуры, повышении фотоэлектрических параметров. Достигается это тем, что формируют контактную металлизацию на фронтальной и тыльной поверхностях многослойной полупроводниковой структуры Ga(In)As/GaInP/Ga(In)As/Ge, выращенной на германиевой подложке, вжигают контакты, вытравливают мезу, удаляют контактный слой структуры химикодинамическим травлением в водном растворе гидроокиси тетраметиламмония и перекиси водорода при количественном соотношении компонентов, соответственно в мас.%: гидроокись тетраметиламмония 0,7÷1,3, перекись водорода 6,5÷17,7, вода 92,8÷81. 1 табл.
Наверх