Способ автономной азимутальной ориентации платформы трехосного гиростабилизатора на подвижном основании

Изобретение относится к области навигационного приборостроения и может быть использовано для определения положения платформы трехосного гиростабилизатора в азимуте, например, в высокоточных навигационных системах различного назначения. Технический результат - возможность определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, упрощение конструкции, сокращение времени и повышение точности определения азимутального положения платформы. Для этого измерения производятся в инерциальном режиме функционирования системы стабилизации платформы относительно вертикальной оси. Перед началом измерений платформа грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Азимутальное положение определяется по информации о токах обратной связи и углах поворота штатного гироблока, отключаемого от системы стабилизации и включаемого в режим датчика угловой скорости. Стабилизация и горизонтирование платформы при измерениях осуществляется соответствующим акселерометром, подключенным через усилитель к двигателю стабилизации. 1 з.п. ф-лы.

 

Изобретение относится к области гироскопических систем и может быть использовано для определения азимута в навигационных системах различного назначения.

Известен способ автономного азимутального ориентирования платформы, основанный на применении в составе трехосного гиростабилизатора гироскопического датчика угловой скорости (ДУС) [1].

С этой целью обычно используются двухстепенные гироскопы с обратной связью по углу поворота гирокамеры относительно корпуса гироблока. Платформа предварительно горизонтируется, а при измерениях ей обеспечивается неподвижность относительно Земли. В исходном положении выходная ось x гироскопа направляется вертикально и совпадает с осью Yп платформы, а входная ось у (ось чувствительности гироскопа) - параллельно оси Zп подвеса платформы. Ось Хп платформы находится под углом A плоскости меридиана.

В результате вращения гироскопа вместе с Землей относительно оси Y с угловой скоростью ωy появляется гироскопический момент Мг=Hωy (H - кинетический момент гироскопа) относительно выходной оси х гироскопа, приводящий к повороту его главной оси z на угол β. По сигналам с датчика угла поворота в датчике моментов гироскопа формируется момент Моc обратной связи, противоположно направленный гироскопическому моменту Мг. В установившемся состоянии суммарный момент относительно оси x равен нулю

где ioc - ток обратной связи в управляющей обмотке датчика моментов;

Кдм - коэффициент передачи датчика моментов;

Мвх - возмущающий момент относительно выходной оси х гироскопа.

При малых углах отклонения платформы и гироскопа от исходных положений выражение для ωy имеет вид

где ωг, ωв - горизонтальная и вертикальная составляющие угловой скорости вращения Земли;

αз - угол отклонения платформы относительно оси Хп.

Из выражений (1) и (2) можно найти

где β* - угол отклонения гироскопа от исходного положения;

ϕ - широта места установки ТГС: t g φ ω B ω Г ;

ω Д Р = М В Х H - угловая скорость собственного дрейфа гироскопа.

При отсутствии возмущений азимут платформы определяется формулой

Для учета влияния возмущающих факторов используют информацию о токах iОС в различных положениях платформы (осей ДУС), отличающихся друг от друга на известные углы.

Основными недостатками способа являются:

- необходимость обеспечения неподвижности платформы относительно Земли при измерениях, что исключает возможность применения в условиях азимутальных смещений основания ТГС;

- необходимость установки платформы в нескольких фиксированных относительно Земли положениях, что усложняет измерительную систему и увеличивает время определения азимута.

Известен также способ азимутальной ориентации гиростабилизированной платформы ТГС по углу поворота гироскопа штатного гироблока системы угловой стабилизации платформы, используемого в компасном режиме [2]. Гироблок системы стабилизации и горизонтирования относительно одной из горизонтальных осей отключается от системы стабилизации, а горизонтирование и стабилизация платформы осуществляется по сигналам с соответствующего акселерометра, который отключается от датчика моментов гироскопа и подключается через усилитель к двигателю стабилизации. Относительно вертикальной оси платформа стабилизируется в инерциальном пространстве. Под действием гироскопического момента Мг=Hωг, вызванного горизонтальной составляющей угловой скорости вращения Земли, гироскоп поворачивается в сторону меридиана. Сигналы с датчика угла β поворота гироскопа непрерывно измеряются и используются для определения начального (Ao) и текущего (A(t)) положения платформы в азимуте. Алгоритмы определения азимута платформы строятся на основе динамической модели движения гироскопа и платформы и применения методов фильтрации выходных сигналов.

Преимуществом этого способа является возможность азимутального ориентирования платформы при азимутальных смещениях основания ТГС, обеспечиваемая кинематической развязкой платформы от основания и ее стабилизацией относительно вертикальной оси. Недостатком является необходимость использования широкодиапазонного датчика угла поворота гироскопа, что усложняет конструкцию гироблока и измерительной системы.

В качестве прототипа был принят данный способ, основанный на использовании штатного двухстепенного гироскопа для определения азимута платформы без связи с Землей.

Для устранения указанных недостатков предлагается вместо компасного режима работы гироскопа использовать режим ДУСа.

Целью настоящего изобретения является возможность определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, сокращение времени, повышение точности и упрощение конструкции гироблока и измерительной системы автономного азимутального ориентирования платформы ТГС.

Начальное положение платформы ТГС по азимуту может быть произвольным, удержание ее в азимуте и в горизонте осуществляться грубыми системами приведения. В требуемое исходное положение по азимуту, в котором необходимо знать точную азимутальную ориентацию, платформа приводится и удерживается грубой системой, например с помощью системы азимутального наведения [1, с.246].

Для точного определения азимутальной ориентации платформы трехосного гиростабилизатора на подвижном основании систему удержания отключают, выбранный гироблок стабилизации платформы относительно горизонтальной оси отключают от системы стабилизации и горизонтирования и переводят в режим ДУСа, а стабилизацию и горизонтирование платформы относительно этой оси осуществляют по сигналам с соответствующего акселерометра путем отключения его от датчика моментов гироскопа и подключения через усилитель к двигателю стабилизации. Азимут платформы определяют путем обработки информации о токах обратной связи в датчике моментов гироскопа датчика угловой скорости и углах поворота гироскопа.

Отключение грубой системы удержания платформы по азимуту приводит к реализации инерциального режима работы ТГС относительно вертикальной оси. В этом режиме платформа вместе с ДУС изменяют свое положение по азимуту относительно Земли («видимый уход»), соответственно изменяются значения проекции угловой скорости ωy на ось чувствительности ДУСа и тока обратной связи iОС. Азимут A, входящий в выражение (2), теперь можно представить в виде

где Ao - азимут платформы в момент начала измерений;

α(t) - угол поворота платформы относительно Земли, причем

ωаз - угловая скорость дрейфа азимутального гироскопа.

Выражение (3) для тока обратной связи можно записать в виде

где tK, (K=1, 2, …, N) - моменты времени съема информации о токах обратной связи и угле поворота гироскопа.

В формуле (7) не учтен член αзtgφ, зависящий от ωB, поскольку в инерциальном режиме по азимуту платформа стабилизирована относительно вертикальной оси.

Наличие избыточной информации (N>>1) о токах обратной связи позволяет использовать известные методы фильтрации сигналов для оценивания начального (Ao) и текущего (A(t)) азимута платформы, а также точностных параметров измерительной системы.

Точность определения азимута может быть повышена за счет увеличения объема избыточной информации. С этой целью можно увеличить угловую скорость вращения платформы относительно Земли путем подачи расчетного постоянного момента Мо в датчик моментов азимутального гироскопа. Тогда ток обратной связи будет определяться выражением

где ω 0 = M 0 H - расчетная угловая скорость вращения платформы относительно вертикальной оси, вызванного моментом Мо;

ωyxB0 - угловая скорость «видимого ухода» платформы.

В предложенном способе не накладываются ограничения на величину угла β по сравнению со способом ДУС, поскольку он может быть измерен и учтен в алгоритмах определения азимута. В то же время угол β может быть существенно уменьшен по сравнению со способом, использующим двухстепенный гироскоп в режиме гирокомпаса.

Основными преимуществами предлагаемого способа являются:

- возможность определения азимута гиростабилизированной платформы в условиях азимутальных смещений основания ТГС;

- повышение точности определения азимута за счет увеличения избыточной информации о выходных сигналах и исключения ошибки из-за невертикальности выходной оси гироскопа;

- сокращение времени определения азимута за счет непрерывности процесса измерений и увеличения скорости вращения платформы относительно Земли;

- упрощение конструкции системы.

Сравнительный анализ существенных признаков рассмотренных и предлагаемых способов азимутальной ориентации платформы ТГС показывает, что предлагаемый способ отличается тем, что определение азимута платформы с помощью ДУС осуществляют без связи платформы с Землей, платформа грубо приводится в требуемое исходное положение по азимуту, система приведения отключается, используется информация об угле поворота гироскопа и подаются расчетные сигналы в датчик моментов гироскопа.

Таким образом, предложенный способ азимутальной ориентации платформы ТГС имеет новизну. Авторам не известна совокупность существенных признаков, применяемых для решения данной технической задачи, что соответствует критерию «изобретательский уровень».

Источники информации

1. Хлебников Г.А. Начальная выставка инерциальных навигационных гироскопических систем. М., ВАД, 1994, с.285-287.

2. Патент РФ №2324897, кл. G01C 21/18, 2006.

1. Способ автономной азимутальной ориентации платформы трехосного гиростабилизатора на подвижном основании, заключающийся в том, что для определения азимута платформы штатный гироблок системы стабилизации платформы включают в режим датчика угловой скорости, отличающийся тем, что гиростабилизированную платформу грубо устанавливают и удерживают в требуемом исходном положении по азимуту, отключают от системы удержания, выбранный гироблок стабилизации платформы относительно горизонтальной оси отключают от системы стабилизации и горизонтирования и переводят в режим датчика угловой скорости, а стабилизацию и горизонтирование платформы относительно этой оси осуществляют по сигналам с соответствующего акселерометра, отключаемого от датчика моментов гироскопа и подключаемого к двигателю стабилизации через усилитель, азимут платформы определяют путем обработки информации о токах обратной связи в датчике моментов гироскопа датчика угловой скорости и углах поворота гироскопа.

2. Способ по п.1, отличающийся тем, что в датчик моментов азимутального гироблока подают постоянный расчетный сигнал, а азимутальную ориентацию платформы определяют путем обработки информации о токах обратной связи в датчике моментов гироскопа датчика угловой скорости и углах поворота гироскопа.



 

Похожие патенты:

Изобретение относится к системам автоматического регулирования, а конкретно к двухосным управляемым гиростабилизаторам оптической линии визирования, работающим на подвижных объектах и предназначенным для стабилизации и наведения линии визирования.

Способ коррекции дрейфа микромеханического гироскопа, используемого в системе дополненной реальности на движущемся объекте. Изобретение относится к области навигационного приборостроения.

Изобретение относится к области гироскопических систем и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например, в высокоточных навигационных системах различного назначения.

Азимутальная ориентация платформы трехосного гиростабилизатора по приращениям угла прецессии гироблока относится к области приборостроения и может быть использована для определения азимута, например, в высокоточных системах различного назначения.

Изобретение относится к области навигационного приборостроения и может быть использовано для контроля гиростабилизированных платформ космического назначения. .

Изобретение относится к гироскопической технике, а именно к управляемым гиростабилизаторам с косвенной стабилизацией, работающим на подвижных объектах. .

Изобретение относится к системам автоматического управления и может найти применение для стабилизации поля зрения и управления линией визирования оптических приборов, размещаемых на подвижных объектах.

Изобретение относится к области корректируемых по информации от навигационных спутников гироскопических систем навигации морских объектов. .

Изобретение относится к области приборостроения и может быть использовано для определения азимута, например, в высокоточных системах различного назначения. .

Изобретение относится к области гироскопических систем и может быть использовано в навигационных системах. Технический результат - расширение функциональных возможностей. Для этого определение азимута производится при введении одного из гироблоков системы стабилизации в компасный режим путем его отключения от штатного канала системы стабилизации, при осуществлении стабилизации и горизонтирования платформы в измененном канале стабилизации с помощью соответствующего акселерометра, отключаемого от датчика моментов гироблока и подключаемого через усилитель к двигателю стабилизации платформы измененного канала, а также при осуществлении режима «памяти» в азимутальном канале. В расчетный момент времени на датчик моментов гироблока подаются управляющие сигналы, возвращающие гироскоп в исходное положение. Определение азимута исходного положения платформы производится по сигналам с датчика угла гироблока и акселерометра. Использование управляющих сигналов дает возможность сократить время измерительного процесса за счет совмещения его с процессом приведения компасного гироскопа в исходное положение при одновременном обеспечении заданной точности определения азимута платформы, а также возможность для ТГС дальнейшего непрерывного функционирования по назначению.

Группа изобретений относится к установке и работе инерционных датчиков, таких как, например, датчики пространственного положения (гироскопы) или датчики движения (акселерометры) на борту транспортного средства. Техническим результатом является уменьшение погрешности измерений. В способе осуществляют калибровку устройства (S) инерционного датчика, установленного в произвольной позиции на борту транспортного средства (V), на основе формирования (200-500) матрицы (R) преобразования, приспособленной преобразовывать реально измеренные данные динамических параметров транспортного средства (V), найденных в локальной системе (x, y, z) координат, в данные, указывающие динамические параметры транспортного средства (V) в системе (X, Y, Z) координат транспортного средства, причем значение каждого элемента матрицы (R) преобразования модифицируют посредством наложения ограничения ортогональности (600) матрицы. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к судовым системам ориентации и может найти применение в системах угловой ориентации устройств корабля с учетом статических и динамических деформаций корпуса корабля, а также ошибок установки систем на корабле. Технический результат - расширение функциональных возможностей. Для этого система содержит блок ориентации, соединенный с системой корабля, навигационный комплекс корабля, преобразователи координат, интегрирующие, множительные и запоминающие устройства, а также фильтры нижних частот. Угловое положение блока ориентации осуществляется замкнутыми системами автоматического регулирования, образованными из элементов системы. Текущие значения углов ориентации вычисляются путем совместной обработки в общей горизонтальной системе координат скоростей изменений этих углов, определенных блоком ориентации, и углов ориентации, определенных навигационным комплексом. Статические поправки к углам бортовой и килевой качек вычисляются, сглаживаются фильтрами и запоминаются как разности измеренных блоком ориентации и навигационным комплексом соответствующих величин. Статическая поправка курса вычисляется, сглаживается фильтром и запоминается после определения статических поправок к углам бортовой и килевой качек. Статическая поправка курса определяется путем сравнения между собой направлений, вокруг которых в данный момент времени происходят наклоны палубы корабля в местах расположения блока ориентации и навигационного комплекса. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гироскопии и может быть использовано для выставки в плоскость горизонта и на заданный азимут стабилизированной платформы (СП) трехосного гиростабилизатора (ТГС) системы управления ракет-носителей и разгонных блоков космического назначения, запускаемых со стартовых комплексов наземного базирования и морских платформ. В предлагаемом способе после грубого приведения СП в плоскость горизонта включается система стабилизации, в датчики моментов (ДМ) двухстепенных поплавковых интегрирующих гироскопов (ГБ) системы стабилизации СП подаются токи компенсации уходов СП, затем вычисляется отклонение СП от плоскости горизонта и нескомпенсированные скорости поворота СП относительно осей ОХП и ΟΖП, вычисляются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ по осям рыскания (Р) и тангажа (Т), грубо определяется азимут корпуса ТГС, затем уточняются масштабные коэффициенты акселерометров, составляющие уходов ГБ Ρ и Τ и калибровочные коэффициенты их трактов путем выставки СП в четыре положения с азимутом 0°, 90°, 180° и 270°, компенсацией уходов СП и проведением измерений в этих положениях, после чего СП осью ОХП грубо выставляется на азимут запуска, в ДМ ГБ подаются токи компенсации собственных уходов ГБ и составляющих вектора вращения Земли, уточняются проекции горизонтальной составляющей скорости вращения Земли на оси чувствительности ГБ Τ и Ρ и производится их пересчет на направления север-юг, запад-восток, вычисляется рассогласование оси ОХП с азимутом запуска, вычисленное рассогласование устраняется поворотом вокруг вертикальной оси на рассчитанный угол, и СП удерживается у азимута запуска токами компенсации. Технический результат – уменьшение погрешности выставки трехосного гиростабилизатора стабилизированной платформы в плоскость горизонта и на заданный азимут. 2 ил.

Изобретения относятся к точному приборостроению, а именно к гироскопической технике, и могут быть использованы в гироскопических стабилизаторах. Способ стабилизации гироскопической платформы заключается в подаче сигнала с датчика угла прецессии гироскопа через усилитель стабилизации на стабилизирующий двигатель, при этом при настройке устойчивости контура стабилизации определяют фактический коэффициент контура стабилизации путем завала ротора гироскопа на известный угол с помощью подачи управляющего сигнала на датчик момента гироскопа при отключенном стабилизирующем двигателе, измеряя при этом напряжение на выходе усилителя стабилизации. Технический результат – повышение качества стабилизации и обеспечения необходимого запаса устойчивости системы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области приборостроения и может быть использовано в высокоточных навигационных системах различного назначения для определения положения платформы трехосного гиростабилизатора в азимуте. Технический результат – расширение функциональных возможностей за счет обеспечения возможности определения азимутального положения гиростабилизированной платформы в условиях азимутальных смещений основания, а также сокращения времени и повышения точности определения азимута. Для этого измерения производятся в инерциальном управляемом режиме движения платформы относительно вертикальной оси и инерциальном режиме относительно двух или одной из горизонтальных осей. Перед началом измерений платформа горизонтируется точной системой приведения и грубо устанавливается и удерживается в требуемом исходном положении по азимуту. Затем система удержания платформы по азимуту и система точного приведения платформы в горизонт по двум или одной из горизонтальных осей отключается, а в датчик моментов азимутального гироблока подаются расчетные сигналы, увеличивающие скорость и угол поворота платформы по азимуту. Азимут исходного положения платформы определяют путем обработки сигналов с акселерометров об изменяющихся видимых уходах платформы относительно двух или одной горизонтальных осей, а также информации о видимых уходах по азимуту и об углах поворота гироскопов систем стабилизации платформы относительно двух или одной горизонтальных осей. 1 з.п. ф-лы.

Изобретение относится к гироскопической технике, а конкретно к двухосным гироскопическим стабилизаторам оптических элементов, работающим на подвижных объектах и предназначенным для стабилизации и управления оптическими элементами, и может найти применение в создании систем типа бинокль, перископ, лазерный дальномер. Заявленный гиростабилизатор оптических элементов, содержащий трехстепенной гироскоп, у которого во внешней рамке установлен гироузел, с которым кинематически шарнирно связан оптический элемент, и коррекционный двигатель, при этом оптический элемент представляет два зеркала, установленные во внешней рамке гироскопа симметрично относительно оси подвеса гироузла, а в кинематические шарнирные связи введены пружины, причем оси вращения зеркал параллельны оси подвеса гироузла, на котором с одной стороны в направлении оси ротора гиромотора установлена штанга с закрепленным на ее конце шарикоподшипнике, а на противоположном конце закреплена направляющая механического арретира, при этом шарикоподшипник штанги может перемещаться по направляющей бугеля, которая имеет П-образное сечение и средний радиус, равный длине штанги от центра подвеса гироузла до шарикоподшипника, при этом ось вращения бугеля находится в корпусе прибора и перпендикулярна оси подвеса внешней рамки. Технический результат состоит в увеличении угла обзора и угловых скоростей слежения с увеличением точности управления оптическими элементами с уменьшением массы и габаритов. 2 з.п. ф-лы, 7 ил.

Изобретение относится к системам автоматического управления и регулирования, в частности к гиростабилизирующим устройствам, и используется для обеспечения стабилизации поля зрения и управления линией визирования оптических приборов (прицелов), размещаемых на подвижных объектах военного назначения (ОВН) типа танков, БМП, БМД, БТР и т.п. Техническим результатом является повышение эксплуатационных возможностей за счет сохранения конструктивных установочных размеров в модернизируемом ОВН при установке на него нового прицельного комплекса (ПК) с независимой линией визирования (ЛВ), улучшение ремонтопригодности ОВН в условиях эксплуатации при установке модернизированного ПК с независимой ЛВ. Система стабилизации содержит прицельный комплекс с управляющей и силовой электроникой, связанной с внешним управляющим сигналом, датчики, двигатель, электрически связанный с первым выходом управляющей и силовой электроники, оптические узлы и механизмы. При этом система разделена на электроблок, размещенный в ОВН и содержащий управляющую и силовую электронику, и блок электромеханический, размещенный в прицельном комплексе, устанавливаемом на ОВН и содержащий датчики, двигатель, оптические узлы и механизмы, а также блок памяти и последовательный порт памяти. Элементы системы стабилизации соединены согласно блок-схеме на фиг. 1. 1 ил.

Изобретение относится к области приборостроения и может быть использовано для определения азимутального положения платформы трехосного гиростабилизатора, например в высокоточных навигационных системах различного назначения. Технический результат - повышение точности и сокращение времени определения азимута. Предложенный способ азимутальной ориентации платформы трехосного гиростабилизатора заключается в том, что используют один из гироблоков системы стабилизации гиростабилизированной платформы, при этом горизонтирование платформы относительно одной из осей осуществляют путем отключения акселерометра от датчика моментов гироблока контура стабилизации по этой оси и подключения его к соответствующему двигателю стабилизации через усилитель стабилизации, а азимут платформы определяют по информационным сигналам, равным разности между номинальными значениями угла прецессии гироблока и соответствующими значениями широкодиапазонного кодового датчика угла этого гироблока. При этом одновременно с определением разностного угла измеряют акселерометром угол отклонения платформы от горизонта, осуществляют дифференцирование измеренного угла, рассчитывают текущие значения тока компенсации, который после преобразования из цифровой формы в аналоговую подают на датчик моментов данного гироблока. 1 ил.

Группа изобретений относится к средствам для определения положения объектов в заданной системе координат. Инерциальный блок для закрепления на вращающемся узле транспортного средства, сочлененный с его силовым оборудованием, содержит по меньшей мере один датчик ускорения, и/или по меньшей мере один магнитометр, выполненный с возможностью определения угла наклона вращающегося узла, и/или по меньшей мере одно счетное устройство, выполненное с возможностью определения количества вращений вращающегося узла, и два гироскопа, выполненные с возможностью определения направления на уровне обода вращающегося узла в целях предоставления информации об углах для определения положения, при этом данные первого гироскопа умножаются на ряд синусов, а данные второго гироскопа умножаются на ряд косинусов, причем оба ряда выбираются таким образом, чтобы обеспечить максимально точное представление рядов значений акселерометра, и чтобы сумма ряда была равна нулю с максимально возможной точностью. Также предложено устройство, содержащее множество инерциальных датчиков, которое крепится к транспортному средству. Указанный инерциальный блок реализует соответствующий способ определения координат транспортного средства. Описанная выше группа изобретений позволяет с высокой точностью определять координаты транспортных средств. 3 н. и 24 з.п. ф-лы, 5 ил.
Наверх