Магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов

Изобретение относится к измерительной технике, представляет собой магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов и может найти применение при проведении технического освидетельствования силовых (несущих) конструкций. При реализации способа на диагностируемую конструкцию воздействуют переменным электромагнитным полем, в результате чего в измерительной катушке, находящейся на поверхности диагностируемой конструкции, индуцируется электродвижущая сила, суммарный отклик которой, называемый магнитным шумом, регистрируется измерительной аппаратурой. Полученный сигнал преобразуется к численному значению и сравнивается с базовыми сигналами. Базовые значения сигналов, определяемые на аналогичных образцах конструкций при воздействии всех возможных видов нагрузок до разрушения, формируют базу данных, в которой каждому значению на основе экспериментально установленной взаимосвязи «состояние прочности - значение сигнала» присваивается состояние прочности, которое может быть количественно выражено в требуемых для диагностируемой конструкции показателях. Техническим результатом является оценка текущего состояния прочности силовых конструкций из ферромагнитных материалов. 2 ил.

 

Изобретение относится к области диагностики состояния прочности силовых конструкций из ферромагнитных материалов и может найти применение при проведении технического освидетельствования силовых (несущих) конструкций.

Известно, что прочность конструкций обеспечивает требуемый уровень механических свойств материала, которые зависят от структуры и текстуры материала, количества и вида дефектов кристаллического строения, что формируется при различных технологических процессах изготовления конструкций и изделий [Б.Н. Арзамасов и др. Материаловедение: - М: МГТУ им. Баумана, 2004. - 646 с.]. При работе на конструкции воздействуют эксплуатационные нагрузки, приводящие как к износу, при действии сил трения, усталостному разрушению, вследствие циклического нагружения, так и изменению структуры и (или) текстуры материала, вследствие температурного воздействия или иных факторов. Кроме эксплуатационных нагрузок конструкции могут подвергаться нагрузкам, превышающим допустимые (при нарушениях правил эксплуатации), или, при аварийных ситуациях, воздействиям, не учитываемым при прочностном расчете (например, ударные воздействия, приводящие к образованию концентраторов напряжений, температурные воздействия при пожаре или локальном воздействии пламени, приводящие к текстурным и (или) структурным изменениям материала конструкций). Все изменения, происходящие в материале конструкций, влияют на механические свойства материала и тем самым на прочность конструкций.

Известны способы определения дефектов конструкций, в основе которых лежит фиксация аномалий магнитного поля при внешнем намагничивании [Измерение, контроль, качество. Неразрушающий контроль: Справочник. - М.: ИПК. Издательство стандартов, 2002. - 708. с]. Известны способы обнаружения механических повреждений конструкций на основе эффекта Холла [Коллакот Р. Диагностика повреждений: Пер. с англ. - М.: Мир, 1989. - 512 с.].

Данные способы позволяют обнаружить дефекты и механические повреждения конструкций, но не пригодны для контроля состояния прочности при изменениях структуры и текстуры материала.

Известен способ диагностики элементов конструкции гребного винта [Патент на изобретение РФ №2032591, МПК6 В63Н 1/02, 1995 г.], позволяющий диагностировать процессы износа и усталости. Данный способ заключается в создании в контролируемых элементах конструкции вихревых токов, измерении сигналов ЭДС индукции вторичного переменного магнитного поля, сравнении формы и амплитуды сигналов с сигналами, соответствующими исправному состоянию конструкции.

К числу недостатков данного способа можно отнести следующее: данный способ позволяет обнаружить дефекты, связанные с износом и явления усталостного разрушения, т.е., как и способы, приведенные выше, не пригоден для контроля состояния прочности при изменениях структуры и (или) текстуры материала. Отклонение измеренных сигналов от сигналов, соответствующих исправному состоянию конструкции, позволяет установить факт ненахождения конструкции в исходном, т.е. полностью исправном состоянии, и не позволяет провести оценку текущего состояния прочности для установления возможности дальнейшей эксплуатации конструкции и (или) определения остаточного ресурса работы конструкции.

Известен магнитошумовой метод неразрушающего контроля, физическая сущность которого заключается в перемагничивании материала переменным магнитным полем, в результате которого в его поверхностном слое возбуждаются импульсные стохастические электромагнитные волны, обусловленные скачкообразным последовательным смещением стенок магнитных доменов. В измерительной катушке индуцируется электродвижущая сила, электромагнитные характеристики которой зависят от геометрических и электрофизических параметров материала. Суммарный отклик электродвижущей силы, регистрируемый измерительной аппаратурой, - это магнитный шум, параметры которого являются информативными [Венгринович В.Д., Бусько В.Н. Магнитошумовой метод контроля химического состава ферромагнитных сплавов. «Дефектоскопия». 1982 г., №2].

Наиболее близким - по совокупности признаков - аналогом является способ магнитошумовой диагностики элементов кузова автомобилей, позволяющий оценивать техническое состояние элементов кузова автомобилей, выполненных из ферромагнетиков, при сравнении уровня магнитного шума диагностируемого элемента с эталонным сигналом, определяемым как среднее значение измеренного уровня магнитного шума бездефектных элементов кузовов автомобилей, или при сравнение с базой данных, содержащей информацию об уровне магнитного шума при наличии различных дефектов элементов кузова автомобиля [Решенкин А.С., Тихомиров А.Г. Устройство для магнитошумовой диагностики элементов кузова автомобилей. Свидетельство на полезную модель №38946, МПК7 G01N 27/72, 2004 г.].

К его недостатку можно отнести следующее: данный способ, позволяя обнаружить наличие различных скрытых лакокрасочным покрытием дефектов, не позволяет диагностировать состояние прочности конструкции.

Задача, на решение которой направлен предлагаемый способ, заключается в оценке текущего состояния прочности силовых конструкций из ферромагнитных материалов по результатам диагностики микроструктуры материала на основе применения магнитошумового метода неразрушающего контроля, позволяющей установление возможности дальнейшей эксплуатации, определение остаточного ресурса работы конструкций или показателей, характеризующих состояние прочности.

Техническим результатом предлагаемого изобретения является оценка текущего состояния прочности силовых конструкций из ферромагнитных материалов на основе применения магнитошумового метода неразрушающего контроля.

Технический результат достигается тем, что на диагностируемую конструкцию воздействуют переменным электромагнитным полем, в результате которого в поверхностном слое материала возбуждаются импульсные стохастические электромагнитные волны, обусловленные скачкообразным последовательным смещением стенок магнитных доменов. В измерительной катушке, находящейся на поверхности диагностируемой конструкции, индуцируется электродвижущая сила, суммарный отклик которой, называемый магнитным шумом, регистрируется измерительной аппаратурой. Полученный сигнал, характеризующийся временными и частотными характеристиками, по одному или нескольким параметрам (амплитуда, длительность, фаза, частота, спектральная плотность и др.) преобразуется к численному значению и сравнивается с базовыми сигналами. Базовые значения сигналов определяются экспериментально при точном соответствии режима воздействия переменного электромагнитного поля на аналогичных образцах конструкций при воздействии всех возможных видов нагрузок до разрушения. Полученные базовые значения сигналов формируют базу данных, в которой каждому значению, на основе экспериментально установленной взаимосвязи в виде функциональных зависимостей «состояние прочности - значение сигнала», присваивается состояние прочности, которое при этом может быть количественно выражено в требуемых для диагностируемой конструкции показателях (механическое свойство, наработка, максимально допустимая грузоподъемность, остаточный ресурс работы и др.).

Магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов включает в себя следующую последовательность действий.

1. Силовые конструкции (изделия) подвергаются анализу с целью определения эксплуатационных нагрузок и возможных нагрузок при аварийных ситуациях.

2. Образцы различных частей силовых конструкций подвергаются экспериментальным исследованиям, в ходе которых на них воздействуют определенными в пункте 1 нагрузками, с одновременной магнитошумовой диагностикой и регистрацией сигнала магнитного шума, преобразованного к численному значению по одному или нескольким параметрам (амплитуда, длительность, фаза, частота, спектральная плотность и др.).

3. На основе экспериментов для всех видов нагрузок устанавливается взаимосвязь в виде «состояние прочности - значение сигнала», что и формирует базу данных. Состояние прочности может быть количественно выражено в требуемых для диагностируемой конструкции показателях (механическое свойство, наработка, максимально допустимая грузоподъемность, остаточный ресурс работы и др.). Для удобства пользования взаимосвязь «состояние прочности - значение сигнала» может быть отражена графически.

4. При проведении технического освидетельствования с целью определения текущего состояния прочности силовые конструкции подвергаются магнитошумовой диагностике, при этом должны быть соблюдены режимные параметры магнитошумовой диагностики пункта 2.

5. Полученные сигналы сравниваются с сигналами базы данных и на основании этого устанавливается текущее состояние прочности силовой конструкции.

Возможность технической реализации данного способа доказана авторами при проведении экспериментальных исследований образцов из различных ферромагнитных сталей без термообработки и после различных видов термообработки при многоцикловом и малоцикловом нагружении до разрушения, температурных воздействиях с последующим испытанием на разрывной машине. Ниже приведены результаты исследований циклической долговечности образцов из стали 40Х прокат, свидетельствующие о технической реализуемости предлагаемого способа.

Образцы подвергались циклическому нагружению с периодическим осмотром и определением сигнала магнитного шума, в качестве которого в данном эксперименте была выбрана спектральная плотность, приведенная к условным единицам. На фиг. 1 графически представлена зависимость приращения сигнала магнитного шума от количества циклов нагружения с амплитудой деформации, обеспечивающей нагрузку, составляющую 80% от предела текучести, построенная в полулогарифмических координатах. За ноль принят исходный сигнал магнитного шума образцов до испытаний, который был постоянный по всей длине образцов, что обусловлено одинаковой структурой и текстурой материала, а также одинаковым количеством дефектов кристаллической структуры.

На полученной экспериментальной зависимости можно выделить три характерных участка. Первый участок характеризуется резким увеличением значений сигнала на первых 100 циклах, что по аналогии можно назвать приработкой, т.е. возникает некоторая поврежденность материала образца, незначительно влияющая на прочность. Второй участок характеризуется постепенным ростом сигнала, что свидетельствует о постепенном росте поврежденности материала. Третий участок характеризуется резким ростом сигнала. На третьем участке интенсивность накопления повреждений возрастает, достигая в конце критической величины, а механизм поврежденности переходит с микро- на макроуровень, который заканчивается образованием трещин на поверхности и разрушением при 82000 циклах нагружения.

Полученная зависимость является базовой для элементов конструкций, имеющих одинаковое с экспериментальными образцами сечение, выполненных из стали 40Х прокат и подверженных циклическим нагрузкам, соответствующим экспериментальным. Для установления состояния прочности диагностируемой конструкции необходимо, при соблюдении режимных параметров магнитошумовой диагностики эксперимента, определить приращение сигнала магнитного шума, отложить на графике базовых сигналов и оценить текущее состояние прочности, определив (в данном случае) наработку и остаточный ресурс работы, выраженные в циклах нагружения. Например, при приращении сигнала магнитного шума 3,7 условных единицы (см. фиг. 2) наработка составляет около 40000 циклов, остаточный ресурс работы, определяемый как разница между количеством циклов до разрушения и наработкой, равен 52000 циклов.

Аналогичные испытания сварных швов, а также проведенные на разрывных машинах малоцикловые нагружения образцов и образцов после температурных воздействий (температурные воздействия приводили к текстурным и структурным изменениям материала образцов, что устанавливалось микроанализом) также доказали техническую реализуемость предлагаемого способа.

Предлагаемый способ позволяет провести оценку состояния прочности силовых конструкций из ферромагнитных материалов, на всех этапах жизненного цикла конструкций, и позволяет диагностировать снижение прочности конструкций, обусловленное наличием микротрещин, микроструктурными или текстурными изменениями материала до появления дефектов, наличие которых является причиной разрушения силовых конструкций.

Магнитошумовой способ контроля состояния прочности силовых конструкций из ферромагнитных материалов, основанный на использовании магнитошумового метода неразрушающего контроля, заключающийся в воздействии на диагностируемую конструкцию переменного электромагнитного поля, в результате которого в поверхностном слое материала возбуждаются импульсные стохастические электромагнитные волны, обусловленные скачкообразным последовательным смещением стенок магнитных доменов, а в измерительной катушке, находящейся на поверхности диагностируемой конструкции, индуцируется электродвижущая сила, суммарный отклик которой, называемый магнитным шумом, регистрируется измерительной аппаратурой, отличающийся тем, что полученный сигнал, характеризующийся временными и частотными характеристиками, по одному или нескольким параметрам (амплитуда, длительность, фаза, частота, спектральная плотность или другие параметры, полученные в результате обработки временных и частотных характеристик сигнала) преобразуется к численному значению и сравнивается с базовыми сигналами, которые определены экспериментально в том же порядке на аналогичных образцах конструкций при воздействии всех возможных видов нагрузок до разрушения и формируют базу данных, в которой каждому значению сигнала, на основе экспериментально установленной взаимосвязи в виде функциональных зависимостей «состояние прочности - значение сигнала», присваивается состояние прочности, которое при этом может быть количественно выражено в требуемых для диагностируемой конструкции показателях.



 

Похожие патенты:

Изобретение относится к измерительной технике, представляет собой устройство экспресс-контроля магнитных характеристик листовой электротехнической стали и предназначено для измерения динамической петли гистерезиса и основной кривой намагничивания стали на частотах от 1 до 10000 Гц.

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п.

Изобретение относится к измерительной технике, представляет собой магнитное устройство для изучения сил внутреннего взаимодействия в растворе и может использоваться в физической химии.

Изобретение относится к системам магнитно-импедансной томографии. Система содержит систему возбуждения, имеющую несколько катушек возбуждения для генерирования магнитного поля возбуждения с целью наведения вихревых токов в исследуемом объеме, измерительную систему, имеющую несколько измерительных катушек для измерения полей, сгенерированных наведенными вихревыми токами, при этом измерительные катушки расположены в объемной (3D) геометрической компоновке, и устройство реконструкции, предназначенное для приема измерительных данных из измерительной системы и реконструкции изображения объекта в исследуемом объеме по измеренным данным.

Предложенное изобретение относится к измерительной технике, представляет собой способ определения магнитной индукции текстурированной электротехнической стали и может применяться в случаях, когда отсутствуют устройства измерения магнитных свойств или их невозможно использовать в силу таких причин, как слишком малые вес и размер образца или слишком плохое качество его поверхности.

Группа изобретений относится к области лабораторной диагностики и может быть использована для определения наличия аналита и его количества в биологических жидкостях.

Изобретение относится к методам неразрушающего контроля и может быть использовано на трубопроводах нефти и газа на химических и нефтехимических предприятиях, тепловых и атомных энергоустановках.

Изобретение относится к области разработки способов локального измерения магнитных свойств ферромагнитных объектов различных размеров и форм, в частности для целей неразрушающего контроля.

Изобретение относится к технике испытаний труб для магистральных газопроводов. .

Изобретение относится к измерительной технике, а именно к способу и системе для определения магнитной массы железнодорожных вагонов. Способ заключается в том, что для определения магнитной массы железнодорожных вагонов сначала производят калибровку с учетом окружающей температуры, а также насыпной плотности груза в вагонах. Определяют последовательность подачи вагонов и их количество, начальный момент подачи в область измерений и выход из зоны измерений. Затем определяют изменения параметров тока катушки, мгновенные значения напряжения и тока в катушке, скорость движения вагонов, высоту вагона, уровень загрузки, температуру и вычисляют мгновенные величины добротности и индуктивности катушки. Затем по этим данным определяют интегральные индуктивность и добротность вагона и магнитную массу вагона. Для осуществления способа предложена система, включающая средства определения добротности и индуктивности 1, средства для измерения температуры 2, ультразвуковой датчик уровня вагона 4, фотоэлектрические датчики положения вагона 5, оптические датчики скорости 6, видеокамеру 7, датчики объемной плотности 8, а также блок обработки и управления 9. Технический результат заключается в повышении точности определения магнитной массы железнодорожных вагонов и других контейнеров. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике, представляет собой устройство для определения содержания феррита в материале и может быть использовано для определения содержания феррита, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов магнитных материалов. Устройство содержит два постоянных магнита, первые два противоположных полюса которых ориентированы навстречу друг другу и разделены воздушным промежутком, а другие два противоположных полюса соединены С-образным магнитопроводом, на который намотана катушка индуктивности, подключенная к первому регистратору ЭДС индукции. В воздушном промежутке между полюсами магнитов установлена тепловая камера, соединенная с источником тока. Через боковое отверстие в корпусе камеры вставлен шток для размещения испытуемого материала, закрепленный на оси электродвигателя для вращения испытуемого материала с постоянной угловой скоростью в вертикальной плоскости относительно магнитных силовых линий постоянных магнитов, соединяющих их полюса. Также внутри тепловой камеры находится измерительный спай термопары, подключенной ко второму регистратору ЭДС. Техническим результатом является расширение функциональных возможностей. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области судостроения и касается способа определения места нахождения герметизированного отверстия при обрастании, заносе илом или обмерзании подводной части корпуса судна. Сущность заключается в размещении постоянных магнитов по периметру герметизированного отверстия, что повышает надежность определения размера вскрываемого отверстия и позволяет производить вскрытие отверстия без повреждения корпуса судна. 2 ил.

Использование: для неразрушающего контроля технического состояния нефте- газопроводов. Сущность изобретения заключается в том, что магнитный дефектоскоп, на котором установлены на магнитах два пояса щеток из ферромагнитного материала, контактирующие с внутренней поверхностью трубопровода, между поясами щеток из ферромагнитного материала в виде кольца на износоустойчивых основаниях установлены блоки датчиков, состоящие из вихретоковых датчиков и датчика градиента постоянного магнитного поля, который в свою очередь состоит из двух магниточувствительных элементов, являющихся полупроводниковыми преобразователями магнитного поля, смещенных на некоторое расстояние друг относительно друга в направлении нормали к контролируемой поверхности, при этом расстояние значительно меньше протяженности помех, при этом применяется система из двух вихретоковых датчиков, плоскости которых перпендикулярны друг другу и направляющей контролируемого трубопровода, при этом применяется амплитудно-фазовая обработка диагностических данных. Технический результат: обеспечение возможности улучшения обнаружения и образмеривания малоразмерных дефектов и дефектов в сварных швах. 2 ил.

Изобретение относится к области диагностики технического состояния металлоконструкций, находящихся в рабочем состоянии. Сущность: на контролируемом участке образца (аналога) элемента (или на действующем элементе) при отсутствии внешней изгибающей силы и при приложении внешней изгибающей силы (в пределах упругих свойств элемента) каждый раз осуществляется намагничивание в целях создания симметричного магнитного поля относительно оси(осей) симметрии геометрической фигуры поперечного сечения элемента. Измеряется величина индукции магнитного поля в характерных точках на границах поперечных сечений элемента, симметричных друг другу относительно оси(осей) симметрии сечений элемента. Определяется средняя разность абсолютных величин магнитной индукции в характерных точках на контролируемом участке. По экспериментальной зависимости изгибающей силы (или средней напряженности в материале) от средней разности абсолютных значений магнитной индукции в характерных точках на контролируемом участке образца (аналога) элемента (или на действующем элементе) находится аналитическая зависимость. На контролируемом участке элемента конструкции, находящейся в рабочем состоянии, создается симметричное магнитное поле относительно геометрической фигуры сечения элемента, измеряется величина индукции магнитного поля в характерных точках сечений, определяется средняя разность абсолютных значений магнитной индукции в аналогичных характерных точках и, по полученной ранее аналитической зависимости, находится среднее оценочное значение напряженности в материале на контролируемом участке элемента действующей конструкции. Технический результат: возможность обеспечения оперативной оценки изгибных напряжений в материале элементов конструкций, находящихся в рабочем состоянии, с помощью простых мобильных технических средств. 10 ил., 1 табл.

Использование: для контроля стального листа. Сущность изобретения заключается в том, что устройство для контроля стального листа содержит магнитооптический элемент, способный определять в качестве оптической характеристики структуру магнитных доменов стального листа, световой источник для облучения магнитооптического элемента линейно поляризованным светом, детектор для обнаружения линейно поляризованного света с плоскостью поляризации, вращающейся в соответствии со структурой магнитных доменов стального листа, которая передается магнитооптическому элементу, и механизм привода для приведения в действие по меньшей мере магнитооптического элемента таким образом, чтобы приводить в контакт стальной лист и магнитооптический элемент, а также отделять их друг от друга. Технический результат: обеспечение возможности повышения выхода продукции посредством осуществления визуального наблюдения и проверки структуры магнитного домена стального листа непосредственно после выполнения процесса измельчения магнитного домена. 3 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля микроструктуры металлической мишени. Варианты реализации настоящего изобретения предоставляют электромагнитный датчик (400) для детектирования микроструктуры металлической мишени, содержащий магнитное устройство (410, 420) для предоставления возбуждающего магнитного поля, магнитометр (430) для детектирования результирующего магнитного поля, индуцированного в металлической мишени; и схему (450) калибровки для создания калибровочного магнитного поля для калибровки электромагнитного датчика. Причем калибровочное магнитное поле создается электрическим током, индуцированным в схеме калибровки возбуждающим магнитным полем. Технический результат - повышение чувствительности датчика за счет исключения искажений его показаний, обусловленных помехами различной природы. 2 н. и 24 з.п. ф-лы, 10 ил.

Изобретение может быть использовано при контроле электропроводимости и коррелирующего с ней значения температуры внутренних слоев листа, например, из рафинированной меди - медной рубашки кристаллизатора путем измерения электропроводимости внутренних слоев меди. Согласно изобретению способ контроля изменений электропроводимости внутренних слоев немагнитного металла заключается в использовании накладного вихретокового преобразователя, по возбуждающей катушке которого циркулирует создаваемый генератором ток, а сигнал его измерительной катушки обрабатывают в блоке обработки, к выходу которого подключен индикатор электропроводимости, при этом в возбуждающей катушке циркулирует периодический импульсный ток в форме меандра с периодом, выбираемым таким, чтобы за время половины периода заканчивались электромагнитные переходные процессы, определяют максимальное значение ΔФмакс разностного по отношению к объекту с постоянным значением электропроводимости магнитного потока и значение интервала времени tмакс достижения этого максимума, по этим значениям, используя градуировочные кривые на плоскости состояния с осями ΔФмакс - tмакс, определяют величину изменения электропроводимости и координаты области, где имеют место эти изменения, при этом градуировочные кривые на плоскости состояния строят предварительно путем моделирования для предполагаемых законов изменения электропроводимости и хранят в памяти блока обработки. Предлагаемые способ и устройство позволяют определять электропроводимость внутри металлического листа и определять координаты изменения электропроводимости. Изобретение обеспечивает возможность контроля за параметрами металла при промышленном производстве - плавке металла и процессе его остывания, возможность определения электропроводимости (температуры) в области удаленных слоев металла (т.е. стенки кристаллизатора, контактирующей с жидким металлом), определение области изменения электропроводимости, т.е. распределения электропроводимости (температуры) по стенке металла (рубашки кристаллизатора). 2 н.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к методам контроля фазового состава, и может быть использовано в металлургии, металлообработке, машиностроении, авиастроении для контроля качества продукции и стабильности технологических процессов. Прибор контроля фазового состава стали включает в себя датчик (Д), который состоит из корпуса, выполненного из немагнитного материала, и вторичный прибор (ВП) со средством алфавитно-цифровой индикации для отображения выходной информации. При этом в корпусе размещены соединенные между собой измерительный трансформатор (1), состоящий из первичной обмотки возбуждения (ОВ) и вторичной обмотки измерительной (ОИ), генератор синусоидальных колебаний (2), датчик-преобразователь тока (3), цифроаналоговый преобразователь (5), аналого-цифровой преобразователь (4). Вторичный прибор дополнительно содержит микропроцессорный модуль (7), связанный с измерительным трансформатором (1) через приемопередатчик (10) вторичного прибора, связанного с приемопередатчиком (6) датчика посредством радиосигнала, и управляющий амплитудой выходного напряжения генератора синусоидальных колебаний. Техническим результатом настоящего изобретения является повышение надежности и достоверности автоматического измерения содержания ферритной фазы в образце или пробе. 2 з.п. ф-лы, 2 ил.

Использование: для обнаружения магнитных свойств магнитного материала, содержащегося в листе бумаги. Сущность изобретения заключается в том, что устройство содержит магнитный модуль, который генерирует магнитное поле, перпендикулярное направлению транспортирования листа бумаги на пути транспортирования и параллельное поверхности транспортирования листа бумаги, причем интенсивность магнитного поля уменьшается по мере транспортирования листа бумаги в направлении транспортирования, а после достижения 0 (нуля) интенсивность магнитного поля увеличивается, при этом направление магнитного поля является противоположным направлением; и множество магнитных датчиков, расположенных в магнитном поле, генерируемом магнитным модулем в местах, в которых интенсивность магнитного поля взаимно отличается и которые обнаруживают магнитные свойства листа бумаги, транспортируемого по пути транспортирования, при этом магнитные свойства магнитного материала, содержащегося в листе бумаги, обнаруживаются на основе выходных сигналов указанного множества магнитных датчиков, получаемых при обнаружении магнитного материала. Технический результат: обеспечение возможности создания устройства детектирования магнитного свойства с малыми размерами, выполненное с возможностью дифференцирования и детектирования множества типов магнитных материалов с разной величиной коэрцитивной силы. 13 з.п. ф-лы, 28 ил.
Наверх