Система электропитания космического аппарата с регулированием мощности солнечной батареи инверторно-трансформаторным преобразователем

Изобретение относится к области космической энергетики. Система состоит из солнечной батареи (СБ), подключенной шинами к регулятору напряжения, причем в плюсовой шине установлен датчик тока, трансформатора, первичная обмотка которого соединена с регулятором напряжения, построенным по мостовой схеме инвертора, выпрямителя, аккумуляторной батареи (АБ) с устройством контроля заряженности, нагрузки, зарядного и разрядного устройств, при этом она содержит систему управления с экстремальным шаговым регулятором мощности СБ, которая соединена измерительным входом с выходом датчика тока, а другими измерительными входами - с шинами СБ и нагрузки с возможностью управления транзисторами регулятора напряжения с входным C-фильтром, причем вторичная обмотка трансформатора соединена с входами выпрямителя, содержащего выходной LC-фильтр, один из силовых выходов которого соединен с входом зарядного устройства, выходом разрядного устройства и входом нагрузки, выход зарядного устройства соединен со входом разрядного устройства и одной из клемм АБ, второй выход выпрямителя соединен с другой клеммой АБ и выходом нагрузки, а измерительные выходы АБ соединены с измерительными входами устройства контроля заряженности АБ. Технический результат - повышение энергетической эффективности системы за счет реализации экстремального регулирования мощности СБ как в режиме заряда АБ, так и в режиме совместного питания от СБ и АБ, а также возможность использования СБ с рабочим напряжением как выше, так и ниже напряжения на АБ и на нагрузке. 3 ил.

 

Изобретение относится к области преобразовательной техники, в частности к бортовым системам электропитания (СЭП) космических аппаратов (КА), и может быть использовано при проектировании и создании систем электропитания автоматических космических аппаратов на основе солнечных и аккумуляторных батарей (СБ и АБ).

Техническим результатом изобретения является повышение энергетической эффективности системы электропитания космического аппарата за счет реализации экстремального регулирования мощности (ЭРМ) солнечных батарей как в режиме заряда АБ, так и в режиме совместного питания бортовой нагрузки от СБ и АБ, а также возможность использования солнечной батареи с рабочим напряжением как выше, так и ниже напряжения на аккумуляторной батарее и на нагрузке.

Широко известна система электропитания [1] с экстремальным регулированием мощности фотоэлектрической батареи, содержащая фотоэлектрическую и аккумуляторную батареи, последовательный регулятор напряжения (РН) для питания нагрузки от фотоэлектрической батареи, зарядное и разрядное устройства (ЗУ и РУ). Экстремальное регулирование мощности фотоэлектрической батареи осуществляется ЗУ при питании нагрузки и одновременном заряде АБ, а также регулятором напряжения при одновременном питании нагрузки от СБ и АБ. Система электропитания с ЭРМ фотоэлектрической батареи предназначена для формирования силовой низковольтной (27-28 В) шины питания нагрузки.

Недостатком этой системы электропитания является то, что рабочее напряжение солнечной батареи всегда должно быть больше напряжения шины питания нагрузки. При создании высоковольтных СЭП КА (100 В) максимальное значение напряжения холостого хода «холодных» кремниевых СБ в моменты выхода КА из теневых участков Земли может достигать 300 В, а у СБ, выполненных на основе арсенид-галлиевых трехкаскадных фотопреобразователей достигать 210-220 В, что является недопустимым из-за возможности возникновения в условиях вакуума электростатических разрядов между цепочками фотодиодов СБ или элементами токосъема. Для ограничения напряжения на СБ требуется применение специальных устройств или реализация режимов работы СЭП, ограничивающих повышение напряжения на охлажденной СБ не более 180 В.

В настоящее время проектирование мощных высоковольтных российских и иностранных СЭП автоматических КА, работающих на геостационарной орбите, осуществляется на основе арсенид-галлиевых трехкаскадных фотопреобразователей и шунтовых регуляторов напряжения СБ [2], ограничивающих напряжение на СБ на уровне напряжения шины питания нагрузки (100 В), и поэтому не позволяющих реализовывать режим ЭРМ СБ. Солнечная батарея в течение всего времени активного функционирования значительно недоиспользуется по энергии, так как оптимальные значения напряжений, при которых СБ генерирует максимум мощности значительно превышают стабилизируемое напряжение 100 В.

Названные проблемы неэффективного использования СБ по энергии и возможного повышения напряжения выше 180 вольт могут быть решены путем использования инверторно-трансформаторных схем преобразования энергии, позволяющих произвольно согласовывать рабочие диапазоны напряжений на СБ, АБ и на нагрузке и реализовать режим ЭРМ СБ как в режиме заряда АБ, так и в режиме совместного питания бортовой нагрузки от СБ и АБ. При их использовании напряжение на солнечной батарее может быть как выше, так и ниже напряжения на нагрузке.

Наиболее близкой по технической сущности к заявленному изобретению является система электропитания космического аппарата, описанная в патенте [3] (фиг. 1).

Система электропитания состоит из солнечной батареи 1, аккумуляторной батареи 2, стабилизатора напряжения солнечной батареи 3, разрядного устройства аккумуляторной батареи 4, зарядного устройства аккумуляторной батареи 5, экстремального регулятора мощности солнечной батареи 6, датчика тока солнечной батареи 7, трансформатора 8, первичных обмоток трансформатора 9, 10, вторичных обмоток трансформатора 11, 12, 15, 20, устройств питания 13, 16, 18 нагрузок постоянного или переменного тока 14, 17, 19, схемы управления 21 транзисторами 22-25 стабилизатора напряжения 3, схемы управления 26 транзисторами 27-30 разрядного устройства 4.

Система электропитания работает следующим образом.

При превышении мощности СБ 1 над суммарной потребляемой нагрузками 14, 17, 19 мощностью (питании нагрузок от СБ) стабилизатором напряжения 3 с помощью обратной связи устройства 18 на вторичной обмотке 20 трансформатора 8 поддерживается стабильное напряжение. На вторичных обмотках 11, 12, 15 трансформатора 8 также поддерживается стабильное напряжение с учетом коэффициентов трансформации обмоток. При этом АБ 2 заряжена, ЗУ 5, РУ 4 и ЭРМ СБ 6 отключены.

При заряде АБ включается ЗУ 5. Сигнал о включении ЗУ 5 поступает на вход ЭРМ 6. В результате реализуется режим ЭРМ СБ 1. При этом РУ 4 отключено.

При питании нагрузки от АБ и мощности СБ 1, равной нулю, подключается РУ 4, обеспечивается стабилизация напряжения на вторичной обмотке 20 трансформатора 8 с помощью обратной связи устройства 18. При этом стабилизатор напряжения 3, ЭРМ 6, ЗУ 5 отключены.

При питании нагрузки совместно от СБ и АБ напряжение на вторичной обмотке 20 трансформатора 8 стабилизируется РУ 4, которое компенсирует недостаток мощности, генерируемой СБ. При этом напряжение на СБ определяется уровнем напряжения АБ, так как СБ и АБ в этом режиме включены параллельно через трансформатор, это исключает возможность регулирования напряжения на СБ и, соответственно, реализацию режима экстремального регулирования мощности СБ. Генерируемая СБ мощность будет определяться в этом случае напряжением АБ, приведенным к СБ через заданный при проектировании коэффициент трансформации.

Таким образом, система электропитания [3] не может осуществлять режим экстремального регулирования мощности СБ в режиме совместного питания нагрузки от СБ и АБ, что является ее главным недостатком. Другим недостатком является низкий коэффициент передачи энергии в нагрузку через АБ.

Целью изобретения является повышение энергетической эффективности СЭП КА за счет реализации экстремального регулирования мощности СБ как в режиме заряда АБ, так и разряда АБ (при одновременном питании нагрузки от СБ и АБ), а также обеспечение возможности использования солнечной батареи с рабочим напряжением как выше, так и ниже напряжения на аккумуляторной батареи и на нагрузке и тем самым исключение возможности повышения напряжения холостого хода охлажденной СБ в моменты выхода КА из тени Земли более 180 вольт.

На Фиг. 2 представлена функциональная схема заявляемой системы электропитания космического аппарата с регулированием мощности солнечной батареи инверторно-трансформаторным преобразователем, которая содержит солнечную батарею 1, датчик тока 2, систему управления 3 с экстремальным шаговым регулятором мощности СБ, регулятор напряжения 4, выполненный в виде мостового инвертора с входным С-фильтром, трансформатор 6 с первичной обмоткой 5 и вторичной обмоткой 7, выпрямитель 8 с выходным LC-фильтром, устройство контроля степени заряженности (УКЗБ) АБ 9, зарядное устройство 10, аккумуляторную батарею 11, разрядное устройство 12 и нагрузку 13.

Солнечная батарея 1 подключена плюсовой и минусовой шинами к регулятору напряжения 4, причем в плюсовой шине установлен датчик тока 2. Выход регулятора напряжения 4 соединен с первичной обмоткой 5 трансформатора 6. При этом система управления 3 соединена измерительным входом с выходом датчика тока 2, а также другими измерительными входами с силовыми шинами СБ 1 и нагрузки 13. Сигналы с датчика тока 2 и с силовых шин СБ 1 предназначены для вычисления мощности, генерируемой СБ 1.

Управление транзисторами инвертора регулятора напряжения 4 производится системой управления 3 по заданному алгоритму в соответствии с зонным принципом регулирования напряжений СБ 1 и нагрузки 13 (фиг. 3). Входы выпрямителя 8 соединены с вторичной обмоткой 7 трансформатора 6. Вход зарядного устройства 10 и выход разрядного устройства 12 соединены с одним из выходов выпрямителя 8 и входом нагрузки 13. Аккумуляторная батарея 11 одной из своих силовых клемм соединена с выходом зарядного устройства 10 и входом разрядного устройства 12. Второй выход выпрямителя 8, вторая силовая клемма аккумуляторной батареи 11 и выход нагрузки 13 соединены с общей шиной питания нагрузки 13. Измерительные выходы аккумуляторной батареи 11 соединены с измерительными входами устройства контроля степени заряженности АБ 9, информационный сигнал с УКЗБ 9 передается зарядному устройству 10.

Система электропитания КА работает в следующих режимах.

1. Мощность нагрузки меньше мощности, генерируемой СБ (РНСБmax), АБ заряжена.

При заряженной АБ 11 зарядное устройство 10 отключено. Инвертор 4 стабилизирует напряжение на обмотке 5 трансформатора 6, соответствующее напряжению на нагрузке 13 в своем верхнем поддиапазоне (фиг. 3) по сигналам системы управления 3, которая использует напряжение обратной связи (напряжение шины питания нагрузки).

2. Мощность нагрузки меньше мощности, генерируемой СБ (РНСБmax), АБ разряжена.

При получении сигнала с УКЗБ 9 о необходимости заряда аккумуляторной батареи 11 включается зарядное устройство 10, которое начинает открываться и направлять ток в АБ 11. Если суммарное значение мощности заряда АБ 11 (ЗУ 10 работает в режиме токоограничения) и мощности нагрузки 13 меньше максимального значения мощности, генерируемой СБ 1, то режим работы соответствует режиму 1, описанному выше. В этом случае мощность заряда АБ 11 является дополнительной нагрузкой, не изменяющей режим функционирования СЭП. Напряжение на нагрузке 13 регулируется в верхнем поддиапазоне (фиг. 3).

В случае если суммарное значение мощности заряда АБ 11 и мощности нагрузки 13 больше максимального значения мощности, генерируемой СБ 1, то напряжение на шине питания нагрузки 13 понижается до поддиапазона регулирования ЗУ 10. Зарядное устройство 10 начинает ограничивать ток заряда АБ 11, стабилизируя тем самым выходное напряжение СЭП (фиг. 3).

Как только напряжение на шине питания нагрузки 13 становится ниже поддиапазона регулирования инвертора 4 система управления 3 переводит инвертор 4 в режим регулирования напряжения СБ 1 по сигналам управления от шагового экстремального регулятора (ЭШР), входящего в состав системы управления. ЭШР, перемножая сигналы датчика тока 4 и напряжения от СБ 1, вычисляет текущее значение мощности, генерируемое солнечной батареей 1, и пошагово изменяя значение напряжения СБ 1 в диапазоне поиска экстремума (фиг. 3), находит оптимальное значение напряжения СБ 1.

Таким образом инвертор 4 обеспечивает отбор от СБ 1 максимум мощности, а зарядное устройство 10 стабилизирует выходное напряжение, отправляя весь излишек мощности СБ 1 на заряд АБ 11.

3. Мощность нагрузки больше мощности, генерируемой СБ (РНСБmax), разряд АБ. Питание нагрузки от СБ и АБ.

При увеличении мощности нагрузки 13 до значения, большего, чем может генерировать СБ 1 в режиме экстремального регулирования мощности (РНСБ ЭРМ) заряд АБ 11 прекращается, ЗУ 10 закрывается. Напряжение на шине питания нагрузки 13 понижается до поддиапазона регулирования РУ 12 (фиг. 3), разрядное устройство 10 начинает регулировать выходное напряжение в своем (нижнем) поддиапазоне, восполняя весь недостаток мощности в нагрузке 13.

Режим работы инвертора 4 не изменяется, он по-прежнему регулирует напряжение СБ 1 в области экстремума мощности по сигналам ЭШР.

При уменьшении мощности нагрузки 13 до значений, меньших, чем генерирует СБ 1 в режиме ЭРМ (РНСБ ЭРМ), разряд АБ 11 прекращается, напряжение на шине питания нагрузки повысится до поддиапазона регулирования ЗУ 10 (фиг. 3), которое вновь начнет регулировать выходное напряжение, отправляя весь излишек мощности СБ 1 на заряд АБ 11.

4. Солнечная батарея не генерирует мощность (РСБ=0), разряд АБ.

При попадании КА в тень Земли или отворотах панелей СБ 1 от Солнца солнечная батарея 1 не генерирует мощность (РСБ=0). Напряжение на шине питания нагрузки 13 понижается до поддиапазона регулирования РУ 12 (фиг. 3), разрядное устройство 12 начинает регулировать выходное напряжение в своем (нижнем) поддиапазоне, восполняя весь недостаток мощности в нагрузке 13. Инвертор 4 находится в ждущем режиме.

Таким образом, в заявляемой схеме напряжение СБ 1 может регулироваться в широком диапазоне, включающем точку ΒΑΧ СБ 1 с максимальной мощностью, как в режиме заряда АБ 11, так и в режиме питания совместно от СБ 1 и АБ 11, что повышает энергетическую эффективность СЭП КА.

В СЭП, выполненной по разработанной схеме на основе инверторно-трансформаторного преобразования энергии СБ 1, достаточно просто согласовываются рабочие диапазоны напряжений на СБ 1, АБ 11 и нагрузке 13, посредством изменения коэффициента трансформации напряжения СБ и условий эксплуатации солнечной батареи. Напряжение на солнечной батарее 1 может быть как выше, так и ниже напряжения на нагрузке 13. Солнечная батарея 1 может проектироваться из условия исключения возможности повышения ее напряжения холостого хода выше заданного значения (выше критичного значения 180 В).

Повышение энергетической эффективности СЭП КА по предложенной схеме достигается также за счет уменьшения потерь энергии при ее передаче от СБ в нагрузку через АБ, так как вместо инверторно-трансформаторного преобразователя, работающего в качестве разрядного устройства, используется вольтодобавочный преобразователь постоянного тока с более высоким к.п.д.

Использованные источники

1. Пат. РФ №2101831, H02J 7/35. Система электропитания с экстремальным регулированием мощности фотоэлектрической батареи / К.Г. Гордеев, С.П. Черданцев, Ю.А. Шиняков. Заявка №95119971 от 27.11.1995. Опубл. 10.01.1998, Бюл. №1.

2. Системы электропитания для больших платформ на геостационарной орбите / В.В. Хартов, Г.Д. Эвенов, B.C. Кудряшов, М.В. Лукьяненко // Электронные и электромеханические системы и устройства: Сб. науч. тр. - Новосибирск: Наука, 2007. - С. 7-16.

3. Пат. РФ №2396666, H02J 7/34. Система электропитания космического аппарата. / B.C. Кудряшов, В.О. Эльман, М.В. Нестеришин, К.Г. Гордеев, В.Н. Гладущенко, В.В. Хартов, С.Г. Кочура, В.Г. Солдатенко, Н.В. Мельников, Р.В. Козлов Заявка №2009124704 от 29.06.2009. Опубл. 10.08.2010, Бюл. №24.

Система электропитания космического аппарата, состоящая из солнечной батареи, подключенной своими плюсовой и минусовой силовыми шинами к регулятору напряжения, причем в плюсовой шине установлен датчик тока, трансформатора, первичная обмотка которого соединена с регулятором напряжения, построенным по мостовой схеме инвертора, выпрямителя, аккумуляторной батареи с устройством контроля степени заряженности, нагрузки, зарядного и разрядного устройств, отличающаяся тем, что она содержит систему управления с экстремальным шаговым регулятором мощности солнечной батареи, которая соединена измерительным входом с выходом датчика тока, а другими измерительными входами - с силовыми шинами солнечной батареи и нагрузки с возможностью управления транзисторами регулятора напряжения с входным C-фильтром, причем вторичная обмотка трансформатора соединена с входами выпрямителя, содержащего выходной LC-фильтр, один из силовых выходов которого соединен с входом зарядного устройства, выходом разрядного устройства и входом нагрузки, выход зарядного устройства соединен со входом разрядного устройства и одной из силовых клемм аккумуляторной батареи, второй силовой выход выпрямителя соединен с другой силовой клеммой аккумуляторной батареи и выходом нагрузки, а измерительные выходы аккумуляторной батареи соединены с измерительными входами устройства контроля степени заряженности аккумуляторной батареи, информационный сигнал с которого передается зарядному устройству.



 

Похожие патенты:

Изобретение относится к конструкции зарядного устройства, предпочтительно для транспортных средств. Технический результат - повышение характеристики охлаждения компонентов преобразования мощности.

Использование: в батарейных блоках для обеспечения питания хирургических инструментов. Технический результат - обеспечение приемлемого для утилизации уровня напряжения в батарейном блоке.

Изобретение относится к приему и передаче электрической мощности на транспортное средство. Устройство приема электрической мощности для транспортного средства содержит модуль приема электрической мощности, принимающий электрическую мощность из устройства передачи электрической мощности бесконтактным способом; узел связи, который передает информацию относительно позиции или размеров модуля приема электрической мощности в устройство передачи электрической мощности.

Изобретение относится к зарядке электромобиля. Станция обмена энергией для аккумулятора электротранспортного средства содержит выход мощности для транспортного средства, порт обмена данными для определения способности транспортного средства заряжаться переменным и/или постоянным током и множество источников питания.

Изобретение относится к электротехнике, в частности к устройствам контроля аккумуляторных батарей. Технический результат - обеспечение детектирования состояния аккумуляторного блока и управления им, когда аккумуляторный блок неисправен, что может предотвратить получение травмы.

Использование: в области электротехники. Технический результат - обеспечение подачи мощности в зарядное устройство в конкретное предварительно определенное время.

Изобретение относится к аккумуляторным электроинструментам. Технический результат - повышение влагозащищенности.

Изобретение относится к светотехнике. Осветительное устройство состоит из источника света, аккумулятора, зарядного устройства, подключенного к аккумулятору, генератора, работающего на солнечной энергии, и блока управления для осуществления управления световым потоком.

Изобретение относится к электрическим транспортным средствам. Транспортное средство содержит устройство приема и передачи электрической мощности бесконтактным образом; главный и вспомогательный аккумулятор.

Изобретение относится к электротехнике, а именно к устройствам для бесконтактной передачи на подводный объект электрической энергии, которая, в частности, применяется для зарядки электрической аккумуляторной батареи, установленной на этом подводном объекте.

Изобретение относится к нефтегазовой отрасли и предназначено для централизованного автоматического контроля в реальном времени работы удаленных систем управления и контроля потока текучих средств. Технический результат заключается в обеспечении утилизации энергии, которая вырабатывается автономным источником питания, в то время, когда аккумуляторная батарея уже полностью заряжена. Технический результат достигается за счет наличия по меньшей мере одного средства утилизации энергии, выполненного с возможностью утилизации энергии, поступающей в средство аккумулирования энергии выше заданного предела, излишняя энергия, поступающая от автономного источника энергии, направляется на это средство, которое утилизирует излишнюю энергию. 24 з.п. ф-лы, 11 ил.

Использование: в области электротехники. Технический результат - обеспечение заряда автоматически управляемого транспортного средства, в котором монтируются различные типы аккумуляторов. Раскрыта система управления зарядом аккумулятора автоматически управляемого транспортного средства (АУТС) первого типа, которое движется без водителя посредством использования первого типа смонтированного аккумулятора в качестве источника приведения в движение, причем указанный смонтированный аккумулятор заряжается в зарядной станции. Система также содержит АУТС второго типа, которое движется без водителя посредством использования второго типа смонтированного аккумулятора, имеющего зарядное напряжение ниже полного зарядного напряжения аккумулятора первого типа. При этом первый тип АУТС не содержит контроллер для управления напряжением аккумулятора первого типа в ходе заряда. Первый тип смонтированного аккумулятора заряжается в то время, когда напряжение управляется посредством первого контроллера заряда, предоставленного в автоматическом зарядном устройстве аккумулятора. Второй АУТС содержит контроллер заряда аккумулятора, который управляет напряжением заряда аккумулятора второго типа, смонтированного в зарядной станции, и выполняет операцию заряда с использованием автоматического зарядного устройства, когда напряжение смонтированного аккумулятора второго типа ниже предварительно определенного напряжения, ниже полного зарядного напряжения аккумулятора второго типа. Тракт заряда транспортного средства прерывается, когда напряжение смонтированного аккумулятора второго типа в ходе заряда достигает напряжения ниже полного зарядного напряжения аккумулятора первого типа и выше предварительно определенного напряжения. 2 н. и 5 з.п. ф-лы, 11 ил.

Группа изобретений относится к схемам зарядки батарей транспортных средств с питанием от собственных источников энергоснабжения. Устройство управления зарядным портом содержит зарядный порт, запорный механизм и блок управления запертым состоянием. Зарядный пот входит в зацепление с зарядным соединителем. Запорный механизм ограничивает расцепление между зарядным соединителем и зарядным портом. Блок управления запертым состоянием управляет запорным механизмом. При этом блок управления имеет первый режим запертого состояния только тогда, когда выведен запрос зарядки со стороны транспортного средства, и третий режим постоянно незапертого состояния. Во втором варианте устройства блок управления имеет первый режим запертого состояния только тогда, когда в зарядный порт подана энергия. Технический результат изобретений заключается в повышении эффективности зарядки на станциях зарядки общего пользования. 2 н. и 22 з.п. ф-лы, 13 ил.
Изобретение относится к радиоэлектронике, а именно к бесконтактному вводу электрической энергии из одного радиоэлектронного прибора в другой радиоэлектронный прибор. Технический результат - обеспечение длительной автономности работы подводного автономного аппарата. Способ подводной подзарядки аккумулятора подводного автономного аппарата осуществляют с использованием вторичной обмотки трансформатора, которую располагают в носовой части подводного аппарата, и первичной обмотки трансформатора, которую располагают в донном зарядном устройстве, имеющем установленное на его корпусе тороидальное тело. Вводят носовую часть подводного автономного аппарата, под которой скрыта вторичная обмотка трансформатора, в тороидальное тело донного зарядного устройства с совмещением обмоток трансформатора. Подзаряжают аккумулятор автономного подводного аппарата, при этом соприкасающиеся поверхности подводного автономного аппарата и тороидального тела выполняют из радиопрозрачного материала

Изобретение относится к контролю системы энергосбережения транспортного средства. Система планирования поездок включает в себя компьютеры, расположенные удаленно от электромобиля и выполненные с возможностью получать данные об общей денежной сумме, которую пользователь планирует потратить на зарядку электромобиля для совершения поездки, и получать данные о состоянии заряда одного или нескольких аккумуляторных блоков, имеющихся в электромобиле. Также отображается расчетное расстояние, которое пользователь может проехать, на основании состояния заряда и расчетного заряда, полученного в результате зарядки электромобиля в соответствии с указанной общей денежной суммой. Решение направлено на оптимизацию планирования поездок. 7 з.п. ф-лы, 4 ил.

Использование: в области электротехники для зарядки электронных устройств. Технический результат - обеспечение одновременного приема питания и подачи питания по первой и второй зарядным цепям соответственно. Способ зарядки батареи содержит обеспечение питания от батареи к внешнему устройству, используя первую цепь; и прием питания от первого источника питания для обеспечения питания к батарее с использованием второй цепи во время обеспечения питания к внешнему устройству, причем обеспечение питания от батареи содержит обеспечение питания от батареи на основании определения, что внешнее устройство подключено к электронному устройству. 3 н. и 12 з.п. ф-лы, 9 ил.

Изобретение относится к области вспомогательного оборудования для мобильных устройств, такого как устройства для зарядки, а именно к электрическому установочному устройству с зарядным устройством (16) с возможностью размещения мобильного аудио- и коммуникационного прибора (22). Техническим результатом является расширение функциональных возможностей зарядного устройства за счет его использования в качестве осветительного прибора во время зарядки мобильного устройства. Для этого центральная панель (1) устройства соединена с приборным цоколем (15) и снабжена фронтальной заглушкой (2), на которой посредством шарнирного сочленения (13) закреплена поворотная приемная плата (3). Причем приемная плата (3) имеет приемную поверхность (4) для мобильного аудио- и коммуникационного прибора (22), а также на своей другой основной поверхности в откинутом вверх положении вертикально направленную заднюю сторону (9) приемной платы. В задней стороне (9) приемной платы встроен светильник (10), снабжение энергией которого осуществляется по скрытому кабелю (14), который от зарядного прибора (16) в приборном цоколе (15) через шарнирное сочленение (13) проходит к поворотной приемной плате (3). При этом направление (12) света светильника (10) может задаваться посредством устанавливаемого с помощью шарнирного сочленения (13) угла (α) между фронтальной заглушкой и приемной платой (3), причем в откинутом вверх положении между фронтальной заглушкой (2) и приемной платой (3) устанавливается расстояние (А), которое соответствует по меньшей мере толщине/высоте мобильного аудио- и коммуникационного прибора (22). 2 з.п. ф-лы, 9 ил.

Изобретение относится к области вспомогательного оборудования для мобильных устройств, такого как устройства для зарядки, а именно к электрическому установочному устройству с зарядным устройством (16) с возможностью размещения мобильного аудио- и коммуникационного прибора (25). Техническим результатом является расширение функциональных возможностей зарядного устройства за счет его использования в качестве устройства индикации данных посредством устройства отображения во время зарядки мобильного устройства. Для этого центральная панель (1) устройства соединена с приборным цоколем (15) и снабжена фронтальной заглушкой (2), на которой посредством шарнирного сочленения (13) закреплена поворотная плата (3) для размещения мобильного прибора. Причем плата (3) для размещения имеет поверхность (4) для размещения мобильного аудио- и коммуникационного прибора (25), а также содержит на своей другой основной поверхности в откинутом вверх положении вертикально направленную заднюю сторону (9) платы для размещения. При этом в задней стороне (9) платы для размещения встроено устройство (10, 11, 12) отображения, снабжение энергией которого осуществляется по скрытому кабелю (14), который от зарядного прибора (16) в приборном цоколе (15) через шарнирное сочленение (13) проходит к поворотной плате (3). Кроме того, в откинутом вверх положении между фронтальной заглушкой (2) и платой (3) для размещения устанавливается расстояние (А), которое соответствует по меньшей мере толщине/высоте мобильного аудио- и коммуникационного прибора (25). 7 з.п. ф-лы, 11 ил.

Изобретение относится к области вспомогательного оборудования для мобильных устройств, таких как устройства для зарядки, а именно к центральной панели электрического установочного устройства для размещения и электрической зарядки мобильного аудио и коммуникационного прибора. Техническим результатом является возможность увеличения поверхности центральной панели при размещении на ней мобильного прибора и компактное состояние центральной панели при ее неиспользовании. Для этого на базовой плате (2) центральной панели (1) через шарнирное сочленение (4) закреплена крышка (5), опорная поверхность которой для размещения мобильного аудио и коммуникационного прибора увеличена за счет двух боковых пластин (17, 19), находящихся по обе стороны от крышки (5). При этом обе боковые пластины (17, 19) устанавливаются/направляются с возможностью поперечного сдвига на крышке (5) посредством пазовых/пружинных направляющих (21) и посредством фиксирующего устройства нагружением усилия пружины могут стопориться в двух устойчивых конечных положениях с/без увеличенной опорной поверхности (17+5+19). 3 з.п. ф-лы, 8 ил.

Изобретение относится к области электротехники, конкретно к способу электрической зарядки накопителя (201, 303) электрической энергии посредством зарядной станции (101, 501). Технический результат - обеспечение надлежащего функционирования устройства, осуществляющего управление процессом зарядки. Для чего регистрируют электрическое подключение накопителя (201, 303) электрической энергии к зарядной станции (101, 501), при этом зарядная станция (101, 501) подводит зарядную электрическую энергию к подключенному к ней накопителю (201, 303) энергии, если между зарядной станцией (101, 501) и подключенным накопителем (201, 303) регистрируется обмен коммуникационными сигналами. 2 н. и 7 з.п. ф-лы, 8 ил.
Наверх