Электровакуумный прибор свч

Изобретение относится к электронной технике, а именно к электровакуумным приборам клистронного типа, содержащим один двухзазорный резонатор, и предназначено для генерации большой мощности СВЧ. Первый зазор резонатора имеет протяженное пространство взаимодействия (ППВ) электронов с СВЧ полем, длина которого выбирается из условий получения отрицательной активной электронной проводимости и оптимального группирования электронов. В приборе используется ППВ с неравномерным электрическим полем и большие амплитуды СВЧ напряжений в пределах (2,6-2,8)U0. Технический результат - увеличение КПД на 20-25% по сравнению с двух- и однорезонаторными с двумя зазорами клистронными генераторами. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к электронной технике, в частности к электровакуумным однорезонаторным с двумя зазорами генераторам СВЧ клистронного типа, в которых модуляция по скорости и плотности сформированного пушкой электронного потока происходит в первом зазоре и трубе дрейфа, а взаимодействие сгруппированного потока с СВЧ полем и отбор энергии - во втором зазоре резонатора. Предлагаемое устройство предназначено для генерации большой мощности во всех участках микроволнового диапазона с достаточно высоким значением КПД, превышающим КПД известных двухзазорных однорезонаторных генераторов на 20-25%, то есть примерно в два раза.

Известны двухрезонаторные и двухзазорные однорезонаторные генераторы, работающие на синфазном или противофазном видах колебаний [1]. Во всех этих генераторах, как и в двухрезонаторных усилительных клистронах, КПД не превышает 15-20% [2]. В частности, известен генераторный клистрон «с плавающей трубкой дрейфа» [3], работающий на синфазном виде колебаний, взятый нами за прототип, в котором оптимальные условия самовозбуждения выполняются, если угол пролета электронов между узкими зазорами резонатора удовлетворяет равенству θ12=2π(n+0,75), где n=0, 1, 2, … - номер зоны генерации. В первом зазоре резонатора электронный поток модулируется по скорости, а в трубе дрейфа - по плотности и приходит во второй зазор, где происходит отбор энергии СВЧ полем от сгруппированных в сгустки электронов. КПД прибора не превышает 20%. Амплитуда СВЧ напряжения на первом узком зазоре гораздо меньше, чем на втором.

Для получения оптимального соотношения амплитуд напряжений на зазорах резонатора увеличивают емкость первого зазора за счет изменения его геометрии, что является недостатком, так как при этом уменьшаются характеристическое сопротивление и собственная добротность резонатора, что приводит к уменьшению эквивалентного сопротивления резонатора. В результате снижаются контурный и общий КПД прибора. Другим недостатком прибора также является потеря мощности СВЧ колебаний в резонаторе на скоростную модуляцию электронного потока в первом зазоре.

Целью предлагаемого изобретения является увеличение КПД однорезонаторных генераторов с двумя зазорами взаимодействия синфазного вида колебаний. Предлагаемый электронный прибор, как и прототип, содержит электронную пушку, двухзазорный резонатор, трубу дрейфа, коллектор, вывод энергии. Основное отличие предлагаемого прибора от прототипа заключается в том, что длина первого зазора, который следует называть протяженным пространством взаимодействия, выбирается из условия получения в нем отрицательной электронной проводимости (монотронный эффект). Таким образом, при выполнении функции модуляции электронного потока по скорости и плотности одновременно в этом пространстве происходит отбор мощности от электронного потока СВЧ полем, что, в конечном счете, увеличивает электронный и общий КПД прибора. Для эффективного группирования электронов величина угла пролета θ1 в первом зазоре выбирается больше оптимального с точки зрения получения максимального для монотрона значения электронного КПД:

где d1 - длина пространства взаимодействия первого зазора;

, ω - круговая частота, ν0=5,95·107 - скорость электронов на входе в пространство взаимодействия первого зазора, см/с, U0 - ускоряющее напряжение, B, λ - рабочая длина волны, см.

Эффективное группирование электронов, которое начинается в первом зазоре и продолжается в трубе дрейфа, обеспечивается при относительной амплитуде СВЧ напряжения на зазоре ξ1=Um1/U0 в пределах от 2,6 до 2,8 на таком расстоянии от первого зазора, при котором соблюдаются оптимальные условия отбора энергии от сгруппированного электронного потока во втором зазоре резонатора. Так как угол пролета θ1 больше 2π, то эти условия оказываются такими же, как для традиционного однорезонаторного генератора с узкими зазорами на π-виде колебаний, то есть угол пролета между центрами зазоров должен быть равен θ12=2π(n+0,25).

Относительная амплитуда СВЧ напряжения на втором зазоре не превышает величину, равную 1,25. Для получения указанных значений амплитуд СВЧ напряжения на зазорах резонатора требуется ток, величина которого выбирается из условия:

где ρ - характеристическое сопротивление, QH - нагруженная добротность резонатора. Такой ток можно получить в однолучевой электронно-оптической системе, однако лучшими параметрами будет обладать генератор с многолучевой ЭОС, позволяющей обеспечить заданную мощность при меньшем ускоряющем напряжении и большем контурном и общем КПД.

В отличие от обычного генератора с одним двухзазорным резонатором на синфазном виде колебаний, у которого амплитуда Um1 меньше, чем амплитуда Um2, в предлагаемом приборе амплитуда Um1 в 2,2-2,4 раза больше амплитуды Um2. Для получения такого режима работы генератора, в отличие от прототипа, предлагается в области второго зазора сделать выступ пролетной трубы внутрь резонатора над его торцевой стенкой. Размер выступа Η выбирается равным (0,04-0,06)λ. Преимущество такого способа получения необходимого соотношения амплитуд на зазорах резонатора заключается в увеличении эквивалентной индуктивности в области второго зазора и, следовательно, увеличении характеристического сопротивления резонатора. Электрическое СВЧ поле в первом зазоре при этом оказывается неравномерным, нарастающим в направлении движения электронов.

Численные расчеты показывают, что при использовании такого протяженного группирователя в сочетании с большими амплитудами СВЧ напряжения и неоднородным электрическим полем в пространстве взаимодействия возможно получение относительной амплитуды первой гармоники конвекционного тока на уровне Im1/I0=1,4-1,55. Соответственно КПД предлагаемого прибора повышается на 15-20% по сравнению с традиционными двухзазорным однорезонаторным и двухрезонаторным клистронами. Дополнительное увеличение КПД получается за счет отбора до 5% подводимой мощности P0=I0U0 в первом пространстве взаимодействия.

Технический результат настоящего изобретения состоит в создании нового типа двухзазорных однорезонаторных генераторов СВЧ с большими углами пролета в пространстве взаимодействия резонатора, отличающихся большим на 20-25% значением КПД по сравнению с традиционными однорезонаторными клистронными генераторами.

Эскиз предложенного двухзазорного однорезонаторного генератора с протяженным первым пространством взаимодействия показан на фиг. 1, где обозначено: 1 - многолучевая электронная пушка, 2 - первая пролетная труба, 3 - двухзазорный резонатор, 4 - труба дрейфа (вторая пролетная труба), 5 - третья пролетная труба, 6 - стержни, поддерживающие трубу дрейфа, 7 - вывод энергии, 8 - коллектор. В приборе пролетные трубы имеют пролетные каналы, расположенные в нескольких рядах на концентрических окружностях, причем оси пролетных каналов совпадают с осями соответствующих катодов многолучевой пушки.

Принцип работы прибора состоит в следующем. Электронная пушка 1 создает многолучевой электронный поток, который через пролетную трубу 2 попадает в первое пространство взаимодействия резонатора 3, длина которого определяется из условия:

где d1 - расстояние от торца первой пролетной трубы, совпадающей с торцевой внутренней стенкой резонатора со стороны пушки, до торца трубы дрейфа. В этом пространстве взаимодействия электронный поток модулируется по скорости, происходит предварительное группирование электронов и образование переменного конвекционного тока. Выбор размера d1 в указанных пределах обеспечивает получение отрицательной электронной проводимости. В результате в этом пространстве не затрачивается СВЧ мощность на модуляцию, а отбирается от электронного потока до 5% подводимой мощности. При уменьшении размера d1 до величины менее 2,4π/γ группирование электронов становится менее эффективным, что приводит к снижению КПД прибора. При увеличении d1 больше 2,7π/γ активная электронная проводимость становится положительной, что приводит к отбору СВЧ мощности электронным потоком и снижению КПД. При указанной длине пространства взаимодействия d1 эффективное группирование электронов на расстоянии, соответствующем оптимальному условию отбора энергии от сгруппированного электронного потока во втором зазоре резонатора, обеспечивается при относительной амплитуде СВЧ напряжения . Относительная амплитуда первой гармоники конвекционного тока Im1/I0 после прохождения трубы дрейфа, то есть на входе во второй зазор, может достигать величины от 1,4 до 1,55.

Длина второго зазора резонатора выбирается, как в узкополосном клистроне из условия получения максимального КПД прибора, равной:

D2=(0,3-0,4)π/γ,

где d2 - расстояние между торцами трубы дрейфа и третьей пролетной трубы в резонаторе. Меньшие значения d2 соответствуют большим длинам волн.

Третья пролетная труба выступает над торцевой стенкой резонатора для получения оптимального по КПД отношения амплитуд СВЧ на зазорах Um1/Um2=2,2-2,4. Расстояние от торца третьей пролетной трубы до торцевой стенки резонатора и диаметр пролетных труб выбираются из условий:

где H - расстояние от торца третьей пролетной трубы до торцевой стенки резонатора со стороны коллектора, D - диаметр пролетных труб.

Выбор размера D в указанных пределах позволяет разместить в пролетных трубах необходимое число пролетных каналов с электронными лучами и соответственно обеспечить получение тока, необходимого для эффективной работы прибора. Меньшие значения коэффициентов при выборе размера D и большие значения при выборе размера Η соответствуют большим длинам волн.

Примеры зависимостей отношения амплитуд напряжений на зазорах Um1/Um2 и характеристического сопротивления резонатора ρ от относительного размера выступа третьей пролетной трубы H/λ показаны соответственно на фиг. 2 и фиг. 3.

Длина трубы дрейфа выбирается из условия получения максимального значения Im1/I0 на входе во второй зазор резонатора при одновременном выполнении оптимальных фазовых условий самовозбуждения генератора при работе на первой зоне генерации (n=1):

где L - расстояние между торцами трубы дрейфа. Трубу дрейфа поддерживают стержни 6. Внешняя оболочка резонатора может выполняться из закороченных отрезков прямоугольного или круглого волноводов.

Численные расчеты показывают возможность получения в двухзазорном однорезонаторном генераторе электронного КПД, равного 56% на частоте 2,45 ГГц, при ускоряющем напряжении 19 кВ, суммарном первеансе электронного потока из 15 лучей 4,5 мкА/В3/2.

Таким образом, при использовании предлагаемых технических решений может быть достигнут следующий результат: в двухзазорных однорезонаторных генераторах с протяженным первым пространством взаимодействия, при котором обеспечивается отрицательная электронная проводимость, КПД увеличивается на 20-25%, то есть более чем в два раза, по сравнению с известными однорезонаторными клистронными генераторами. Простота конструкции в сочетании с большими значениями КПД делает перспективным использование предлагаемого прибора в качестве источника большой мощности.

Источники информации

1. Шевчик В.Н. Основы электроники сверхвысоких частот. - М.: Сов. радио, 1959. - С. 173.

2. Березин В.М., Буряк В.С. Электронные приборы СВЧ. - М.: Высшая школа, 1985. - С. 48.

3. Chodorow Μ., Fan S. A floating drift-tube klystron// Proc. IRE. - 1953. - P. 25.

1. Электровакуумный прибор СВЧ, содержащий электронную пушку, трубы дрейфа, сквозь которые пропускают электронный поток, активный двухзазорный резонатор, возбуждаемый на синфазном виде колебаний, трубу дрейфа между зазорами, вывод энергии и коллектор, отличающийся тем, что длину первого пространства взаимодействия (зазора) резонатора - расстояние между торцом первой пролетной трубы, установленной в торце резонатора со стороны пушки, и торцом трубы дрейфа - выбирают из условия получения отрицательной активной составляющей электронной проводимости (монотронный эффект):
d1=(2,4-2,7)π/γ,
где d1 - расстояние между торцами труб, образующих первый зазор, см, , 1/см, ω - круговая частота колебаний, υ0 - скорость электронов на входе в пространство взаимодействия резонатора, см/с, λ - рабочая длина волны, см, U0 - ускоряющее напряжение, В, а величину тока электронного потока I0 выбирают из условия:
I0=(6-8)U0/ρQн,
где ρ - характеристическое сопротивление, Qн - добротность нагруженного резонатора, причем электронная пушка является многолучевой, в пролетных трубах выполнены пролетные каналы, расположенные соосно соответствующим катодам электронной пушки, при этом торцевая поверхность первой пролетной трубы совпадает с плоскостью внутренней поверхности торцевой стенки резонатора, расположенной со стороны электронной пушки, а длину второго зазора между торцами трубы дрейфа и третьей пролетной трубы определяют из условия:
d2=(0,3-0,4)π/γ,
при этом длину трубы дрейфа, определяющую расстояние между зазорами, выбирают из условия:
L=(0,75-1)π/γ,
где L - расстояние между торцами трубы дрейфа, а расстояние от торца третьей пролетной трубы до торца резонатора со стороны коллектора и диаметр пролетных труб выбирают из условий:
H=(0,04-0,06)λ,
D=(0,2-0,5)λ,
где H - расстояние от торца третьей пролетной трубы до торцевой стенки резонатора со стороны коллектора, D - диаметр пролетных труб, причем меньшие значения коэффициентов при выборе размера D и большие значения при выборе размера H соответствуют большим длинам волн.

2. Электровакуумный прибор СВЧ по п. 1, отличающийся тем, что резонатор выполнен в виде отрезка закороченного на концах прямоугольного или круглого волновода.



 

Похожие патенты:

Изобретение относится к области плазменной релятивистской СВЧ-электроники и может найти применение при создании источников широкополосного электромагнитного СВЧ-излучения, используемого в импульсной СВЧ-энергетике, радиофизических исследованиях, экспериментальной физике, в технологических процессах обработки материалов.

Магнетрон // 2572347
Изобретение относится к магнетронам. Катод магнетрона, содержащего радиальное удлинение для размещения клемм 6, 7 катода, опирается на значительно более короткие опорные держатели 3, 4, поскольку данные держатели закреплены в концевой стенке 18 радиального удлинения, которая расположена ближе к катодному концу радиального удлинения, чем к другому концу.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Изобретение относится к технике генерации электромагнитных импульсов (ЭМИ) и может быть использовано в импульсной радиолокации и при испытаниях радиоэлектронной аппаратуры на воздействие импульсных полей.

Изобретение относится к сверхвысокочастотной (СВЧ) технике, может быть использовано при разработке мощных источников СВЧ излучения с высоким электронным КПД для целей радиолокации, навигации и передачи информации.

Изобретение относится к радиоэлектронике, в частности к электровакуумным СВЧ-приборам, предназначенным для получения сверхбольших импульсных и средних мощностей.

Система импульсно-периодической зарядки (СИЗ) относится к высоковольтной импульсной технике и может быть использована при разработке мощных импульсно-периодических ускорителей электронов и СВЧ-генераторов на их основе.

Изобретение относится к радиоэлектронике, в частности к электровакуумным СВЧ приборам, предназначенным для получения сверхбольших импульсных и средних мощностей, и может быть использовано в системах радиопротиводействия, системах функционального поражения, ускорителях заряженных частиц и других областях техники.

Способ генерации широкополосного электромагнитного излучения СВЧ диапазона может быть использован в радиотехнической и электронной промышленности, в частности в технике генерации мощных широкополосных электромагнитных импульсов (ЭМИ) в сантиметровом, миллиметровом и субмиллиметровом диапазонах.

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации мощного СВЧ-излучения. Релятивистский магнетрон содержит многорезонаторный анодный блок (1), коаксиальный с ним взрывоэмиссионный катод (3), внешнюю магнитную систему (4), излучающую антенну (6), расположенную во внешнем канале связи (5) на расстоянии nλ+λ/4 от одного из резонаторов (2), и разрядник (7), расположенный на расстоянии kλ/4 от оси антенны (6), где n - целое число; λ - длина волны в волноводе; k - нечетное число.

Изобретение относится к области электротехники, а конкретно к способу электропитания многолучевых клистронов горизонтального исполнения. Соединительный модуль содержит разделительный трансформатор коаксиального типа с незамкнутым магнитопроводом, на первичную обмотку (1) которого снаружи и со стороны крепления ее к корпусу СМ (3) установлены медные магнитные экраны (10), вторичную обмотку (2), закрепленную на высоковольтный разъем (4), который в свою очередь установлен на заднюю стенку корпуса СМ, трансформатор тока (5), высоковольтный делитель напряжения (7), верхнее плечо которого выполнено в виде конструктивной емкости, водяную систему охлаждения (6), расположенную в расширительном объеме корпуса СМ, блок датчиков контроля (8) и узел наполнения и слива масла (9). Технический результат - улучшение эксплуатационных характеристик и упрощение конструкции соединительного модуля. 2 з.п. ф-лы, 2 ил., 11 ил.

Изобретение относится к области электронный СВЧ техники. Электронный СВЧ прибор большой мощности пролетного типа, использующий магнитную систему для формирования и транспортировки электронного пучка, содержит вакуумный корпус, выполненный из материала с низкой электропроводностью. Снаружи вакуумного корпуса коаксиально расположен дополнительный соленоид, запитываемый переменным периодическим током. Прибор снабжен коллектором из металла или сплава с высокой электро- и теплопроводностью в виде электрически изолированной от вакуумного корпуса незамкнутой однозаходной или многозаходной спирали. Технический результат - снижение максимальной рабочей температуры поверхности коллектора электронного СВЧ прибора и повышение долговечности СВЧ прибора при заданной мощности СВЧ излучения. 6 з.п.ф-лы, 3 ил .

Изобретение относится к технологии производства электровакуумных приборов, а именно к изготовлению высокочастотного пакета замедляющих систем спирального типа для ламп бегущей волны. В способе изготовления высокочастотного пакета замедляющей системы соединение между спиралью с металлическим покрытием и опорными керамическими стержнями происходит в твердой фазе и осуществляется за счет давления на спираль и керамические стержни, которое создается за счет разницы коэффициентов термического расширения колец оправки и стержней из нержавеющей стали при нагреве узла в вакууме, при этом температура нагрева должна быть ниже температуры плавления металлического покрытия спирали. Технический результат - повышение надежности соединения спирали с опорными стержнями без образования галтелей и их травления, что позволяет обеспечить эффективный теплоотвод от спирали за счет улучшения теплового контакта спираль - опорные стержни.1 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике и может быть использовано в электровакуумных приборах, в частности в магнетронах непрерывного или импульсного действия, работающих в широком диапазоне длин волн. Технический результат - повышение стабильности и воспроизводимости электрических параметров магнетрона за счет использования в нем прессованного оксидно-никелевого катода, обладающего высокой равномерностью плотности тока эмиссии и устойчивостью к деградирующему воздействию ионной и электронной бомбардировок. В магнетроне, содержащем анод и концентрически размещенный внутри него оксидно-никелевый катод, изготовленный путем совместного прессования смеси порошков никеля и эмиссионно-активного вещества, спекания прессовки в среде осушенного водорода при температуре 1000÷1200°С в течение 15-30 мин, в качестве эмиссионно-активного вещества используются агломераты никеля со слоем тройного карбоната, представляющие собой частицы никелевого порошка, равномерно покрытые слоем тройного карбоната бария-кальция-стронция толщиной до 20 мкм. Составляющие исходную рабочую смесь для прессования катода порошки никеля и указанных агломератов никеля со слоем тройного карбоната имеют одинаковый гранулометрический состав. Эмиссионные, тепловые и механические свойства катода могут управляться варьированием зернового состава формообразующего металла и эмиссионно-активного вещества, а также регулированием концентрации этих компонентов в рабочей смеси. Существенно снижена трудоемкость изготовления катода, исключены операции, связанные с применением токсичных, химически активных и взрывоопасных соединений. 7 з.п. ф-лы, 4 ил.

Изобретение относится к радиоэлектронике, в частности к электровакуумным приборам СВЧ, и может быть использовано, например, в радиолокации, радиопротиводействии и в других областях техники. Технический результат - получение простого в эксплуатации сверхвысокочастотного электровакуумного устройства для генерирования сверхкоротких электрических импульсов напряжения со сверхвысокой частотой повторения с эффективной системой теплоотвода, обладающего более высокой средней выходной мощностью. Выходной коаксиальный резонатор сверхвысокочастотного электровакуумного устройства выполнен четвертьволновым, его внешний и внутренний проводники соединены между собой посредством внутреннего торцевого выступа во внешнем проводнике выходного коаксиального резонатора и внешнего замкнутого кольцевого выступа, выполненного на боковой стенке внутреннего проводника выходного коаксиального резонатора, коллектор электронов размещен таким образом, что первая его часть, расположенная со стороны высокочастотного зазора, находится в полости выходного коаксиального резонатора, а вторая часть расположена за коаксиальным резонатором, причем во второй части коллектора расположены штуцеры для подвода и отвода охлаждающей жидкости, коаксиальная линия вывода СВЧ-энергии расположена перпендикулярно оси выходного коаксиального резонатора вблизи внутреннего торцевого выступа его внешнего проводника, причем внешний проводник коаксиальной линии вывода СВЧ-энергии соединен с внешним проводником выходного коаксиального резонатора, а внутренний проводник коаксиальной линии вывода СВЧ-энергии соединен через отверстие во внешнем проводнике выходного коаксиального резонатора с внутренним проводником выходного коаксиального резонатора. 6 з.п. ф-лы, 2 ил.

Изобретение относится к радиотехнике и электронике сверхвысоких частот и может быть использовано в установках ускорителей заряженных частиц, в СВЧ устройствах, а именно установках СВЧ нагрева, радиолокационных станциях, СВЧ фильтрации радиосигналов, для увеличения функциональных возможностей усилителей СВЧ сигнала с электронными потоками. Усилитель содержит электронную пушку в виде цилиндрического вакуумного диода со взрывоэмиссионным катодом, формирующую сплошной цилиндрический релятивистский электронный поток с током, на 5-20% меньшим второго критического и на 50-80% большим первого критического, анодную сетку, располагающуюся на границе пушки, два электромагнитно несвязанных резонатора, которые размещены за анодной сеткой, алюминиевую фольгу, расположенную в стенке второго резонатора, элемент ввода сигнала в виде коаксиального волновода с внутренним проводником, проникающим внутрь первого резонатора, и вывод мощности в виде волновода, подключенного ко второму резонатору. Технический результат - повышение эффективности усилителя мощных СВЧ сигналов без внешнего магнитного поля. 3 ил.

Способ генерации электромагнитного излучения СВЧ диапазона относится к технике СВЧ и может быть использован при разработке генераторов мощных широкополосных электромагнитных импульсов в сантиметровом, миллиметровом и субмиллиметровом диапазонах длин волн. На электроды фотодиода подают импульс напряжения, фотокатод наклонно облучают импульсным лазерным излучением, в результате чего с катода эмитируются электроны, которые ускоряются в вакуумированном межэлектродном промежутке, изменяют спектр электромагнитного излучения и снижают потери электронов, размещая экранирующий электрод вне разрядного промежутка. Технический результат - расширение спектра электромагнитного излучения. 1 з.п. ф-лы, 10 ил.

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное группирование электронов. Основная особенность предлагаемого прибора заключается в том, что оба зазора первого резонатора имеют протяженное пространство взаимодействия (ППВ) электронов с СВЧ полем. Изобретение предназначено для генерации большой мощности СВЧ. Технический результат - увеличение КПД благодаря использованию ППВ и больших амплитуд СВЧ напряжений в пределах (1,1-1,3)U0 в первом резонаторе. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В генераторе в цепи питания между источником высоковольтного напряжения и высоковольтным фотодиодом установлен управляемый ключ, состоящий из импульсно-периодического источника света, фотокатода ключа и анода ключа, причем расстояние между фотокатодом ключа и анодом ключа исключает возможность электрического пробоя управляемого ключа при максимальном напряжении, приложенном к высоковольтному фотодиоду. Технический результат - повышение надежности работы за счет обеспечения работы СШП генератора ЭМИ с высокой частотой следования импульсов без катастрофического разрушения сетчатого анода при пробое высоковольтного фотодиода. 2 ил.

Изобретение относится к области плазменной техники и может быть использовано для выделения пучков электронов из плазмы рабочей среды, создания электрических генераторов на основе энергии электронных пучков, электрореактивных двигателей, электронно-лучевых и ионно-лучевых приборов. Усилитель-концентратор пучка электронов (УКЭ) содержит корпус (1) с внутренней осевой суживающейся полостью, имеющей форму усеченного конуса, на поверхность которой нанесена кремниевая решетка (2) с верхним алмазным слоем (3). В большем отверстии осевой полости установлена многослойная электронная мембрана, основой которой является динамически устойчивая высокотемпературная вольфрамовая пластина (4), имеющая сложную форму: внешняя высокотемпературная поверхность выполнена плоской, а внутренняя низкотемпературная поверхность имеет вогнутую полусферическую форму для фокусирования электронов в пучок. Пластина (4) изготовлена из сплава с пористостью до 85% и диаметром пор 10-3-10-4 мкм. На внешнюю высокотемпературную поверхность вольфрамовой пластины (4) нанесен слой из нанокомпозитного графена (5) с нанопорами (11), а на внутреннюю низкотемпературную - слой из оксида алюминия (7) с нанопорами (8). Корпус снабжен аксиальными анодами (12), (13), установленными со стороны входного и выходного отверстий и служащими для подачи ускоряющих потенциалов, обеспечивающих, соответственно, электрический вывод электронов из потока плазмы и управление энергией электронов и их концентрацией в пучке, входящем в УКЭ, и управление концентрацией, силой тока и энергией электронов пучка, выходящего из УКЭ. Технический результат - обеспечение температурной и динамической устойчивости, повышение эффективности и КПД преобразования энергии потока плазмы в электрическую мощность. 1 ил.
Наверх